
A PROOF OF SUBBARAO’S CONJECTURE

SILVIU RADU

Abstract. Let p(n) denote the ordinary partition function. Subbarao conjec-

tured that in every arithmetic progression r (mod t) there are infinitely many
integers N ≡ r (mod t) for which p(N) is even, and infinitely many integers
M ≡ r (mod t) for which p(M) is odd. In the even case the conjecture was
settled by Ken Ono. In this paper we prove the odd part of the conjecture

which together with Ono’s result implies the full conjecture. We also prove
that for every arithmetic progression r (mod t) there are infinitely many in-
tegers N ≡ r (mod t) such that p(N) 6≡ 0 (mod 3), which settles an open

problem posed by Scott Ahlgren and Ken Ono.

1. Introduction

Let p(n) denote the number of partitions of the positive integer n. A well-known
conjecture by Subbarao [19] asserts that every arithmetic progression contains in-
finitely many integers M for which p(M) is odd, as well as infinitely many inte-
gers N for which p(N) is even. Subbarao [19] proved that for the progression 1
(mod 2) the conjecture is true. The conjecture has been verified for other cases.
Namely, it is known that p(tn+r) is infinitely often odd and infinitely often even for
t = 1, 2, 3, 4, 5, 10, 12, 16 and 40 thanks to the work of Garvan, Kolberg, Hirschhorn,
Stanton and Subbarao (see [19], [6], [8], [9], [10] and [12]).

In [14] Ono makes the following breakthrough:

Theorem 1.1 (Ono). For any arithmetic progression r (mod t), there are infinitely
many integers N ≡ r (mod t) for which p(N) is even.

This theorem settles half of the conjecture. The next theorem to be found in the
same paper gives a very simple method to check whether p(N) is infinitely often
odd for a given arithmetic progression:

Theorem 1.2 (Ono). For any arithmetic progression r (mod t), there are infinitely
many integers M ≡ r (mod t) for which p(M) is odd, provided there is one such

M . Furthermore, if there does exist an M ≡ r (mod t) for which p(M) is odd, then
the smallest such M is less than Cr,t, where

Cr,t :=
223+j ·37t6

d2

∏

p|6t

(

1− 1

p2

)

− 2j ,
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with d := gcd(24r − 1, t) and j an integer satisfying 2j > t
24 .

This last theorem gives an explicit algorithm to prove the conjecture for any given
progression. However the problem of finding infinitely many progressions for which
the conjecture is true was solved by Getz [7]. He proves the conjecture for all
progressions of the form kl (mod ln) where n is a positive integer, l ≥ 5 is a prime
and k ∈ {0, . . . , ln−1 − 1}. Later Boylan and Ono [4] proved the conjecture for
progressions of the form r (mod 2n) with r, n ∈ N.

The purpose of this paper is to prove the following theorem which together with
Theorem 1.1 and 1.2 implies the truth of the conjecture of Subbarao.

Theorem 1.3. Let ν ∈ {2, 3} and A,B integers such that A > B ≥ 0. Then there

exists a nonnegative integer n0 such that

p(An0 +B) 6≡ 0 (mod ν).

Proof. Let ν ∈ {2, 3}. We assume the negation of Theorem 1.3. Namely, assume
that there exist integers A,B with A > B ≥ 0 such that

(1) p(An+B) ≡ 0 (mod ν), n ∈ N.

We first write A in the form 2s3tQ where s, t,Q ∈ N and gcd(Q, 6) = 1. Next we
find because of Lemma 5.5 that (1) implies

(2) p(Qn+B) ≡ 0 (mod ν), n ∈ N,

where B is the minimal nonnegative integer such that B ≡ B (mod Q). The
congruence (2) is a contradiction to Lemma 5.6 because of gcd(Q, 6) = 1. �

We obtain the following corollary:

Corollary 1.4. Let ν ∈ {2, 3} and A,B integers such that A > B ≥ 0. Then there

are infinitely many integers n for which

p(An+B) 6≡ 0 (mod ν).

