
On the Formal Semantics of MiniMaple and its
Specification Language

Muhammad Taimoor Khan
Doktoratskolleg Computational Mathematics

Johannes Kepler University

A-4040 Linz, Austria

Email: muhammad.khan@dk-compmath.jku.at

Abstract—In this paper, we give a definition of the formal
(denotational) semantics of MiniMaple (a substantial subset of
a widely used computer algebra system Maple with slight
modifications) and its specification language. Defining the formal
semantics of MiniMaple and its specification language is rather
a challenging task as these support non-standard types of
objects, e.g. symbols, unions and polynomials, and additional
predicates and functions, e.g. runtime type tests etc. Furthermore,
the specification language also supports logical and sequence
quantifiers and numeric quantifiers with a logical condition
(property) to quantify a filtered range of values. This semantics
is defined as a pre-requisite of a verification calculus which we
are currently developing. The verification conditions generated
by the verification calculus must be sound w.r.t. defined formal
semantics.

I. INTRODUCTION

We report on a complimentary result of a project whose goal

is to find behavioral errors (type inconsistencies and violations

of methods preconditions) in widely used computer algebra

system Maple by static analysis. To an intermediate aim,

we have defined a formal semantics of MiniMaple annotated

programs [3] to formally describe the runtime behavior of

such computer algebra programs. Currently we are developing

a verification calculus where we need to translate annotated

MiniMaple into a semantically equivalent Why3 [12] (an inter-

mediate verification framework) program. Also the verification

conditions generated by the calculus must be sound with

respect to the semantics.

Computer algebra programs written in an annotated Mini-
Maple are semantically more complex than classical and

functional programming and specification languages as they

are fundamentally different from these languages. As a con-

sequence, the denotational semantics of MiniMaple and its

annotations which we have developed have the following

features:

• The denotational semantics is defined as a state relation-

ship between pre- and post-states.

• MiniMaple has expressions with side-effects, which is

not supported in functional programming languages, e.g.

Haskell [9] and Miranda [10]. As a result the evaluation

of an expression may change the program execution state.

The research was funded by the Austrian Science Fund (FWF): W1214-
N15, project DK10.

• In MiniMaple, a procedure is defined by an assignment

command, e.g. I := proc() . . . end proc. Furthermore,

static scoping [11] is used to evaluate a MiniMaple
procedure.

• The specification language supports abstract data types

to formalize mathematical respectively computer algebra

theories and concepts, while the existing specification

languages are weaker in such specifications.

• It also supports numeral quantifiers to compute a certain

binary operation (add, mul, max and min) for the filtered

values (for a given property) of a specification expression.

• Also the specification language supports sequence quan-

tifier (seq) to represent a sequence of values for a given

expression.

• MiniMaple and its specification language share various

semantic domains of values that have some non-standard

types of objects, for example symbol, uneval and union

etc. These languages also support additional functions

and predicates, for example type tests i.e. type(E,T). For

further details of the formal syntax of MiniMaple and its

specification language, please see [1], [2].

The rest of the paper is organized as follows: Section 2

gives state of the art of formal semantics of programming

and specification languages. In Section 3, we discuss the

overview of the denotational semantics of MiniMaple and its

specification language. Sections 4 defines the semantics of

MiniMaple and Sections 5 and 6 give the definitions of the

semantics of specification expression and annotation languages

respectively. Section 7 presents conclusions and future work.

II. STATE OF THE ART

In this section we first sketch a state of the art of various

approaches of defining formal semantics of classical and

functional programming languages and specification languages

and then discuss their differences to the computer algebra

programming and specification languages.

The main approaches of defining formal semantics are

operational, denotational and axiomatic [24]. The denotational

method is widely used as it defines the meaning of a program

as a mathematical function that maps abstract syntax to its

semantic value, a denotation. Usually this function is partial

because of the fact that some syntactically correct programs

may not have defined meanings. Since the denotational method

2012 10th International Conference on Frontiers of Information Technology

978-0-7695-4927-9/12 $26.00 © 2012 IEEE

DOI 10.1109/FIT.2012.38

169

states the semantics of a syntactic phrase in terms of the

denotations of its sub-phrases, the corresponding proof is more

easier as an associated proof technique is structural induction.

