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ABSTRACT
Let F be a differential field generated from the rational func-
tions over some constant field by one hyperexponential ex-
tension. We present an algorithm to compute the solutions
in Fn of systems of n first-order linear ODEs. Solutions in
F of a scalar ODE of higher order can be determined by
an algorithm of Bronstein and Fredet. Our approach avoids
reduction to the scalar case. We also give examples to show
how this can be applied to integration.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms

General Terms
Algorithms, Experimentation, Theory

Keywords
Linear Differential Equations over hyperexponential exten-
sion, Closed form solutions, Computer Algebra

1. INTRODUCTION
In the literature many results on solving scalar linear or-

dinary differential equations in various differential fields can
be found, e.g., [15, 5, 7, 10]. In principle these can also be
used for solving linear ordinary differential systems as they
can always be reduced to scalar equations by the cyclic vec-
tor method or other uncoupling strategies. However, this
reduction in general results in equations with much more
complicated coefficients, which can take long to compute
and to solve. This suggests that algorithms avoiding uncou-
pling might be preferable. In the present paper we extend
the algorithm for computing closed form solutions in C(x),
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where C is a field of constants, of systems with coefficients
from C(x) without uncoupling presented in [1] to accept
more general equations living in C(x, t), with t being tran-
scendental and hyperexponential over C(x), and compute
its solutions in C(x, t). This is related to computing expo-
nential solutions as considered in [11], but there the systems
are homogeneous only and more general solutions are con-
sidered. We show how to deal with the inhomogeneous part
from C(x, t), but we need to impose certain conditions on
the system matrix. First we start with matrices still having
entries from C(x) and later we show how this generalizes
to matrices with entries from C(x, t) subject to some con-
ditions. Related considerations for systems in C(x)[t, t−1]
were also made in [9, Chap. 7] even for several hyperexpo-
nential generators, but no direct algorithm to compute the
solutions in C(x, t) nor even in C(x)[t, t−1] was provided
there. We also illustrate what makes it so difficult to obtain
a complete algorithm for any system with coefficients from
C(x, t). As an application of our algorithm we show that in-
tegrals involving certain Special Functions can be reduced to
differential systems with coefficients of the type we consider.

Most algorithms for computing solutions of linear ordi-
nary differential equations proceed by investigating the sin-
gularities of the coefficients to obtain information on the
singularities of the solutions. For systems this is more diffi-
cult than for scalar equations and a main tool for computing
indicial equations in this case is super-reduction [2, 1, 11].
From super-reduced systems we can compute all the integer
slopes of the Newton-polygon and determine the correspond-
ing characteristic polynomials [12]. If we are interested in
one particular polynomial corresponding to a given integer
slope k then k-simple systems as introduced in [12] are just
what we need and the condition of being super-reduced is
too strong. Recently an algorithm for directly computing
k-simple forms of first-order differential systems at x = 0
with coefficients from C((x)) was developed in [8, Chap. 4],
eliminating the need to compute a super-reduced form first.
We present a rational version of this algorithm at any place
in C(x) for systems with coefficients in C(x) providing an al-
ternative to the rational algorithm for super-reduction pre-
sented in [2]. In particular, it can also be utilized in the
algorithm given in [1] replacing the super-reduction there.
In addition, we observe that the algorithm for directly com-
puting k-simple forms can also be applied in more general
differential fields, which we exploit in our algorithm as well.
Generalizations of concepts such as Newton polygon, char-
acteristic polynomials, normal forms, etc. for linear differen-
tial systems with coefficients from exponential extensions of



C((x)) can be found in [3, 4].
We set up the formal setting in Section 2 and state our

problem. All fields are implicitly understood to be of charac-
teristic zero. After Section 3, which describes the algorithm
for solving the problem, the next sections present the sub-
algorithms in more detail. In particular Section 4 presents
a rational algorithm to compute indicial and characteristic
polynomials and Section 5.2 shows how this can be utilized
in C(x) to compute the bounds on solutions in C(x)[t, t−1].
Then in Section 6 we illustrate our algorithm and show how
it can be applied to integration. We observe in Section 7
that our algorithm can also deal with more general situa-
tions and we present more non-trivial integrals. In Section 8
we conclude with discussing the limitations of our algorithm
and directions for future work.

2. PROBLEM SETTING
Let C be a field and x transcendental over C, we con-

sider the differential field (K, δ) = (C(x), d
dx

), i.e., δx = 1.
Now, let a ∈ K such that there are no k ∈ Z \ {0} and
g ∈ K∗ with a = δg

kg
. Let t 6= 0 in some extension of K with

δt = at, i.e., t is hyperexponential over K, and consider the
differential field extension (F, δ) := (K(t), δ). According to
[6, Thm. 5.1.2] the condition on a implies that t is tran-
scendental over K and the constant field of F is C. We keep
this setting throughout the paper and consider the following
problem.

Problem 1. Given A ∈ Kn×n and f0, . . . , fm ∈ Fn, com-
pute a C-vector space basis of all solutions (y, c) ∈ Fn ×
Cm+1 such that

δy +Ay =

m∑
i=0

cifi. (1)

Often one needs to consider the affine case where c0 = 1
is fixed, which is what we will do in the examples later. The
necessary modifications are trivial.

For the presentation of our work we need to define a few
notions for polynomials p ∈ K[t], see, e.g., [6] for more de-
tails. First, note that δp ∈ K[t] as well. If gcd(p, δp) = 1
then p is called normal, if p | δp then p is called special.
Irreducible polynomials p are either normal or special. Any
p ∈ K[t] can be factored into a normal part and a special
part, which only have normal or special irreducible factors
respectively. The above condition on a also implies that the
only special irreducible polynomial p ∈ K[t] is p = t.