Proof. Assume that the statement is false. Then for some ν0 ∈ {2, 3} there exist
integers A0, B0 and n0 ≥ 1 with A0 > B0 ≥ 0 such that

p(A0n+B0) ≡ 0 (mod ν0), n ∈ N, n ≥ n0.

This implies that
p(A1n+B1) ≡ 0 (mod ν0), n ∈ N,

where A1 := 2A0n0 and B1 := A0n0 + B0. In particular A1 > B1 ≥ 0. This
contradicts Theorem 1.3. �

Remark 1.5. For ν = 3, Corollary 1.4 implies Conjecture 5.2 of [3]. It should
be mentioned that Ono (in unpublished work which is widely circulated), proved
several years ago that p(n) 6≡ 0 (mod 3) for infinitely many n using Borcherds
products.

Using the results of Scott Ahlgren [1] combined with Theorem 1.3 we obtain im-
mediately:
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Corollary 1.6. The number of n ≤ X such that n ≡ r (mod t) and p(n) is odd is

≫
√
X/ logX.

For more results of this type see Ken Ono’s book [16].

Remark 1.7. Theorem 1.3 implies that there exist no integers A > B ≥ 0 such that

p(An+B) ≡ 0 (mod ν),

for ν ∈ {2, 3}. This is certainly not true for primes different from 2, 3. Namely, Ken
Ono [15] proved that for every prime M ≥ 5 there exist infinitely many non-nested
arithmetic progressions {An+B} such that p(An+B) ≡ 0 (mod M). Scott Ahlgen
[2] extended this result for arbitrary integers M coprime to 6. In the course of prov-
ing these results one needs to apply Atkin’s Um-operator that maps

∑∞
n=−∞ a(n)qn

to
∑∞

n=−∞ a(mn)qn to the partition generating function P (q) :=
∑∞

n=0 p(n)q
24n−1

to obtain an element congruent to a nonzero modular form. Modular forms are
well understood objects and the authors exploit this. However when m = 2, 3 we
see that Um(P (q)) = 0. This is the reason why these results could not be extended
for the primes 2, 3.

We are not sure how to contrast our result with p(n) mod M when M is coprime
to 6. As we have seen in this case there are arithmetic progressions {An + B}
within which the partition function p(n) vanishes and so a new strategy is required.
However a result in this direction is the following.

Theorem 1.8. Let ν be a prime, Q > 1 a positive integer such that gcd(Q, 6ν) = 1
and t ∈ {0, . . . , Q − 1}. Then there are infinitely many n such that p(Qn + t) 6≡ 0
(mod ν).

Proof. Assume that there are only finitely many n such that p(Qn+t) 6≡ 0 (mod ν).
Then there exists a n0 such that p(Qn + t) ≡ 0 (mod ν) for all n ≥ n0. Let l be
such that Ql > Qn0 + t. Set Q′ = Ql and t′ := Qn0 + t. Then p(Q′n + t′) ≡ 0
(mod ν) for all n ∈ N. This contradicts Lemma 5.6. �

2. Modular Forms

For an analytic function f on the upper half complex plane H, k an integer and

γ =
(

a
c
b
d

)

∈ SL2(Z), we define

(f |kγ)(τ) := (cτ + d)−kf

(

aτ + b

cτ + d

)

, τ ∈ H.

Then for analytic functions f, g on H, integers i, j and γ ∈ SL2(Z) we have

(3) (f |iγ)(g|jγ) = (fg|i+jγ).

For every positive integer M we denote by Γ(M) the set of all matrices in SL2(Z)
congruent to

(

1
0
0
1

)

modulo M . For k an integer and Γ a subgroup of SL2(Z)
containing Γ(N) for some N a modular form of weight k for Γ is an analytic
function on H satisfying:
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• f |kγ = f for all γ ∈ Γ;
• (f |kξ)(τ) admits a Laurent series expansion in the variable qN := e2πiτ/N

with finite principal part for all ξ ∈ SL2(Z). We call this expansion the
q-expansion of f |kξ.