To the best of our knowledge, the semantics of various

popular programming languages have been incomplete or ill-

defined in the literature. There are few widely used high

level programming languages whose semantics are defined,

e.g. Standard ML [30], Algol 60 [19], C++ [21], Cobol [23],

Pascal [18], [22] and Prolog [29] to name a few. The Scott-

Strachey notation [25] of denotational semantics was first

formally used while designing Ada [20]. The static semantics

(compile-time) were formulated only for the sequential Ada.

Also a denotational variety of semantics was used to define

the functional programming language Scheme [16]. Papaspy-

rou defined denotational semantics of C [32] by employing

monads and monad transformers as denotations to achieve

modularity and readability.

The denotational semantics for MiniMaple is different from

the above approaches as it has some non-standard seman-

tic domains of values (also common with its specification

language), e.g. symbol, union and polynomial etc.; also it

supports runtime type tests and has a polymorphic type system.

Since MiniMaple has expressions with side effects in contrary

to functional programming languages so here we define the

denotational semantics as a mathematical function being a

relationship between pre and post-states to best describe a

program behavior. MiniMaple semantics are defined as dy-

namic semantics (runtime-semantics) though it includes static

semantics. There is no formally defined semantics of Maple

and we consider its current implementation as a basis of our

work. Also we have developed satisfactorily complete and

accurate semantics.

The semantic domains of specification languages are dif-

ferent from the conventional Scott-Strachey denotational do-

mains. For specification languages, the semantic space can

be considered as the world of “theories“ and the meaning

of a specification being the collection of all its models [27].

However, the relational variant of denotations can be used to

define a specification semantics.

A variant of denotational notations is used to define the

specification language Meta-IV used in VDM [17]. The goal

here was to provide more general abstract syntax; for example

declarations in the language do not respect order etc. As

an application, an Ada compiler was semantically derived

from the VDM denotations. Later the formal semantics of

BSI/VDM [26] was defined by starting with all possible

models and then restricting this set by examining the abstract

syntax to the exact denotations. Formal semantics of Z is based

on the notion of ”variety” and makes use of typed set theory

and relational algebra [28]. In [31] abstract interpretation is

used to analyze whether a certain relationship holds between

the two semantic interpretations of a Maple program for

a particular property. One of the interpretations is used as

a standard while the other as its abstract version with a

certain property. The goal here was to explore the operational

semantics of Maple for certain properties.

In comparison to the above approaches, the semantics

space for a specification language of MiniMaple specification

language has more complex structures, e.g. mathematical theo-

ries, procedure and loop specifications etc. In addition to basic

expressions, the specification language also supports guarded

numeral and sequence quantifiers. We give the semantics of

our specification language as a relational variant of denotations

to address the complexity of its semantic domains and other

non-standard constructs.

Here our main goal is to formalize runtime behavior of

MiniMaple annotated programs and also to define semantics

as a pre-requisite of our verification calculus.

III. SEMANTICS OVERVIEW

In this section, we discuss the different elements of de-

notational semantics, e.g. semantic algebras and valuation

functions and then we demonstrate the semantics definition for

various syntactic domains of MiniMaple and its specification

language. For complete semantic domains and their operations,

valuation functions and their definitions of MiniMaple and its

specification language, please see [5], [6] respectively.

A. Semantic Algebras

The definition of a formal semantics is based on a collection

of data structures. We use the framework of mathematical

domain theory [13] to define these data structures. Semantic
domain is a fundamental concept of domain theory; it repre-

sents a set of elements that share some common properties.

Also a semantic domain is accompanied by a set of operations

as functions over the domain. A domain and its operations

together form a semantic algebra [14]. The semantics of

MiniMaple and its specification language makes use of several

primitive and compound (disjoint sum and product) domains.