Regarding valuations we will rely on the following defi-
nitions. Any irreducible p ∈ C[x] (or p = 1

x
) induces a

valuation νp : C(x) → Z ∪ {∞}, where νp(f) is given by
the maximal ν such that p - den(fp−ν) (or by νp(f) :=
deg(den(f)) − deg(num(f)) for p = 1

x
). It can be thought

of as the multiplicity of the zero of f at the roots of p with
negative values corresponding to poles. We define the degree
of the derivation at p as ωp := inff∈C(x)∗ νp(

δf
f

). Any val-
uation νp has a canonical projection πp from the valuation
ring {f ∈ C(x) | νp(f) ≥ 0} to the residue field C[x]/(p) (or
C for p = 1

x
) associated to it, which can be thought of as the

evaluation of f ∈ C(x) at the roots of p. The leading term of

the p-adic expansion of an f ∈ C(x)∗ is πp(fp
−νp(f))pνp(f).

If νp(f) ≥ νp(δp) − 1 then we define the residue of f at p
by resp(f) := πp(f

p
δp

). Analogously, for p ∈ K[t] (or p = 1
t
)

we define νp, πp, and ωp := inff∈K(t)∗ νp(
δf
f

) on K(t). For

vectors f we define the valuation νp(f) as the minimum of
the valuations of the entries, likewise we define νp(A) for
matrices.

3. ALGORITHM
Our algorithm follows the same three major steps that

already have been used for scalar ODEs in [7]. The impor-
tant ingredient for computing the solutions is to obtain lower
bounds on the possible values of νp(y) for all p.

1. Compute the normal part of the universal denomina-
tor, i.e., some b ∈ K[t] \ {0} such that any solution y
of (1) satisfies by ∈ K[t, t−1]n.

2. Determine degree bounds λ0, λ1 for the Laurent poly-
nomials ỹ ∈ K[t, t−1]n such that ỹ/b satisfies (1).

3. For the ansatz ỹ =
∑λ1
i=λ0

yit
i compute the rational

solutions yi ∈ C(x)n and the corresponding ci ∈ C.

Essentially, in the first two steps the result is determined
by the inhomogeneous part of the system. However there is
also the possibility of some cancellation in the homogeneous
part, which will be our main concern in Sections 5 and 7.
A lower bound for νp(δy + Ay) is easily obtained from the
inhomogeneous part: νp(δy+Ay) ≥ mini νp(fi). Disregard-
ing cancellation cases we then can bound νp(y) from below
based on ωp and νp(A), since in most cases we have

νp(y) = νp(δy +Ay)−min(ωp, νp(A)). (2)

This bound on νp(y) has then to be modified in order to
include all values of νp(y) where the standard relation (2) is
not satisfied.

The considerations above need to be executed for finitely
many p only since we have the a-priori bound νp(y) ≥ 0 for
almost all p as will be detailed later. In Step 1 the basic fact
to consider is that for any normal irreducible p ∈ K[t] we
have that νp(f) 6= 0 implies νp(δf) = νp(f)−1 and νp(f) = 0
implies νp(δf) ≥ 0, hence ωp = −1. For Step 2, however,
with t | δt we have that νt(f) 6= 0 implies νt(δf) = νt(f) and
νt(f) = 0 implies νt(δf) ≥ 0. Hence ωt = 0, and similarly
ω1/t = 0. For more details we refer to [6, Chapter 4].

Once we have determined b we substitute y = ỹ/b in (1)
and multiply by b to obtain the new system

δỹ +

(
A− δb

b
In

)
ỹ =

m∑
i=0

cifib. (3)

Then we do the remaining computations in Steps 2 and 3
based on this system. After computing λ0 and λ1 we ei-
ther focus on the place p = t or p = 1

t
in the third step.

Starting from tλ0 or tλ1 respectively we successively proceed
through the powers of t. For each power ti by comparing its
coefficients, or, more precisely, multiplying (3) by t−i and
applying πp, we obtain a differential system of the form

δyi + (A+ (ia− b̃)In)yi =

mi∑
j=0

c̃i,j f̃i,j (4)

with coefficients from C(x), where b̃ = πp(
δb
b

). In order
to compute all solutions yi ∈ C(x)n and c̃i,j ∈ C of these
systems we apply the algorithm described in [1] modified to
obtain indicial equations based on the algorithm described
in Section 4.1 instead of super-reduction. Plugging in the



solutions in the ansatz made for ỹ in (3) generates a new
inhomogeneous part with higher νt or lower ν1/t respectively
and possibly with a different m. Then we proceed with the
next power of t until we eventually consider tλ1 or tλ0 . After
that the remaining inhomogeneous part has to vanish, which
provides conditions on the remaining free constants.

4. INDICIAL AND CHARACTERISTIC POLY-
NOMIALS

For computing indicial and characteristic polynomials we
consider the following setting.

Let k ∈ N and p ∈ C[x] irreducible or p = 1
x

. Further-

more, let α ∈ Nn, D̃,N ∈ Kn×n such that νp(D̃), νp(N) ≥ 0,

then for D := pdiag(α)(In + pD̃) we consider the operator

L(y) = Dpk−ωpδy +Ny. (5)

Note that the definition of D implies νp(D) ≥ 0. Operators
of the the form δy +Ay have to be multiplied from the left
by an appropriate factor to match this form.