We denote by Mk(Γ) the set of all modular forms of weight k for Γ. The set of
modular forms for Γ is then defined to be the set ∪∞

k=0Mk(Γ). If f is a modular
form for Γ, then we define f |γ := f |kγ where k is such that f ∈ Mk(Γ).

For a positive integer N let

Γ0(N) :=

{(

a

c

b

d

)

∈ SL2(Z) : c ≡ 0 (mod N)

}

and

Γ1(N) :=

{(

a

c

b

d

)

∈ SL2(Z) : a, d ≡ 1 (mod N), c ≡ 0 (mod N)

}

.

In particular, Γ(N) ⊆ Γ1(N) ⊆ Γ0(N).

The Dedekind eta function η plays an important role throughout the paper. Fur-
thermore, by [18, Th 6. p. 95] we have

(4) η24 = q

∞
∏

n=1

(1− qn)24 ∈ M12(SL2(Z)) ⊆ M12(Γ0(N)).

3. Outline of the Article

The proof of Subbarao’s conjecture follows from Ono’s Theorem 1.1 and 1.2 together
with Theorem 1.3. Theorem 1.1 solves the even case of the problem while Theorem
1.2 solves the odd case provided that we can find a first odd which is provided by
Theorem 1.3. We continue by providing an outline of the proof of Theorem 1.3
where we show the role of each result in this paper.

For ν ∈ {2, 3} assume there exist integers A > B ≥ 0 such that

(5) p(An+B) ≡ 0 (mod ν).

We are next considering the modular forms

G
(s)
m,t := η24k

(

q
24t−1
24m

∞
∑

n=0

p(mn+ t)qn

)24m

where s,m, t ∈ Z and m > t ≥ 0.

By using the work of Richard Lewis [13, Th. 1] we find that there exist positive

integers N and k such that G
(k)
A,B becomes a modular form for the group Γ1(N).

Again from [13, Th. 1] one observes that for γ ∈ Γ0(N)

(6) G
(k)
A,B |γ = G

(k)
A,Bγ

.

for some integer Bγ with A > Bγ ≥ 0. From Corollary 5.3 below which follows
immediately from Theorems 5.1 and 5.2 of Deligne and Rapoport [5] we find that if
f is a modular form for Γ1(N) with coefficients in the q-expansion divisible by ν then
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also the coefficients in the q-expansion of f |γ are divisible by ν for all γ ∈ Γ0(N).
From this together with (6) we observe immediately that if the coefficients in the q-

expansion of G
(k)
A,B are divisible by ν then so are the coefficients in the q-expansion of

G
(k)
A,Bγ

for γ ∈ Γ0(N) which is exactly Theorem 5.4. In Theorem 4.2 we prove that if

A = 2s3tQ for some s, t,Q ∈ N with gcd(Q, 6) = 1, then B+lQ ∈ {Bγ : γ ∈ Γ0(N)}
for all l ∈ {0, · · · , 2s3t − 1} where B is the minimal nonnegative integer such that

B ≡ B (mod Q). This implies that the coefficients in the q-expansion of G
(k)

A,B+lQ

are divisible by ν. This is equivalent to

p(An+B + lQ) ≡ 0 (mod ν), n ∈ N, l ∈ {0, · · · , 2s3t − 1},
which is equivalent to

(7) p(Qn+B) ≡ 0 (mod ν), n ∈ N.

That the congruence (5) implies the congruence (7) is the content of Lemma 5.5
below. To prove Lemma 5.5 we need Theorem 4.2 and Theorem 5.4 mentioned
above.