In the following we discuss some interesting semantics do-

mains of values for various syntactic domains of MiniMaple
and its annotations.

1) Environment Values: The domain Environment holds the

environment values of an annotated MiniMaple program and

is defined as follows:

Environment = Context× Space
Context = Identifier → EnvV alue
EnvV alue = V ariable+ Procedure+ Function
Space = P(V ariable)

Note here that the domain Space models the memory space.

2) State Values: The semantic domain State defines the

state of the program by a tuple of Store and Data as follows:

State = Store×Data
Store = V ariable → V alue
Data = Flag × Exception×Return
F lag = {execute, exception, return, leave}

A Store is the most important part of the state and holds

for every Variable a Value, while Data stores the control

information of a particular state. Exception and Return give

the corresponding values of the Flag.

170

3) Semantic Values: Value is a disjunctive union domain

composed of all kinds of primitive semantic values (domains)

supported in MiniMaple. Some of these domains, Module,

Procedure and Function are explained in the next sub-sections.

Also note that the domain Value is a recursive domain, e.g.

List is defined by Value∗.

V alue =Module+ Procedure+ Function+ List+ Set
+...+ Symbol + Uneval + V alue∗

4) Module Values: The semantic domain Module formu-

lates MiniMaple module values and maps identifiers to their

corresponding values of the statements.

Module = Identifier Sequence → V alue∗

5) Procedure Values: The semantic domain Procedure is

defined to represent a MiniMaple procedure. It is defined as

a predicate of sequence of (parameter) values, pre- and post-

states and a return value.

Procedure = P(V alue∗ × State× State⊥ × V alue⊥)

6) Function Values: The semantic domain Function defines

and formalizes the mathematical functions supported in speci-

fication language. A predicate is a special case of mathematical

function which returns a boolean value. A Function can be

defined mathematically as:

Function =
⋃

n∈N

Functionn

where Functionn = V aluen → V alue

i.e. maps a sequence of parameter values to its return value.

7) Unevaluated Values: Any term enclosed with single

quotes represents an unevaluated value in MiniMaple. Each

evaluation operation strips off one level of single quotes. The

semantic domain Uneval is modeled as a string.

8) Lifted Values: The evaluation of some semantic domains

might result in error (State) or undefinedness (Value). To

address these unsafe evaluations we lifted the domains of State
and Value to domains State⊥ and Value⊥, which are disjoint

sums of the basic domains and the domains ⊥s and ⊥v .

State⊥ = State + ⊥s and V alue⊥ = V alue + ⊥v

Note that ⊥s and ⊥v are unit domains.

IV. FORMAL SEMANTICS OF MiniMaple

In this section, first we give high level syntactic domains of

MiniMaple and then give the signatures of valuation functions

for various syntactic domains. Finally, we demonstrate the

semantics of some interesting phrases by defining the corre-

sponding valuation functions.

The top level syntax for MiniMaple is as follows:

Prog := Cseq
Cseq := EMPTY | C;Cseq
C := ... | while E do Cseq end do | ...

E := ... | proc(Pseq) S;R end proc | type(E,T) | ...

A. Signatures of Valuation Functions

A valuation function defines a mapping of a language’s

abstract syntax structures to its corresponding meanings (se-

mantic algebras) [14]. A valuation function VF for a syntax

domain VF is usually formalized by a set of equations, one per

alternative in the corresponding BNF rule for the MiniMaple
syntactic domain.

As the formal semantics of MiniMaple is defined as a state

relationship, so we define the result of valuation function as a

predicate. In this section we first give the definitions of various

relations and functions that are used in the definition of valu-

ation functions. For example the state relation (StateRelation)

is defined as a power set of pair of pre- and post-states, where

post state can be an State⊥ state and is defined as follows:

StateRelation := P(State× State⊥)

In the following we give signatures of valuation functions

for syntactic domains of program and expression.