Let y = ge
∫
w with g ∈ Kn and w ∈ K such that νp(g) =

0 and νp(w) ≥ ωp − k, then the equation L(y) = 0 reads

L(y) = (Dpk−ωpδg + wDpk−ωpg +Ng)e
∫
w = 0.

With D0 := πp(p
diag(α)), N0 := πp(N), g0 := πp(g), and

w0 := πp(wp
k−ωp) we have

πp(Dp
k−ωpδg + wDpk−ωpg +Ng) =

D0πp(p
k−ωpδg) + (w0D0 +N0)g0.

Hence from νp(δg) > ωp − k and g0 6= 0 we deduce that the
polynomial

Pk(µ) := det(µD0 +N0)

has a root at µ = w0. If Pk 6≡ 0, then L is called k-simple
at p and Pk is called the characteristic polynomial (k > 0)
or the indicial polynomial (k = 0) at p. In other words, if
L is k-simple, then by computing Pk we get finitely many
candidates for w0. For k = 0 this is equivalent to the notion
of simple systems used in [1].

As not every L is k-simple at p we need to compute an
equivalent operator

L̃(z) = SL(Tz) = SDpk−ωpTδz + S(NT +Dpk−ωp(δT ))z

with S, T ∈ Kn×n invertible such that L̃ obeys the same
structure above and is k-simple at p.

Then for general g ∈ Kn and w ∈ K with νp(w) ≥ ωp− k
and L(ge

∫
w) = 0 we normalize to g̃ := T−1gp−νp(T

−1g)

and w̃ := w + νp(T
−1g) δp

p
. So we have νp(g̃) = 0 and

L̃(g̃e
∫
w̃) = 0. Hence we have Pk(w̃0) = 0 where w̃0 =

πp(wp
k−ωp) + δk,0νp(T

−1g)πp((δp)p
−1−ωp). Moreover, ob-

serve that νp(T ) ≤ νp(g)− νp(T−1g) ≤ −νp(T−1).

4.1 Computing k-simple forms directly
Using the notation from above we will show in this sec-

tion, given any such operator L(y) = Dpk−ωpδy +Ny, how
to compute S, T ∈ Kn×n invertible such that the operator
SL(Tz) is k-simple at p, i.e., the corresponding Pk(µ) is not
the zero polynomial. The rational algorithm given below
is an immediate generalization of the algorithm developed
for p = x by Carole El Bacha in [8, Chap. 4]. The main
difference is in verifying that the term SDpk−ωp(δT ) in the
equivalence transformation does not interfere.

The algorithm repeats the same step again and again, at
each step applying some equivalence transformation deter-
mined according to the three cases shown below. At the
beginning and after each step of the algorithm we perform
a normalizing transformation: we multiply each row of the
current operator L by p−min(αi,νp(ni)) from the left, where
ni is the i-th row of N , which can be summarized as some
S = pdiag(β), and we apply a permutation matrix P such that
the operator PSL(P−1y) has α ∈ Nn with α1 ≤ · · · ≤ αn. If
the resulting operator is k-simple at p, then we collect all the
transformations done so far into the overall transformation
matrices S and T and stop, otherwise we proceed with the
next step. If the input is of the form δy +Ay, then the ini-
tial normalization multiplies each row by p−min(ωp−k,νp(ai))

from the left instead in order to obtain the form (5), where
ai is the i-th row of A.

By the normalization in between the steps the sum |α| :=
α1 + · · ·+ αn is either decreased or at least stays the same.
As long as the operator is not k-simple, which happens for
α = 0 at latest, the steps ensure that |α| will be decreased
eventually. The idea of the transformations applied below
is to make one row of N0 zero for which the correspond-
ing αi is greater than zero, since then at the first part of
the normalizing transformation αi will be decreased in this
situation.

For the rest of the section we denote the residue field
C[x]/(p) or C of the valuation νp uniformly by Kp. When
constructing transformation matrices by elements from Kp

we actually refer to canonical representatives from K (w.r.t.
πp). We also use r to denote the rank of the matrix D0 and
observe that

D0 =

(
Ir 0
0 0

)
.

We subdivide the matrix N0 into the same block sizes as D0

above. Below we assume that the operator is not k-simple
yet, in other words the rows of the matrix

µD0 +N0 =

(
µIr +N11 N12

N21 N22

)
∈ Kp(µ)n×n

are linearly dependent.

Case 1.
We check whether the rows of the submatrix (N21 N22) are

linearly dependent. If they are not, we proceed with Case 2
below. If they are, then for some i > r we can determine
a vector u ∈ Kn−i

p such that (0, . . . , 0, 1,u)N0 = 0. Let
j ∈ {i+ 1, . . . , n} be maximal such that αi = αj and define
ũ = (−u1, . . . ,−uj−i, 0, . . . , 0) ∈ Kn−i

p . Then we apply the
transformation

S =

Ii−1 0 0
0 1 u
0 0 In−i

 , T =

Ii−1 0 0
0 1 ũ
0 0 In−i

 .

We have that νp(δT ) ≥ ωp and only its i-th row may be

non-zero, which implies νp(Sp
diag(α)(In + pD̃)pk−ωpδT ) ≥

αi + k, in particular νp(SDp
k−ωpδT ) > 0. So the new N0

has all zeros in its i-th row and, since αi > 0, the subsequent
normalizing transformation will decrease |α|.