For the second part of the proof we use the crucial fact that gcd(Q, 6) = 1 together

with [13, Th. 1] to prove that there exists an integer j such that G
(j)

Q,B
is a modular

form for the group Γ1(Q). Next we apply the transformation γ0 =
(

0
1
−1
0

)

to

G
(l)

Q,B
. By using Lemma 4.7 below we find that the coefficients in the q-expansion

of G
(l)

Q,B
|γ0 are not all divisible by ν. However because of Theorem 5.1 again by

Deligne and Rapaport we observe that if the coefficients in the q-expansion of a
modular form f for Γ1(Q) are divisible by a prime not dividing Q, then so are the
coefficients in the q-expansion of f |γ for any γ ∈ SL2(Z). This fails for the prime

ν, γ = γ0 and f = G
(l)

Q,B
. Thus we obtained a contradiction so that (7) can not

hold true which implies that (5) is false. This is the content of Lemma 5.6 which
says that for every prime ν and integers Q, t with Q > t ≥ 0 and gcd(Q, 6ν) = 1
there exists n0 ∈ N such that ν ∤ p(Qn0 + t). As we have seen Lemma 5.6 is proven
using Lemma 4.7 and Theorem 5.1.

Summarizing, the crucial results in the paper needed to prove Theorem 1.3 are the
Lemmas 5.5 and 5.6 which are based on work of Richard Lewis [13], Pierre Deligne
and Michael Rapaport [5].

It should be mentioned that the results in the work of Richard Lewis [13] needed
in this paper are also contained in the author’s paper [17]. In this paper we will
also use some terminology in [17].

4. Some Technical Lemmas

In the previous section we observed that the modular form G
(s)
m,t for the group

Γ1(N) turns into the modular form G
(s)
m,tγ after application of a transformation
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γ =
(

a
c
b
d

)

∈ Γ0(N). It turns out that tγ can be described explicitly as seen from

[13, p. 248, (2.5)]. Namely,

tγ ≡ ta2 +
1− a2∗
24

(mod m)

and 0 ≤ tγ < m. Here a∗ is any integer coprime to 6 such that a∗ ≡ a (mod m).
Consequently, 1− a2∗ is divisible by 24 so that the above formula makes sense. The
set Pm(t) := {tγ : γ ∈ Γ0(N)} is crucial for our further investigations and we will
derive some of its properties.

We also observed in the second part of Section 3 that G
(s)
m,t need to be evaluated

also when applying the transformation
(

0
1
−1
0

)

. To this end we will use Lemma 4.7
which will be proven in this section.

Definition 4.1. For m a positive integer and t ∈ {0, . . . ,m − 1} we define Pm(t)
to be the set of all t′ ∈ {0, . . . ,m− 1} such that

t′ ≡ ta2 +
1− a2

24
(mod m),

for some a ∈ Z with gcd(a, 6m) = 1.

Theorem 4.2. Let m be a positive integer, t ∈ {0, . . . ,m − 1} and let s, ν,Q be

nonnegative integers defined by m = 2s3νQ and gcd(Q, 6) = 1. Let t be the minimal

nonnegative integer satisfying t ≡ t (mod Q). Then for all l ∈ {0, . . . , 2s3ν − 1} we

have t+ lQ ∈ Pm(t).

In order to prove Theorem 4.2 we need the following two lemmas.

Lemma 4.3. Let λ ∈ Z, ν ∈ N, Q a positive integer and t ∈ {0, . . . , Q − 1}. Let

aν ∈ Z with gcd(aν , 6Q) = 1 be such that

(8)
1− a2ν
24

≡ t(1− a2ν) + λ (mod 3νQ).

Then there exists an aν+1 ∈ Z with gcd(aν+1, 6Q) such that

(9)
1− a2ν+1

24
≡ t(1− a2ν+1) + λ (mod 3ν+1Q).

Proof. From (8) we see that there exists an unique integer α such that

(10)
1− a2ν
24

− t(1− a2ν)− λ = α3νQ.