1) Program: The valuation function for program takes the

abstract syntax of a program, i.e. a value of type Prog and

results in a ComRelation. The syntax of the valuation function

for program is as follows:

[[Prog]]: ComRelation

where ComRelation = Environment → StateRelation

Informally a valuation function for a program takes an al-

ternative of an abstract syntax of Program and an Environment
and results in a power set of pairs of pre- and post-states of the

execution of the command sequence (by program definition).

The valuation functions for the syntactic domains Command

and Command Sequence are the same as defined above for the

Program.

2) Expression: The valuation function for abstract syntax

domain expression values of E is defined as follows:

[[E]]: ExpRelation

where

ExpRelation = Environment → StateValueRelation
StateValueRelation = P(State× State⊥ × V alue⊥)

Here the post-state or the evaluated value can be unsafe.

B. Definitions of Valuation Functions

In this section we give the definition of the formal semantics

of the major syntactic domains of MiniMaple, e.g. Program,

Command and Expression.

1) Program Semantics: The semantics of MiniMaple pro-

gram are essentially the same as of command semantics.

2) Command Semantics: The semantics of command is a

relationship between the pre- and post-state of the execution

of any MiniMaple command. In the following we define the

valuation function for a while-loop.

For While-loop: MiniMaple supports a typical while-loop.

The semantics of the iterations of a MiniMaple while-loop

is determined by two sequences of states pre and post [15].

Both of these states are constructed from the pre-state of

the loop. Any ith iteration (execution of the body) of the

171

loop transforms pre(i) state into post(i+1) state from which

the pre(i+1) is constructed. No iteration is allowed from the

State⊥ as pre state. The loop terminates when the guard

expression evaluates to false or body of the loop evaluates to

an State⊥ post-state. The corresponding valuation function is

defined as follows:

[[while E do Cseq end do]](e)(s, s′) ⇔
∃ k ∈ Nat′, t, u ∈ State⊥∗ :
t(1) = inState⊥(s) ∧ u(1) = inState⊥(s)∧
(∀i ∈ Nat′k : iterate(i, t, u, e,[[E]], [[Cseq]]))∧

((u(k) = in ⊥s () ∧ s′ = u(k))∨
(returns(data(inState(u(k)))) ∧ s′ = t(k))∨
(∃ v ∈ V alue⊥ :[[E]](e)(inState(t(k)), u(k), v)

∧v <> inV alue(inBoolean(True))∧
IF v = inV alue(inBoolean(False)) THEN

s′ = t(k)
ELSE s′ = in ⊥s () END

)

)

The corresponding iterate predicate formalizes the aforemen-

tioned while-loop semantics and is defined as follows:

iterate ⊆ Nat′× State⊥∗ × State⊥∗ ×Environment
×StateV alueRelation× StateRelation

iterate(i, t, u, e, E,C) ⇔
cases t(i) of

is ⊥s () → false
[]isState(m) → executes(data(m))∧
∃v ∈ V alue⊥, s′ ∈ State⊥:E(e)(m, s′, v)∧
cases s′ of

is ⊥s () → u(i+ 1) = in ⊥s () ∧ t(i+ 1) = u(i+ 1)
[]isState(p) →

cases v of

is ⊥v () →u(i+ 1) = in ⊥s ()∧
t(i+ 1) = u(i+ 1)

[]isV alue(v′) →
cases v′ of

isBoolean(b) → b∧C(e)(p, u(i+ 1))∧
t(i+ 1) = u(i+ 1)

[]... → u(i+ 1) = in ⊥s () ∧ t(i+ 1) = u(i+ 1)
END //cases-v′

END //cases-v
END //cases-s′

END //cases-t(i)

The iterate defines the semantics of while-loop by employ-

ing a fixed-point theory [33]. The corresponding termination

or leaving iteration i determines the corresponding least fixed-

point. Informally, i is the least iteration when loop terminates

or leaves.

