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SILVIU RADU

Abstract. Let p(n) denote the number of partitions of n. In this paper we

prove that if {An + B} is an arithmetic progression and ℓ ≥ 5 a prime, such
that

p(An+B) ≡ 0 (mod ℓ), n ∈ N.

Then ℓ|A and
(

24B−1

ℓ

)

6=
(

−1

ℓ

)

. This settles an open problem by Scott

Ahlgren and Ken Ono. Our proof is based on results by Deligne and Rapoport.

1. Introduction

For ℓ ≥ 5 a prime we define

δℓ :=
ℓ2 − 1

24
, ǫℓ :=

(
−6

ℓ

)

and

Sℓ := {β ∈ {0, . . . , ℓ− 1} :

(
β + δℓ

ℓ

)

= 0 or − ǫℓ}.

Let p(n) denote the number of partitions of n ∈ N. The pourpose of this paper is
to prove the following theorem conjectured by Scott Ahlgren and Ken Ono [2]:

Theorem 1.1. Suppose that ℓ ≥ 5 is prime, A,B ∈ N such that A > B and

p(An+B) ≡ 0 (mod ℓ), n ∈ N.

Then ℓ|A and there exists β ∈ Sℓ such that B ≡ β (mod ℓ).

The importance of this theorem is motivated by a previous paper [1] by the authors
where they prove the following theorem:

Theorem 1.2 (Ahlgren and Ono). If ℓ ≥ 5 is prime, m is a positive integer, and
β ∈ Sℓ, then there are infinitely many non-nested arithmetic progressions {An +
B} ⊆ {ℓn+ β}, such that for every integer n we have

p(An+B) ≡ 0 (mod ℓm).

In [1, Sect. 1] the authors write: “In Section 4, we consider those progressions
ℓn+β for β 6∈ Sℓ. We give heuristics that cast doubt on the existence of congruences
within these progressions.” The proof of the Theorem 1.1 is based on deep results
by Deligne and Rapoport [3] and some results in [5] or [7]. We are also using
theorems 4.2, 4 and 4.4 which were used in a previous paper and are also based on
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results in [3]. Our contribution is the Lemma 5.5 which takes the main part of the
last section.

The organization of this paper is as follows. In Section 2 we prove Theorem 1.1
by citing several theorems in Section 4. In Section 3 we give some preliminaries to
modular forms. In Section 4 we make a classification of congruences in the sense
that we show that some congruences are implied by others in a progression with
smaller modulus. In Section 5 we prove our main result Lemma 5.5 which is needed
for proving Lemma 4.6 in Section 4. Also in Section we prove Lemma 5.6 which is
a technical result needed to prove Lemma 4.5 in Section 4.

We continue the introduction with the following reformulation of the set Sℓ in
Theorem 1.1.

Lemma 1.3. For ℓ ≥ 5 a prime we have

Sℓ =

{

β ∈ {0, . . . , ℓ− 1} :

(
24β − 1

ℓ

)

6=

(
−1

ℓ

)}

.

Proof. First note that

(1)

(
β + δℓ

ℓ

)

= 0 ⇔

(
24

ℓ

)(
β + δℓ

ℓ

)

= 0 ⇔

(
24β − 1

ℓ

)

= 0.

Similarly

(
β + δℓ

ℓ

)

= −ǫℓ ⇔

(
24

ℓ

)(
β + δℓ

ℓ

)

= −

(
24

ℓ

)

ǫℓ ⇔

(
24β − 1

ℓ

)

= −

(
−1

ℓ

)

.

(2)

Note that
(
−1
ℓ

)
= (−1)

ℓ−1
2 6= 0 implies that for any β ∈ {0, . . . , ℓ− 1}

(
24β − 1

ℓ

)

= 0 or

(
24β − 1

ℓ

)

= −

(
−1

ℓ

)

is equivalent to
(
24β − 1

ℓ

)

6=

(
−1

ℓ

)

,

which together with (1) and (2) implies the desired result. �

2. The proof

Let A,B ∈ N with A > B such that

p(An+B) ≡ 0 (mod ℓ), n ∈ N.

Then by Theorem 4.3 there exists a positive integer Q coprime to 6 dividing A and
a t ∈ {0, . . . , Q− 1} with t ≡ B (mod Q) such that

p(Qn+ t) ≡ 0 (mod ℓ), n ∈ N.

Then ℓ|Q because if not, then by Theorem 4.4 there exists a positive integer n0

such that ℓ ∤ p(Qn0 + t). Hence we may write Q = Q0ℓ
r for some positive integers
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Q0, r with gcd(Q0, ℓ) = 1. Now if 24t − 1 ≡ 0 (mod ℓ), then we are finished. So
assume that 24t− 1 6≡ 0 (mod ℓ). Then by Lemma 4.5

(3) p(ℓQ0n+ t
∗
) ≡ 0 (mod ℓ), n ∈ N,

where t
∗
is the minimal nonnegative integer such that t

∗
≡ t (mod ℓQ). Next we

apply Lemma 4.6 to the congruence (3) and we obtain
(

24t
∗
−1

ℓ

)

6=
(
−1
ℓ

)
which

together with Lemma 1.3 implies the desired result.

3. Preliminaries

For f a holomorphic function on the upper half plane H and γ =
(

a
c
b
d

)

∈ SL2(Z)

(the set of all 2× 2 matrices with integer entries and determinant 1), we define

(f |kγ)(τ) := (cτ + d)−kf

(
aτ + b

cτ + d

)

, τ ∈ H.