Define aν+1 := aν + αaν2
43ν+1Q. Then

1− a2ν+1 ≡ 1− a2ν − αa2ν2
53ν+1Q− α2a2ν2

832ν+2Q2

≡ 1− a2ν − αa2ν2
53ν+1Q (mod 24·3ν+1Q),

(11)

and consequently

(12)
1− a2ν+1

24
≡ 1− a2ν

24
− αa2ν2

23νQ (mod 3ν+1Q).
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By (8)-(12) we have

1− a2ν+1

24
− t(1− a2ν+1)− λ

≡1− a2ν
24

− αa2ν2
23νQ− t(1− a2ν) + αta2ν2

53ν+1Q− λ by (11) and (12)

≡α3νQ− αa2ν2
23νQ+ αta2ν2

53ν+1Q by (10)

≡α3νQ(1− a2ν2
2)

≡0 (mod 3ν+1Q) because of 3|(1− a2ν2
2).

�

Lemma 4.4. Let λ ∈ Z, s, ν ∈ N, Q a positive integer and t ∈ {0, . . . , Q− 1}. Let

bs ∈ Z with gcd(bs, 6Q) = 1 be such that

(13)
1− b2s
24

≡ t(1− b2s) + λ (mod 2s3νQ).

Then there exists an bs+1 ∈ Z with gcd(bs+1, 6Q) = 1 such that

(14)
1− b2s+1

24
≡ t(1− b2s+1) + λ (mod 2s+13νQ).

Proof. From (13) we see that there exists an unique integer α such that

(15)
1− b2s
24

− t(1− b2s)− λ = α2s3νQ.

Define bs+1 := bs + α2s+23ν+1Q. Then

1− b2s+1 ≡ 1− b2s − αbs2
s+33ν+1Q− α222s+432ν+2Q2

≡ 1− b2s − αbs2
s+33ν+1Q (mod 24·2s+13νQ),

(16)

and consequently

(17)
1− b2s+1

24
≡ 1− b2s

24
− αbs2

s3νQ (mod 2s+13νQ).

By (13)-(17) we have

1− b2s+1

24
− t(1− b2s+1)− λ

≡1− b2s
24

− αbs2
s3νQ− t(1− b2s) + αtbs2

s+33ν+1Q− λ by (16) and (17)

≡α2s3νQ− αbs2
s3νQ+ αtbs2

s+33ν+1Q by (15)

≡α2s3νQ(1− bs)

≡0 (mod 2s+13νQ) because of 2|(1− bs).

�

Proof of Theorem 4.2: For λ := lQ and a0 := 1 we have

1− a20
24

≡ t(1− a20) + λ (mod Q).
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Then by applying Lemma 4.3 inductively we find that there exists aν ∈ Z with
gcd(aν , 6Q) = 1 such that

1− a2ν
24

≡ t(1− a2ν) + λ (mod 3νQ).

By setting b0 = aν and by applying Lemma 4.4 inductively we find that there exists
bs ∈ Z with gcd(bs, 6Q) = 1 such that

(18)
1− b2s
24

≡ t(1− b2s) + λ (mod 2s3νQ).

Next we note that (18) is equivalent to

(19) tb2s +
1− b2s
24

≡ t+ lQ (mod 2s3νQ).

For x ∈ Z we denote by [x] the minimal nonnegative integer x such that x ≡ [x]
(mod 2s3νQ). Then obviously

{[t+ lQ]|l ∈ Z} = {[t+ lQ]|l ∈ Z} = {t+ lQ|0 ≤ l ≤ 2s3ν − 1},

which together with Definition 4.1 completes the proof. �

Definition 4.5. For c, d integers with gcd(c, d) = 1 and d odd, we define

(

c

d

)

∗

:=

{
(

c
|d|

)

, if c 6= 0,

1, otherwise.