3) Expression Semantics: The semantics of expression is a

relationship among pre- post-states and a value of an expres-

sion. Any MiniMaple expression evaluation in a pre-state State
yields some value Value⊥ with the post-state State⊥. In the

following, we define the valuation function as the semantics

of a MiniMaple procedure.

For Procedure: As mentioned in an earlier section, Mini-
Maple procedure is defined as a predicate. Since static scoping

is used to evaluate a MiniMaple Procedure, it is evaluated

at an invocation time. In the following we define the corre-

sponding definition time valuation function where a procedure

expression evaluates to a procedure predicate value p. In

a procedure expression, Pseq, S and R represent parameter

sequence (identifiers with corresponding types), procedure

(identifiers) declarations and body (commands) of the proce-

dure respectively.

[[proc(Pseq) S;R end proc]](e)(s, s′, v) ⇔
LET p ∈ Procedure, p(valseq, s0, s1, v

′) ⇔
LET e′ = push(e, identifiers(Pseq))
∃varseq ∈ V ariable∗, s′′, s3 ∈ State⊥,
e′′, e′′′ ∈ Environment :[[Pseq]](e′)(e′′, valseq)∧

[[S]](e′′)(s0, s′′, e′′′)∧
cases s′′ of

is ⊥s () → in ⊥s ()
[]isState(s4) →∃s2 ∈ State, v′′ ∈ V alue⊥ :

s2 = update(s4, varseq, valseq)
∧[[R]](e′′′)(s2, s3, v′′)

END

IN cases s3 of

is ⊥s () → in ⊥s ()
[]isState(s5) →

cases v′′ of

is ⊥v () →s1 = in ⊥s () ∧ v′ = in ⊥v ()
[]isV alue(v1) →s1 = inState⊥(s5)∧

v′ = inV alue⊥(v1)
END

END

END

IN s′ = inState⊥(s) ∧ v = inV alue⊥(p) END

The specification language for MiniMaple is designed with the

following two level constructs:

1) specification expression language and

2) specification annotations language

In the following respective sections we define their semantics.

V. FORMAL SEMANTICS OF SPECIFICATION EXPRESSION

In this section, first we give the syntactic domain of

specification expression language and then give the signatures

and definition of an example valuation function for a special

expression, i.e. a numeral quantifier.

The syntactic definition of specification expression SE is as

follows:

SE := ... | IOp(SE, B, SE) | ...

IOp := add | mul | min | max
B := I = SE..SE | I in SE

In the following sub-section we give the signatures of

valuation function for specification expression.

A. Signature of Valuation Functions

As discussed in the previous section, the specification

expression relation (StateResValRelation) is defined as a power

172

set of a pre-state, post-state, (procedure) result value and an

evaluated value of the expression, where the post-state can

be State⊥ and also the evaluated value can be V alue⊥. The

corresponding relation is defined as follows:

StateResValRelation := P(State×State⊥×V alue×V alue⊥)

The valuation function for the abstract syntax domain spec-

ification expression values of SE is defined as follows:

[[SE]]: Environment → StateResValRelation

StateResValRelation formulates the relationship of the eval-

uation of a specification expression. This relationship is a tuple

of a pre-state, post-state, result value and the evaluated value

of the specification. The result value refers to the return value

of a procedure expression and the evaluated value is the truth

evaluation of the corresponding specification expression. Here

the post-state or the evaluated value can be unsafe.

B. Definitions of Valuation Functions

In this section we give the definition of the denotational

semantics of a numeral quantifier.

For Numeral Quantifier: In additional to logical quan-

tifiers, the specification language also supports a numeral

quantifier to compute a binary arithmetic operation (IOp) of

expression (SE1) for its range of values (B) those satisfy a

certain property (SE2). The semantics is defined as follows:

[[IOp(SE1, B, SE2)]](e)(s, s
′, r, v) ⇔

∃vseq ∈ V alue∗ :[[B]](e)(s, s′, r, inV alue⊥(vseq))∧
∃k′ ∈ Nat′, e1 ∈ Environment, vs ∈ V alue∗ :
e1 = push(e, getIdentifiers(B))∧
(∀i ∈ Nat′k : iterate(i, I, e1, vseq, vs,[[SE1]],[[SE2]])) ∧