Case 2.
We refine the subdivision of N0 from above by splitting off

the first q rows and columns for the maximal q ∈ {0, . . . , r}



such that

N0 =

N11 0 0
N21 N22 N23

N31 N32 N33


and check whether the rows of the submatrix (N32 N33) are
linearly dependent. If they are not, we proceed with Case 3
below. If they are, then we apply the transformation

S =

(
p−1Iq 0

0 In−q

)
, T =

(
pIq −pD12

0 In−q

)
,

where D12 is the corresponding submatrix obtained from
πp(D̃) by deleting the first q columns of the first q rows

πp(D̃) =

(
D11 D12

D21 D22

)
.

We have that νp(δT ) ≥ 1+ωp and only its first q rows may be

non-zero, which implies νp(Sp
diag(α)(In + pD̃)pk−ωpδT ) ≥ k

where only the first q rows can have valuation νp exactly k.
So at worst SDpk−ωpδT contributes to the first q rows of
N0, for k = 0, but does not interfere with the last n−r rows
in any case. This transformation does not change α, but the
new N0 has (0 N32 N33) as its last n − r rows, which are
linearly dependent. So |α| will be decreased either now by
normalizing or at latest after the next step, which will be
Case 1 then.

Case 3.
We apply a n × n permutation matrix P acting on the

rows {q + 1, . . . , r} only in order to ensure that for the op-
erator PL(P−1y) with the same subdivision of N0 from
above we can determine a vector u ∈ Kn−q−1

p such that
(0, . . . , 0, 1,u)N0 = 0. Analogous to Case 1 we define ũ =
(−u1, . . . ,−ur−q−1, 0, . . . , 0) ∈ Kn−q−1

p and then we apply
the transformation

S =

Iq 0 0
0 1 u
0 0 In−q−1

 , T =

Iq 0 0
0 1 ũ
0 0 In−q−1

 .

If p ∈ C[x] then we have ωp = −1 and νp(δT ) ≥ 0, if p = 1
x

then we have Kp = C and δT = 0. In any case νp(δT ) > ωp,

which implies νp(Sp
diag(α)(In + pD̃)pk−ωpδT ) > k, in par-

ticular νp(SDp
k−ωpδT ) > 0. So the effect of this trans-

formation is that the new N0 has an increased value of q.
The normalization will not change the operator and can be
skipped immediately after this step. This will just result in
Case 3 being applied until we are in one of the other two
cases, which happens for q = r at latest.

To see that we actually can construct the transformation
described in Case 3 consider the following. The rows of

µD0+N0 =

µIq +N11 0 0
N21 µIr−q +N22 N23

N31 N32 N33

 ∈ Kp(µ)n×n

are linearly dependent. As µIq + N11 is invertible we see
that the rows of the submatrix(

µIr−q +N22 N23

N32 N33

)
are linearly dependent, which remains true after specializing
µ = 0. But the rows of (N32 N33) are linearly independent

since we would not have reached Case 3 otherwise. There-
fore, q < r and in particular we can find a transformation of
the type described above after a suitable permutation.

5. COMPUTING THE BOUNDS

5.1 Normal part of the denominator
This step is rather trivial in our present setting, but it

will be more involved in the generalization considered later
in Section 7. For now at any irreducible p ∈ K[t] with t - p
we have (2) as long as νp(y) 6= 0. This is owed to the fact
that νp(A) = 0 > −1 = ωp implies νp(δy +Ay) = νp(δy) =
νp(y) − 1 in this case. So with λp := 1 + mini νp(fi) we
simply can take

b =
∏
p

p−λp ∈ K[t] \ {0},

where the product runs over the finitely many p such that
λp < 0. Then any y ∈ K(t)n that is a solution of (1) for
some c0, . . . , cm ∈ C satisfies

by ∈ K[t, t−1]n.

5.2 Degree bounds
We now have to find bounds on the possible values of λ0

and λ1 in the solutions ỹ =
∑λ1
i=λ0

yit
i of (3). The system

matrix Ã, however, has entries from K(t)n×n now, but it is
the sum of A ∈ Kn×n and δb

b
In for some b ∈ K(t)∗. So in

particular we still have νt(Ã) = 0 and ν1/t(Ã) = 0, which is
what we need in the following.

Both for p = t and p = 1
t

we have ωp = 0 as well as

νp(Ã) = 0, hence (2) reads νp(y) = νp(δy + Ãy). In general

we have νp(y) ≤ νp(δy + Ãy) only, so we need to determine
the cases where we have strict inequality. Consequently, we
are reduced to the problem of finding solutions gtλ with
g ∈ Kn and λ ∈ Z of the homogeneous system

δy + πp(Ã)y = 0.

We proceed by an algorithm computing a finite set of can-
didates for λ, which we present in the proof of the following
theorem.

Theorem 2. Let A ∈ C(x)n×n and δt = at where a ∈
C(x) such that there are no k ∈ Z \ {0} and g ∈ C(x)∗ with
a = δg

kg
. Then we can compute a finite set Λ ⊂ Z such that

for any y = gtλ with g ∈ C(x)n, λ ∈ Z, and δy + Ay = 0
we have λ ∈ Λ.

Proof. Choose p ∈ C[x] irreducible (or p = 1
x

) such
that νp(a) < ωp or resp(a) 6∈ Q. We can do this because
if for each irreducible p ∈ C[x] we have νp(a) ≥ −1 and

resp(a) ∈ Q then a = ã +
∑N
i=1 ri

δpi
pi

for some ã ∈ C[x],

ri ∈ Q, and pi ∈ C[x] and by assumption on a it follows that

ã 6= 0, which implies ν1/x(a) < 1. Let a0 := πp(ap
−νp(a)),

p0 := πp((δp)p
−1−ωp), and β := ωp−νp(a). For constructing

Λ we distinguish two cases.
Case 1: β > 0

Compute a β-simple form of δy+Ay at p as well as the cor-
responding characteristic polynomial Pβ(µ) ∈ C[x]/(p)[µ]
(resp. ∈ C[µ]). Determine the set

Λ̃ := {λ ∈ Z \ {0} | Pβ(λa0) = 0}.