Definition 4.6. Let r,m, t be integers such that m ≥ 1 and t ∈ {0, . . . ,m − 1}.
We define

∞
∑

m=0

pr(m)qm :=
∞
∏

n=1

(1− qn)r

and

gm,t,r(τ) := q
24t+r
24m

∞
∑

n=0

pr(mn+ t)qn(τ), τ ∈ H,

where we recall that q(τ) = e2πiτ .

Lemma 4.7. Let m, r ∈ Z and t ∈ {0, . . . ,m− 1} with m > 0 and gcd(m, 6) = 1.
For λ, d ∈ Z with d|m and gcd(d, λ) = 1 let xλ,d be any integer satisfying

242λxλ,d ≡ 1 (mod m/d).

Then

τ−r/2gm,t,r(−1/τ) =
1

m

∑

d|m

dr/2e−
πirm
4d e

πird2τ
12m

∞
∑

n=0

pr(n)e
2πind2τ

m Ar(m, d, t, n),

(20)

where

Ar(m, d, t, n) :=
∑

0≤λ≤m/d−1
gcd(λ,m/d)=1

(

24λ

m/d

)r

∗

e−
2πi
m/d

{(24t+r)λ+(24n+r)xλ,d)}.
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Proof. By [17, Lemma 1.12] together with gcd(m, 6) we have

gm,t,r(τ) =
1

m

m−1
∑

λ=0

e−
2πiλ(24t+r)

m ηr
(

τ + 24λ

m

)

,

which is equivalent to

gm,t,r(τ) =
1

m

∑

d|m

∑

0≤λ≤m/d−1
gcd(λ,m/d)=1

e−
2πiλd(24t+r)

m ηr
(

τ + 24λd

m

)

,

which after applying τ 7→ −1/τ turns into

(21) gm,t,r(−1/τ) =
1

m

∑

d|m

∑

0≤λ≤m/d−1
gcd(λ,m/d)=1

e−
2πiλd(24t+r)

m ηr
(

24λdτ − 1

mτ

)

.

Next we see that for any divisor d of m and integer λ with gcd(λ,m/d) = 1 we have

(22)
24λdτ − 1

m
=

24λ
dτ−24xλ,d

m/d − yλ,d

(m/d)
dτ−24xλ,d

m/d + 24xλ,d

,

where the integer yλ,d satisfies

242λxλ,d +
m

d
yλ,d = 1.

In particular, we obtain from [11, p. 51]

η

(

24λ
dτ−24xλ,d

m/d − yλ,d

(m/d)
dτ−24xλ,d

m/d + 24xλ,d

)

= (dτ)1/2
(

24xλ,d

m/d

)

∗

e−
πim
4d η

(

dτ − 24xλ,d

m/d

)

,

which together with (21) and (22) implies that gm,t,r(−1/τ) is given by

(23)
1

m

∑

d|m

(dτ)r/2
∑

0≤λ≤m/d−1
gcd(λ,m/d)=1

e−
2πiλd(24t+r)

m

(

24xλ,d

m/d

)r

∗

e−
πirm
4d ηr

(

dτ − 24xλ,d

m/d

)

.

Next recall that

ηr(τ) = e
πiτr
12

∞
∑

n=0

pr(n)e
2πinτ ,

which used on (23) gives

gm,t,r(−1/τ) =
1

m

∑

d|m

(dτ)r/2
∑

0≤λ≤m/d−1
gcd(λ,m/d)=1

e−
2πiλd(24t+r)

m

(

24xλ,d

m/d

)r

∗

e−
πirm
4d

×e
πir

dτ−24xλ,d
m/d
12

∞
∑

n=0

pr(n)e
2πin

dτ−24xλ,d
m/d .

This last formula translates into (20) after changing the summation order and using
(

24xλ

m/d

)(

24λ
m/d

)

=
(

1
m/d

)

= 1 because of 242λxλ,d ≡ 1 (mod m/d). �
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5. The Ingredients in the Proof of our Main Result

The proof of the results in this section is standing on the following two key theorems
and on the results of the previous section.