(k′< length(vseq)∧
(access(k′, vseq) = is ⊥v ()∨
∀s ∈ State, r ∈ V alue : ∃v1 ∈ V alue, n ∈ State⊥ :

[[SE2]](e1)(s, inState⊥(s), r, inV alue⊥(v1))∧
inBoolean(v1) = inFalse()) ∧v = in ⊥v ()

) ∨ (k′ = length(vs) ∧ v = doIterate(IOp, vs))

First a B is evaluated to get the sequence of values, if none

of them evaluates to V alue⊥ then, Environment is iteratively

updated with an identifier (appeared in the B) to a next

value in the (evaluated) value sequence. At each iteration the

(filter) SE2 is evaluated and if it holds (true) then SE1 is

evaluated and its value is collected. If all these evaluations

are safe, then we get a range of those values of SE1 for

whom SE2 holds true. And at the end we apply the operator

IOp to these filtered values and compute the result value.

The corresponding auxiliary predicate iterate formalizes the

collection of filtered values.

VI. FORMAL SEMANTICS OF SPECIFICATION ANNOTATION

The elements of specification language are called speci-

fication annotations. These annotations include the syntactic

domains of mathematical theory Declarations (D), Procedure

Specifications (PS), Loop Specifications (LS) and Assertions

(A) as defined below:

D ::= EMPTY | (define(I(Itseq)::T,R); | ‘type/I‘;

| ‘type/I‘:=T; | assume(SE);) D
PS := requires SE; global Iseq; ensures SE; EC;

LS := invariant SE; decreases SE;

A := ASSERT(SE,”I”);

Note that the semantics of a specification annotation is essen-

tially the soundness statement for correctness of corresponding

annotation.

In the following we give the signatures of a valuation

function for a loop specification.

1) Loop Specification: The valuation function for abstract

syntax domain of loop specification values LS is defined as:

[[LS]]: Environment → P(State× State⊥)

Semantically and as a soundness for correctness, aforemen-

tioned loop specification must hold in a given environment

and in pre- and post-states.

A. Definitions of Valuation Functions

In this section we define the denotational semantics of loop

specification.

For Loop Specification: The semantics of a loop specifi-

cation is a relationship between the pre-state (s) and post-state

(s′) of the loop. MiniMaple supports four variations of a for-

loop and a typical while-loop, we only define the semantics

of a while-loop specification as below:

[[invariant SE1; decreases SE2;
while E do Cseq end do;]](e)(s, s′) ⇔

(∀b ∈ Boolean, r ∈ V alue :
[[SE1]](e)(s, inState⊥(s), r, inV alue⊥(b) ⇒ b = inTrue()

) ∧
(∀i ∈ Integer, r ∈ V alue :

[[SE2]](e)(s, inState⊥(s), r, inV alue⊥(i)) ⇒ i > 0
) ∧
(∀s1, s2 ∈ State, r ∈ V alue :

(∀b1 ∈ Boolean :
[[SE1]](e)(s1, inState⊥(s1), r, inV alue⊥(b1))

⇒ b1 = inTrue()) ∧
(∀j ∈ Integer :
[[SE2]](e)(s1, inState⊥(s1), r, inV alue⊥(j)) ⇒ j > 0) ∧
(∀b2 ∈ Boolean :
[[E]](e)(s1, inState⊥(s1), r, inV alue⊥(b2))

⇒ b2 = inTrue()) ∧[[Cseq]](e)(s1, inState⊥(s2))
⇒ (∀b3 ∈ Boolean :

[[SE1]](e)(s, inState⊥(s2), r, inV alue⊥(b3))
⇒ b3 = inTrue()) ∧

(∀k ∈ integer :
[[SE2]](e)(s2, inState⊥(s2), r, inV alue⊥(k))

⇒ k >= 0 ∧ k < j))

i.e.