Next, compute a 0-simple form of δy + Ay at p as well as
the corresponding transformation matrix T ∈ C(x)n×n and
indicial polynomial P0(µ) ∈ C[x]/(p)[µ] (resp. ∈ C[µ]). If

P0(νp0) = 0 has a solution ν ∈ Z, then set Λ := Λ̃ ∪ {0},
otherwise set Λ := Λ̃.

Case 2: β = 0
Compute a 0-simple form of δy+Ay at p as well as the cor-
responding transformation matrix T ∈ C(x)n×n and indicial
polynomial P0(µ) ∈ C[x]/(p)[µ] (resp. ∈ C[µ]). Determine
the set

Λ := {λ ∈ Z | ∃ν ∈ Z : P0(νp0 + λa0) = 0},

which is finite since p0 and a0 are Q-linearly independent
because of a0

p0
= resp(a) 6∈ Q.

Now, we verify the desired property of Λ. For y = gtλ as
above we have 0 = δy + Ay = (δg + λag + Ag)tλ, hence
δg+λag+Ag = 0. Again we treat the two cases separately.

Case 1: β > 0
If λ 6= 0, then the term λag dominates and λa0 is a root
of the characteristic polynomial Pβ , hence λ ∈ Λ. If λ = 0,
then νp(T

−1g)p0 is a root of the indicial polynomial P0 and
we deduce λ ∈ Λ.

Case 2: β = 0
In this case νp(T

−1g)p0 + λa0 is a root of the indicial poly-
nomial P0 and we have λ ∈ Λ.

6. APPLICATION
We briefly illustrate our algorithm by applying it to a dif-

ferential system arising in the computation of a closed form
of an integral. There are several approaches to indefinite
integrals of similar type which lead to related differential
systems, for example see [13, 14] and references therein.

Example.
Consider the following indefinite integral involving the

Legendre function for generic parameter n:∫
Pn(x)− xn−1Pn+1(x) dx.

Assuming an antiderivative can be found in the differential
field Q(n)(x, xn, Pn(x), Pn+1(x)), it can be proven to have
the form y0Pn(x) +y1Pn+1(x) with y0, y1 ∈ Q(n)(x, xn), see
[14]. Differentiating this and comparing coefficients of Pn
and Pn+1 yields the following differential system for y0, y1.

δ

(
y0
y1

)
+

(
(n+1)x

1−x2
n+1
1−x2

− n+1
1−x2 − (n+1)x

1−x2

)(
y0
y1

)
=

(
1

−xn−1

)
Let us write y = (y0, y1)T and C(x, t) with C = Q(n) and
δt = n

x
t in the following. The inhomogeneous part of the

system becomes (1,−t/x)T and we immediately obtain

b = 1

for the normal part of the denominator. Applying Theo-
rem 2 to bound νt we choose p = x, for which ωp = −1,
a0 = n, p0 = 1, and β = 0, and computing a 0-simple form
of the above operator at p we see that already after normal-
izing it to have the form (5)

p−ωpδy +

(
(n+1)x2

1−x2
(n+1)x

1−x2

− (n+1)x

1−x2 − (n+1)x2

1−x2

)
y

is 0-simple with indicial polynomial P0(µ) = µ2. This yields
Λ = {λ ∈ Z | ∃ν ∈ Z : P0(ν + λn) = 0} = {0}. From (2) we
obtain νt(y) ≥ 0, so the general bound is

λ0 = min(0,Λ) = 0.

Similarly we obtain a bound for ν1/t by Theorem 2 again.
In this example we could just reuse the Λ from before since
the matrix is the same, but we want to vary and see the
computation for p = 1

x
this time. We have ωp = 1, a0 = n,

p0 = −1, and β = 0 and after normalizing we obtain again
the operator

p−ωpδy +

(
(n+1)x2

1−x2
(n+1)x

1−x2

− (n+1)x

1−x2 − (n+1)x2

1−x2

)
y,

which is 0-simple at p and has indicial polynomial P0(µ) =
µ2 − (n+ 1)2, giving Λ = {−1, 1}. We obtain ν1/t(y) ≥ −1
from (2). This yields the general bound

λ1 = max(1,Λ) = 1.

Now we need to determine the coefficients in y = y0 + y1t.
Let us start with y1 ∈ C(x)2 satisfying

δy1 +

(
n
x

+ (n+1)x

1−x2
n+1
1−x2

− n+1
1−x2

n
x
− (n+1)x

1−x2

)
y1 =

(
0
−1/x

)
,

for which we, refraining from detailing the computation, get

y1 = (x/n,−1/n)T

using the algorithm presented in [1] and likewise we compute

y0 = (−x/n, 1/n)T .

Altogether, the original system above has y0 = x
n

(xn − 1)

and y1 = − 1
n

(xn − 1) as solution. Hence we computed a
closed form of the integral∫

Pn(x)− xn−1Pn+1(x) dx =
xn − 1

n
(xPn(x)− Pn+1(x)).

7. GENERALIZATION
In certain cases we can also successfully apply our al-

gorithm to systems with coefficients A ∈ K(t)n×n. More
specifically, the generalization presented in this section can
deal with system matrices A ∈ K(t)n×n subject to the fol-
lowing conditions.