Theorem 5.1. [5, VII, Cor. 3.13] Let k,N be positive integers and f ∈ Mk(Γ(N)).
Assume that the coefficients in the q-expansion of f are in Z[1/N, e2πi/N ]. Then for

any γ ∈ SL2(Z) the coefficients in the q-expansion of f |kγ are in Z[1/N, e2πi/N ].

Theorem 5.2. [5, VII, Cor. 3.12] Let k,N be positive integers, p a prime num-

ber and pm the highest power of p dividing N , γ =
(

a
pmc

b
d

)

∈ SL2(Z) and f ∈
Mk(Γ(N)). Let π be a prime ideal in Z[e2πi/N ] lying above p. Assume that the

coefficients in the q-expansion of f are in Z[e2πi/N ]. Let ν be a nonnegative integer

such that f ≡ 0 (mod πν). Then f |kγ ≡ 0 (mod πν)1.

Corollary 5.3. Let k,N be positive integers and f ∈ Mk(Γ(N)). If the coefficients

in the q-expansion of f are in Z[e2πi/N ], then for all γ ∈ Γ0(N) the coefficients in

the q-expansion of f |kγ are in Z[e2πi/N ].

Proof. Let p be a prime dividing N . Since the coefficients in q-expansion of f have
no denominators we obtain by Theorem 5.2 that the coefficients in the q-expansion
of f |kγ cannot have any denominators divisible by p. Now let p′ be a prime not
dividing N . Then by Theorem 5.1 no denominator in the q-expansion of f |kγ is
divisible by p′. This finishes the proof. �

Let m be a positive integer and t ∈ {0, . . . ,m− 1}. Then by [13, Th. 1] or [17, Th.
2.14] there exist positive integers k,N such that

(24) G
(k)
m,t := η24k

(

q
24t−1

m

∞
∑

n=0

p(mn+ t)qn

)24m

is an element of M12(k−m)(Γ1(N)). Again by [13, Th. 1] or [17, Th. 2.14] for all
γ ∈ Γ0(N) there exists tγ ∈ {0, . . . ,m− 1} such that

(25) G
(k)
m,t|wγ = G

(k)
m,tγ , w := 12(k −m).

We recall that Pm(t) the set of all such tγ that can arise in (25) while varying
γ ∈ Γ0(N).

Because of Q ∩ Z[e2πi/N ] = Z we obtain by Corollary 5.3 together with (24) and

(25) that if for some integer l we have that p(mn+t)
l is an integer for all nonnegative

integers n, then for all t′ in P (t) also p(mn+t′)
l is an integer for all nonnegative

integers n. In other words we have proven:

1For given positive integers k,N and f ∈ Mk(Γ(N)) with the coefficients of the q-expansion of

f in Z[1/N, e2πi/N ] we obtain by Theorem [5, VII, Cor. 3.13] that for γ ∈ SL2(Z) the coefficients
in the q-expansion of f |kγ have the same property. In this case there exists also a power Nj of N

such that for γ ∈ SL2(Z) the coefficients in the q-expansion of Njf |kγ are in Z[e2πi/N ] (see for

example [5, VII, Cor 3.11]). Consequently for a given prime p and a prime ideal π in Z[e2πi/N ]
lying above p it makes sense to write f |kγ ≡ 0 (mod πν) if there exists M ∈ Z with M 6∈ π such

that all the coefficients in the q-expansion of Mf |kγ lie in the ideal πν .
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Theorem 5.4. Let m, l be positive integers and t ∈ {0, . . . ,m− 1} such that

p(mn+ t) ≡ 0 (mod l), n ∈ N.

Then for all t′ ∈ Pm(t) we have

p(mn+ t′) ≡ 0 (mod l), n ∈ N.