• in a pre-state (s) an invariant (a boolean value) SE1

evaluates to true and

• the termination term (a numeral value) SE2 evaluates to

an integer value greater than or equal to zero and

173

• also for any arbitrary pre-state s1 and post-state s2, if we

make an iteration step for the body of the loop (Cseq)

where in the pre-state s1

– the loop’s guard condition expression E holds and

– the invariant SE1 evaluates to true and

– the termination term SE2 evaluates to an integer

value that is greater than or equal to zero

then (after iteration step) in the post-state s2

– the invariant SE1 evaluates to true and

– the termination term SE2 evaluates to an integer

value greater than or equal to zero and

– the value of the termination term in the post-state s2
must be less than its value in the pre-state s1.

VII. CONCLUSION

The overview of formal semantics of MiniMaple and its

specification language is presented in this paper. Also we

formulated the soundness statements for the correctness of

specification annotations. The proof of the correctness of

denotational semantics of MiniMaple (and annotations) can

easily be practiced by employing structural induction, we plan

it as a future goal, though.

We may use the denotational semantics sketched in this

paper to standardize the official semantics of Maple to certify

the truth of the compliance of a Maple implementation to a

given standard. However, our main goal here is to define the

formal semantics of MiniMaple and its specification language

as a pre-requisite of our verification calculus for MiniMaple.

For our verification calculus first we need to translate our

MiniMaple annotated program into a semantically equivalent

Why3 program. Since the verification conditions will auto-

matically be generated by the Why3 conditions generator,

these conditions must be sound w.r.t. denotational semantics of

MiniMaple and its annotations. Later any back-end automatic

or interactive theorem provers of Why3 can be used to prove

the correctness of generated verification conditions. Here our

main goal is to prove the correctness of methods preconditions.

ACKNOWLEDGMENT

The author would like to thank Wolfgang Schreiner for his

invaluable discussions and guidance throughout this work.

REFERENCES

[1] M.T. Khan, A Type Checker for MiniMaple, Doktratskolleg (DK)
Technical Report 2011-05, Johannes Kepler University, Linz, Austria,
2011.

[2] M.T. Khan, Software for MiniMaple, http://www.risc.jku.at/people/
mtkhan/dk10/, 2011.

[3] M.T. Khan, W. Schreiner, Towards a Behavioral Analysis of Computer
Algebra Programs, In: Proceedings of the 23rd Nordic Workshop
on Programming Theory (NWPT’11), Paul Pettersson and Cristina
Seceleanu (eds.), pp. 42-44., Vasteras, Sweden, 2011.

[4] M.T. Khan, Towards a Behavioral Analysis of Computer Algebra
Programs, DK Technical Report 2011-13, JKU, Linz, Austria, 2011.

[5] M.T. Khan, Formal Semantics of MiniMaple, DK Technical Report
2012-01, Johannes Kepler University, Linz, Austria, 2012.

[6] M.T. Khan, Formal Semantics of a Specification Language for Mini-
Maple, DK Technical Report 2012-06, JKU, Linz, Austria, 2012.

[7] M.T. Khan, W. Schreiner, On Formal Specification of Maple Programs,
In: Intelligent Computer Mathematics, Johan Jeuring et al. (eds.),
LNAI 7362, pp. 443–447. Springer, 2012.

[8] M.T. Khan, W. Schreiner, Towards the Formal Specification and
Verification of Maple Programs, In: Intelligent Computer Mathematics,
Johan Jeuring et al. (eds.), LNAI 7362, pp. 231–247. Springer, 2012.

[9] P. Hudak, The Haskell School of Expression: Learning Functional
Programming through Multimedia. Cambridge University Press 2000.

[10] T. Lambert et al., Using Miranda as a First Programming Language.
Journal of Functional Programming 3(1), 534, 1993.

[11] L. Meertens, On Static Scope Checking in ALGOL 68. ALGOL
Bulletin, vol 35, pp. 4558, 1973.