1. If µ0 = νt(A) < 0, then we require that the matrix
πt(At

−µ0) ∈ Kn×n is invertible.

2. If µ1 = ν1/t(A) < 0, then we require that the matrix

π1/t(At
µ1) ∈ Kn×n is invertible.

These conditions ensure that we can compute all solutions
in K(t)n. In particular, they ensure that the bounds λ0 and
λ1 on the solutions in K[t, t−1] of the intermediate system
(3) can be computed as explained in Section 7.2. We will
discuss why these conditions are important in Section 8. If
the matrix A violates these conditions, then we still could
compute all solutions by reducing the problem to the scalar
case and applying the results from [7].

7.1 Normal part of the denominator
The algorithm described in Section 4.1 can also be applied

successfully to operators with coefficients from K(t) at any
irreducible p ∈ K[t], provided ωp < 0, i.e., t - p. Based



on this we can prove the following theorem, which not only
relies on (2), but also on the fact that for 0-simple operators
(5) at such a p we have

νp(Dp
−1δy +Ny) = νp(y)

as long as νp(y)πp(δp) is not a root of the indicial polyno-
mial. By also allowing positive values of the bound λp for
νp(y) in the computation below also parts of the numerator
can be determined in some cases.

Theorem 3. Let A ∈ K(t)n×n, f0, . . . , fm ∈ K(t)n and
δt = at where a ∈ K such that there are no k ∈ Z \ {0}
and g ∈ K∗ with a = δg

kg
. Then we can compute b ∈

K(t)∗ such that for all y ∈ K(t)n with L(y) := δy + Ay ∈
spanC{f0, . . . , fm} we have

by ∈ K[t, t−1]n.

Proof. We consider all irreducible p ∈ K[t] with ωp < 0,
i.e., t - p and ωp = −1, such that νp(A) < 0 or mini νp(fi) <
−1. These are finitely many and for each of them we com-
pute transformation matrices Sp, Tp ∈ K(t)n×n such that
the operator SpL(Tpz) is 0-simple at p as well as the cor-
responding indicial polynomial Pp,0(µ) ∈ K[t]/(p)[µ]. From
this we determine

np := min(νp(Spf0), . . . , νp(Spfm)),

µp := min{µ ∈ Z | Pp,0(µπp(δp)) = 0},
λp := min(np, µp) + νp(Tp).

Then we compute the following product over all p considered

b :=
∏
p

p−λp ∈ K(t)∗.

Now we fix y ∈ K(t)n with L(y) ∈ spanC{f0, . . . , fm}.
For any irreducible p ∈ K[t] with t - p we verify that
−νp(b) ≤ νp(y). First, assume p was considered in the
computation above. So νp(SpL(Tpz)) ≥ np for z = T−1

p y,
which implies that either Pp,0(νp(z)πp(δp)) 6= 0 and νp(z) =
νp(SpL(Tpz)) ≥ np or Pp,0(νp(z)πp(δp)) = 0. Therefore we
have −νp(b) = λp ≤ νp(z) + νp(Tp) ≤ νp(y). Assuming p
was not considered in the computation above instead, then
in particular νp(A) ≥ 0 and mini νp(fi) ≥ −1. If νp(y) 6= 0
then mini νp(fi) ≤ νp(L(y)) = νp(δy) = νp(y) − 1 as in
(2). Hence −νp(b) = 0 ≤ νp(y). Altogether we obtain
by ∈ K[t, t−1]n.

7.2 Degree bounds
Now we need to compute degree bounds for the Laurent

polynomial solutions ỹ ∈ K[t, t−1]n of (3). The system ma-

trix Ã = A − δb
b
In has coefficients from K(t), but the con-

tribution from δb
b
In has the property that νt(

δb
b

) ≥ 0 and

ν1/t(
δb
b

) ≥ 0. So Ã also satisfies both conditions stated at
the beginning of this section.

For computing the bounds on νp(ỹ) for p = t and p = 1
t

we distinguish two cases each. If µp := νp(Ã) < 0, then
we have that πp(Ap

−µp) ∈ Kn×n is invertible hence (2) is

always true and reads νp(ỹ) = νp(δỹ + Ãỹ)− µp. If µp ≥ 0,

then we have νp(ỹ) ≤ νp(δỹ + Ãỹ) in general and strict

inequality occurs iff πp((δỹ + Ãỹ)p−λ) = 0 or equivalently

δ(gpλ) + πp(Ã)gpλ = 0

for λ = νp(ỹ) and g = πp(ỹp
−λ). To decide this we can rely

on Theorem 2 again.

7.3 Computing the coefficients
After we determined the bounds λ0 and λ1 we need to

compute the coefficients yi ∈ C(x)n and ci ∈ C such that

ỹ =
∑λ1
i=λ0

yit
i solves (3) as explained in Section 3. The

conditions imposed on A above have the nice property that
the systems arising from coefficient comparison of the powers
of t are either of the shape (4) or pure algebraic equations
with invertible matrix.

7.4 Examples
Again we illustrate the algorithm in this generalized set-

ting along the computation of integrals involving Special
Functions of similar type as before. The first example gives
rise to a system for which ν1/t(A) < 0 and illustrates how

the coefficients of ỹ ∈ K[t, t−1]n can be determined in this

situation. The second example deals with matrices A and Ã
having entries from K(t), which not all are from K[t, t−1],
and we also have a closer look at what can happen to the
inhomogeneous part during the solution process.

Example.
Consider the following indefinite integral involving the

Bessel function for generic parameter n:∫
x(e2x − n2)Jn(ex) dx.