We note that Theorem 1.3 claims that there exist no congruences of the form

(26) p(An+B) ≡ 0 (mod ν), n ∈ N,

if ν ∈ {2, 3}. We prove this theorem by first showing that if a congruence of the
form (26) exists then there exists a congruence of the form (26) where the modulus
A satisfies gcd(A, 6) = 1. This latter congruence is given explicitly in the next
lemma.

Lemma 5.5. Let a, b,Q, ν ∈ N and t ∈ {0, . . . , 2a3bQ − 1} with ν,Q > 0 and

gcd(Q, 6) = 1. Assume that

(27) p(2a3bQn+ t) ≡ 0 (mod ν), n ∈ N.

Then

p(Qn+ t) ≡ 0 (mod ν), n ∈ N,

where t is the minimal nonnegative integer such that t ≡ t (mod Q).

Proof. By Theorem 4.2 we have t+ lQ ∈ Pm(t) for all l ∈ {0, . . . , 2a3b − 1}. Then
because of (27), we have by Theorem 5.4 that

(28) p(2a3bQn+ t+ lQ) ≡ 0 (mod ν), n ∈ N,

for every l ∈ {0, . . . , 2a3b − 1}. Because of (28) and the equality

{2a3bQn+ t+ lQ : l ∈ {0, . . . , 2a3b − 1}, n ∈ N} = {Qn+ t : n ∈ N},
we conclude that

p(Qn+ t) ≡ 0 (mod ν), n ∈ N.

�

As we have seen in Section 3, Theorem 1.3 is a corollary of Lemma 5.5 and the
following lemma.

Lemma 5.6. Let Q, ν be positive integers such that gcd(Q, 6ν) = 1, ν 6= 1 and

t ∈ {0, . . . , Q− 1}. Then there exists n ∈ N such that ν ∤ p(Qn+ t).

Proof. Assume that

(29) p(Qn+ t) ≡ 0 (mod ν), n ∈ N.

Then by [13, Th. 1] or [17, Lem. 2.10] there is a positive integer k such that

F :=
1

ν24Q
G

(k)
Q,t

is an element of M12(k−Q)(Γ1(Q)). By (24) and Definition 4.6 we have

F =
1

ν24Q
η24kg24QQ,t,−1.
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By Lemma 4.7, for each d|Q there exists ad : N → C such that for

fd(q) := A−1(Q, d, t, 0) +

∞
∑

n=1

ad(n)q
n

with A−1 defined as in Lemma 4.7 we have

(30) g24QQ,t,−1|−12Q

(

0

1

−1

0

)

=





1

Q

∑

d|Q

e
πiQ
4d d−1/2q−

d2

24Q fd(q
d2/Q)





24Q

.

Furthermore, by Lemma 4.7 we have A−1(Q,Q, t, 0) = 1 which implies together

with (30) that the coefficient of q−Q2

in the q-expansion of g24QQ,t,−1|−12Q

(

0
1
−1
0

)

is
given by

(e
πiQ
4d Q−3/2)24Q = Q−36Q.

Thus together with

η24k|12k
(

0

1

−1

0

)

= qk
∞
∏

n=1

(1− qn)24k

because of (4) implies by (3) that the coefficient of q−Q2+k in the q-expansion of
F |12(k−Q)

(

0
1
−1
0

)

is equal to ν−24QQ−36Q. Because of (29) the coefficients in the
q-expansion of F are integers and hence by Theorem 5.1,

(31) ν−24QQ−36Q ∈ Z[1/Q, e2πi/Q].

The relation (31) implies that there exists l ∈ N and integers a0, . . . , aQ−1 such
that

ν−24Q = Q−l

Q−1
∑

λ=0

aλe
2πiλ/Q,

which imply that Ql/ν24Q is an algebraic integer and consequently an integer. This
is clearly false because of gcd(Q, ν) = 1. This proves that (29) is impossible which
concludes the proof. �
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