[12] F. Bobot et al., Why3: Shepherd your herd of provers. In: Boogie 2011:
First International Workshop on Intermediate Verification Languages,
Wrocaw, Poland, 2011.

[13] S. Abramsky, A. Jung, Domain Theory. Handbook of Logic in Com-
puter Science, vol 3, pp. 1–168, Oxford University Press, 1994.

[14] D.A.Schmidt, Denotational Semantics: a methodology for language
development. William C. Brown Publishers, 1986.

[15] W. Schreiner, A Program Calculus, Technical Report, Research In-
stitute for Symbolic Computation, Johannes Kepler University, Linz,
Austria, 2008.

[16] J. Rees et al, The revised3 report on the algorithmic language Scheme.
ACM SIGPLAN Notices 21(12), pp. 37–79, 1986.

[17] D. Bjørner, C.B. Jones, editors, Formal Specification & Software
Development. Prentice-Hall, 1982.

[18] D. Bjørner, C.B. Jones, Pascal, Formal Specification and Software De-
velopment, Prentice-Hall, Englewood Cliffs, NJ, pp. 175–251, Chap.
7, 1982.

[19] D. Bjørner, C.B. Jones, Algol 60, Formal Specification and Soft-
ware Development, Prentice-Hall, Englewood Cliffs, NJ, pp. 141–173,
Chap. 6, 1982.

[20] B. Jørgan, L. Schultz, A denotational (static) semantics method for
defining Ada context conditions, In: Towards a Formal Description
of Ada, D. Bjørner and O. Nest (eds.), Lecture Notes in Computer
Science 98, pp. 21–212. Springer, 1980.

[21] C. Wallace, The semantics of the C++ programming language, In: E.
Børger (Ed.), Specification and Validation Methods, Oxford University
Press, Oxford, England, pp. 131164, 1995.

[22] R.D. Tennent, A denotational definition of the programming language
Pascal. Technical report, Oxford University, Programming Research
Group, 1978.

[23] M. Vale, The evolving algebra semantics of COBOL, Part 1: Pro-
grams and control. Technical Report CSE-TR-162-93, University of
Michigan, EECS Department, Ann Arbor, MI, 1993.

[24] P.D. Mosses, Formal Semantics of Programming Languages: An
Overview, Electronics Notes Theoretical Computer Science 148(1), pp.
41–73, 2006.

[25] J. Stoy, Denotational semantics: the Scott-Strachey approach to pro-
gramming language theory, USA, MIT Press, 1977.

[26] P.G. Larsen et al., Towards A Formal Semantics Of The BSI/VDM
Specification Language, In: Information Processing 89, pp. 95–100,
North-Holland, 1989.

[27] R.M. Burstall, J.A. Goguen, Algebras, Theories and Freeness: An
Introduction to Computer Scientists, In: Theoretical Foundations of
Programming Methodology, M. Broy and G. Schmidt (Eds.), D. Rei-
del, 1982.

[28] M. Spivey, Towards a Formal Semantics for the Z Notation, Technical
Monograph PRG-41, pages 28, Oxford University Computing Labo-
ratory, UK, 1984.

[29] E. Börger, D. Rosenzweig, A mathematical definition of full Prolog,
Science of Computer Programming 24 (3), pp. 249–286, 1995.

[30] R. Milner, M. Tofte, R. Harper, The Definition of Standard ML, MIT
Press, Cambridge, MA, 1990.

[31] J. Carette, S. Forrest, Property inference for Maple: an application of
Abstract Interpretation, pages 5–19, Calculemus 2007.

[32] N.S. Papaspyrou, Denotational Semantics of ANSI C, Computer Stan-
dards and Interfaces, vol. 23, no. 3, pp. 169–185, 2001.

[33] S.C. Kleene, Introduction to Metamathematics, Van Nostrand Prince-
ton, N.J. 1952.

[34] Z. Manna, J. Vuillemin, Fixpoint approach to the theory of computa-
tion, Communications of the ACM, pp. 528–536, 1972.

174