Assuming an antiderivative can be found in the differential
field Q(n)(x, ex, Jn(ex), Jn+1(ex)), it can be proven to have
the form y0Jn(ex) + y1Jn+1(ex) with y0, y1 ∈ Q(n)(x, ex).
Differentiating this and comparing coefficients of Jn and
Jn+1 yields the following differential system for y0, y1.

δ

(
y0
y1

)
+

(
n ex

−ex −(n+ 1)

)(
y0
y1

)
=

(
x(e2x − n2)

0

)
Let us write y = (y0, y1)T and C(x, t) with C = Q(n) and
δt = t in the following. The inhomogeneous part of the
system becomes (x(t2 − n2), 0)T and we obtain

b = 1

for the normal part of the denominator as there is no poly-
nomial to consider in Theorem 3. In order to bound νt(y)
we are facing the standard situation νt(A) ≥ 0 and we apply
Theorem 2 to the matrix

πt(A) =

(
n 0
0 −(n+ 1)

)
with p = 1

x
, for which ωp = 1, a0 = 1, p0 = −1, and β = 1.

The normalized operator

p1−ωpδy +

(
n 0
0 −(n+ 1)

)
y

is already 1-simple with characteristic polynomial P1(µ) =

(µ+n)(µ− (n+1)). Hence Λ̃ = ∅. The normalized operator(
p 0
0 p

)
p−ωpδy +

(
n 0
0 −(n+ 1)

)
y

is already 0-simple with the indicial polynomial P0(µ) =
−n(n+ 1), hence Λ = ∅. So from (2) we obtain λ0 = 0. For
bounding ν1/t(y) we realize that ν1/t(A) = −1 and

π1/t(At
−1) =

(
0 1
−1 0

)



is invertible, so (2) yields the general bound ν1/t(y) ≥ −1,
i.e., λ1 = 1. Now we show how to compute the coefficients
yi ∈ C(x)2 of y = y1t + y0 when ν1/t(A) < 0. Since

π1/t(At
−1) is invertible, for each coefficient yi it suffices to

solve a linear system with this matrix. These are obtained
by comparing coefficients of tλ1−ν1/t(A) down to tλ0−ν1/t(A).
More explicitly, after we insert the ansatz for y into the dif-
ferential system multiplying by t−2 and applying π1/t yields

π1/t(At
−1)y1 =

(
x
0

)
,

hence y1 = (0, x)T . After we plug this in we compare coef-
ficients of t1 in the system to obtain

π1/t(At
−1)y0 =

(
0

nx− 1

)
.

After plugging the solution y0 = (−nx + 1, 0)T in the dif-
ferential system the inhomogeneous part vanishes, so the
y = y1t+y0 we computed really is a solution. Summarizing,
the original system above has the only solution y0 = −nx+1
and y1 = xex in Q(n)(x, ex). Thus we computed the follow-
ing closed form of the integral∫
x(e2x − n2)Jn(ex) dx = (−nx+ 1)Jn(ex) + xexJn+1(ex).

Example.
Consider the following indefinite integral involving the

Legendre function for generic parameter n:∫
x

cosh(x)2
Pn(tanh(x)) dx.

Following the same structural principles as in the previous
examples we are looking for an antiderivative of the form
y0Pn(tanh(x)) + y1Pn+1(tanh(x)) with y0, y1 ∈ Q(n)(x, ex).
We obtain the following differential system for y0, y1.

δ

(
y0
y1

)
+

(
(n+ 1) tanh(x) n+ 1
−(n+ 1) −(n+ 1) tanh(x)

)(
y0
y1

)
=

( x
cosh(x)2

0

)
Again let C(x, t) with C = Q(n) and δt = t, then we can

represent tanh(x) by t2−1
t2+1

and cosh(x) by t2+1
2t

. The matrix

has νt(A) = ν1/t(A) = 0, so the conditions are trivially sat-
isfied. For determining the normal part of the denominator
following the proof of Theorem 3 we need to consider the
polynomial p = t2 + 1 only. Bringing the system into the
form (5) it becomes 0-simple at p with indicial polynomial

Pp,0(µ) = µ2 − 4(n + 1)2 and right hand side ( 4xt2

t2+1
, 0)T .

From this we obtain np = −1 and µp =∞ since there is no
µ ∈ Z such that Pp,0(−2µ) = 0. So we get λp = −1 and

b = t2 + 1.

Then the system (3) satisfied by ỹ = (t2 + 1)(y0, y1)T ∈
K[t, t−1]2 has the matrix

Ã =

(
n− 1− 2n

t2+1
n+ 1

−(n+ 1) −(n+ 3) + 2n+4
t2+1

)
.

Relying on (2) only for computing the degree bounds we
obtain λ0 = 2 and λ1 = 0. Normally λ0 > λ1 implies that
there is no non-zero solution of the system. But we still have

to update these values by applying Theorem 2 to νt(Ã) as

well as ν1/t(Ã), which gives the corrected bounds λ0 = 0 and

λ1 = 2. So we have ỹ = y2t
2 + y1t + y0 and proceed with

comparing coefficients of t2 then t1 and t0 in the system.
First we multiply by t−2 and apply π1/t to obtain

δy2 +

(
n+ 1 n+ 1
−(n+ 1) −(n+ 1)

)
y2 =

(
0
0

)
,

which has solutions y2 = c1(1,−1)T + c2(x,−x − 1
n+1

)T ∈
C(x)2 for arbitrary c1, c2 ∈ C as determined by the algo-
rithm given in [1]. Plugging this in we obtain the new right
hand side of the system with increased m:(

4xt2

t2+1

0

)
+ c1

(
2nt2

t2+1
(2n+4)t2

t2+1

)
+ c2

(
2nxt2

t2+1

(x+ 1
n+1

) (2n+4)t2

t2+1

)
.

We proceed to comparing coefficients of t1 yielding

δy1 +

(
n n+ 1

−(n+ 1) −(n+ 2)

)
y1 =

(
0
0

)
+ c1

(
0
0

)
+ c2

(
0
0

)
,

which only has the solution y1 = (0, 0)T ∈ C(x)2 for any
c1, c2 ∈ C. Comparing coefficients of t0 now yields

δy0 +

(
n− 1 n+ 1
−(n+ 1) −(n+ 3)

)
y0 =(

4x
0

)
+ c1

(
2n

2n+ 4

)
+ c2

(
2nx

(2n+ 4)(x+ 1
n+1

)

)
.

In this case, for all c1, c2 ∈ C there is exactly one solution
y0 ∈ C(x)2, depending linearly on c1, c2:

y0 =

(
−(n+ 3)x− n− 2

(n+ 1)(x+ 1)

)
+ c1

(
−n2 − 3n− 1
n2 + n− 1

)
+

c2

(
−(n2 + 3n+ 1)x− (n+ 1)(n+ 2)

(n2 + n− 1)x+ n3+3n2+2n−1
n+1

)
.

After plugging this back in some inhomogeneous part re-
mains, which has to be zero:(

2(n+2)((n+1)x+n)

t2+1
2(n+2)(n+1)(x+1)

t2+1

)
+ c1

(
2n(n+1)(n+2)

t2+1
2n(n+1)(n+2)

t2+1

)
+

c2

(
2n(n+1)(n+2)(x+1)

t2+1
2n(n+2)((n+1)x+n+2)

t2+1

)
.

Thereby we obtain c1 = 1
n(n+1)

and c2 = − 1
n

. Altogether,

rewriting the result in terms of hyperbolic functions the orig-
inal system has y0 = 1

n
( 1
n+1
− x tanh(x)) and y1 = x

n
as so-

lution, which yields the following closed form of the integral∫
x

cosh(x)2
Pn(tanh(x)) dx =

1
n

( 1
n+1
− x tanh(x))Pn(tanh(x)) + x

n
Pn+1(tanh(x)).

8. DISCUSSION AND FUTURE WORK
While for scalar ODEs with coefficients in C(x, t) there

are known algorithms to compute the bounds on solutions
in C(x)[t, t−1], the corresponding situation for differential
systems is not so clear if one wishes to avoid any reduction
to the scalar case. We presented an algorithm that works
in many cases but appropriate transformations that enable
the computation of degree bounds in all cases have not been
found yet. The standard approach to compute a 0-simple
form at p = t fails in several ways, which we briefly discuss.



On the one hand the algorithm presented in Section 4.1
does not terminate for all inputs for p = t. This is due to the
interference of the term SD(δT ) in the transformation done
in Case 3, which in general prevents the necessary zeros from
being introduced in the (q + 1)-th row. On the other hand,
even if we always were able to compute a 0-simple form at
p = t, then the indicial polynomial still would not provide
the information needed since in general the derivative of the
coefficients in C(x) of the solutions interfere. We illustrate
this with the following differential system for t = ex

δy +


0 −1 −1 0
0 1/x− x 0 −1
−1 0 1/x− x 1
t−1 xt−1 xt−1 0

y =


0
0
0

(x− 2)t2

 ,

which has the solutions

y =


0

(1/x− 2)t2/4
(2− 1/x)t2/4
(2x− 5)t2/4

+ c


0

1/x
−1/x
−1


in C(x, t)4. After multiplying the last row of the operator by
t we could think of applying the algorithm from Section 4.1,
but this would merely result in constantly increasing m ∈ N
in the operator Dδy +Ny given by

D =


1 0 0 mxt
0 1 0 0
0 0 1 0
0 0 0 t

 ,

N =


0 −1 −1 0
0 1/x− x 0 −1
−1 mx 1/x+ (m−1)x 1
1 (1−m)x (1−m)x 0

 ,

which is not 0-simple at p = t for any m. Alternatively we
could think of applying the transformation given by

S =


1 0 0 0
0 t 0 0
0 1 1 0
0 (x−1/x)t 0 1

 , T =


1 0 0 0
0 t−1 0 0
0 −t−1 1 0
0 (1/x−x)t−1 0 t−1


instead, which gives the following 0-simple operator at p = t

δz +


0 0 −1 0
0 −1 0 −1
−1 0 1/x− x 0
1 −(1 + 1/x2) x 1/x− 1− x

 z.

Interpreting the corresponding indicial polynomial

P0(µ) = (µ− x)(µ+ 1
x

)(µ2 − (x+ 2− 1
x

)µ+ x− x+1
x2

)

in the usual way wrongly suggests that the homogeneous
equation does not have a solution of the form gtλ. But the
contrary is true as

z = (0, t/x, 0,−t/x2)T

shows. This operator happens to be nice enough so that we
can apply Theorem 2, since the matrix D multiplied to δz
does not involve t. But in general this cannot be expected.

So it will be necessary to come up with new ways of con-
structing transformations of the operators in order to ob-
tain the information needed. We already have first ideas for

progress towards a general algorithm for determining these
bounds, which works on both generators x and t at the same
time. But the interplay between these two is rather tricky
and subtle for the design of transformation matrices, so it
will be a challenging task. Apart from generalizing this work
we still need to implement it in software as well.
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