For every positive integer M we denote by Γ(M) the set of all matrices in SL2(Z)
congruent to

(
1
0
0
1

)
modulo M . For k an integer and Γ a subgroup of SL2(Z) con-

taining Γ(N) for some N we denote by Mk(Γ) the set of all holomorphic functions
on the upper half plane H satisfying

• for all γ ∈ Γ we have f |kγ = f ;
• for all ξ ∈ SL2(Z) the function (f |kξ)(τ) admits a Laurent series expansion
in the variable qN := e2πiτ/N . We call this expansion the q-expansion of
f |kγ.

For N a positive integer let

Γ0(N) :=

{(
a

c

b

d

)

∈ SL2(Z) : c ≡ 0 (mod N)

}

and

Γ1(N) :=

{(
a

c

b

d

)

∈ SL2(Z) : a, d ≡ 1 (mod N), c ≡ 0 (mod N)

}

.

In particular Γ(N) ⊆ Γ1(N) ⊆ Γ0(N).

4. A Classification of Congruences

Definition 4.1. For m a positive integer and t ∈ {0, . . . ,m − 1} we define Pm(t)
to be the set of all t′ ∈ {0, . . . ,m− 1} such that

t′ ≡ ta2 +
1− a2

24
(mod m),

for some a ∈ Z with gcd(a, 6m) = 1.

We have the following important theorems:
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Theorem 4.2. Let m, l be positive integers and t ∈ {0, . . . ,m− 1} such that

p(mn+ t) ≡ 0 (mod l), n ∈ N.

Then for all t′ ∈ Pm(t) we have

p(mn+ t′) ≡ 0 (mod l), n ∈ N.

Theorem 4.3. Let a, b,Q, ν ∈ N and t ∈ {0, . . . , 2a3bQ − 1} with ν,Q > 0 and
gcd(Q, 6). Assume that

(4) p(2a3bQn+ t) ≡ 0 (mod ν), n ∈ N.

Then
p(Qn+ t) ≡ 0 (mod ν), n ∈ N,

where t is the minimal nonnegative integer such that t ≡ t (mod Q).

Theorem 4.4. Let Q, ν be positive integers such that gcd(Q, 6ν) = 1, ν 6= 1 and
t ∈ {0, . . . , Q− 1}. Then there exists an integer n such that ν ∤ p(Qn+ t).

We prove

Lemma 4.5. Let r,Q, ν be positive integers, ℓ ≥ 5 a prime and t ∈ {0, . . . , ℓrQ−1}.
Let b be the maximal integer such that ℓb|(24t− 1). If r ≥ b+ 1 and

(5) p(ℓrQn+ t) ≡ 0 (mod ν), n ∈ N,

then
p(ℓb+1Qn+ t) ≡ 0 (mod ν), n ∈ N,

where t is the minimal nonnegative integer such that t ≡ t (mod ℓb+1Q).

Proof. By (6) and Theorem 4.2 we have

(6) p(ℓrQn+ t′) ≡ 0 (mod ν), n ∈ N, t′ ∈ PℓrQ(t).

By (4.1) t′ ∈ PℓrQ(t) iff there exists a ∈ Z with gcd(a, 6ℓQ) = 1 such that

(7) a2(24t− 1) ≡ 24t′ − 1 (mod ℓrQ),

and t′ ∈ {0, . . . , ℓrQ− 1}. By Lemma 5.6 we obatain that for each l ∈ Z there exist
ar,l with gcd(ar,l, 6ℓQ) = 1 such that

a2r,l(24t− 1) ≡ 24(t+ lℓb+1Q)− 1 (mod ℓrQ),

which implies by (7) that

t+ lℓb+1Q ∈ PℓrQ(t)

for every l ∈ {0, . . . , ℓr−b−1 − 1}, implying together with Theorem 4.2 that

p(ℓrQn+ t+ lℓb+1Q) ≡ 0 (mod ν), n ∈ N,

for every l ∈ {0, . . . , ℓr−b−1 − 1}. Since

ℓrQn+ t+ lℓb+1Q = ℓb+1Q(ℓr−b−1n+ l) + t

and every nonnegative integer m can be written as m = ℓr−b−1n + l for some
nonnegative integers n, l with l ∈ {0, . . . , ℓr−b−1 − 1} we conclude

p(ℓb+1Qm+ t) ≡ 0 (mod ν), m ∈ N.

�
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Lemma 4.6. Let ℓ ≥ 5 be a prime, Q a positive integer such that gcd(Q, 6ℓ) = 1
and β ∈ {0, . . . , ℓQ− 1}. Assume that

(8) p(ℓQn+ β) ≡ 0 (mod ℓ), n ∈ N.

Then
(

24β−1
ℓ

)

6=
(
−1
ℓ

)
.

The proof is based on the following lemma by Deligne and Rapoport:

Theorem 4.7. [3, VII, Cor. 3.12] Let k,N be positive integers, p a prime num-

ber and pm the highest power of p dividing N , γ =
(

a
pmc

b
d

)

∈ SL2(Z) and f ∈

Mk(Γ(N)). Let π be a prime ideal in Z[e2πi/N ] lying above p. Assume that the
coefficients in the q-expansion of f are in Z[e2πi/N ]. Let ν be a nonnegative integer
such that f ≡ 0 (mod πν)1. Then f |kγ ≡ 0 (mod πν).

Proof of Lemma 4.6: Assume that
(
24β − 1

ℓ

)

=

(
−1

ℓ

)

.

Then there exists a ∈ Z such that

(9) (24β − 1)a2 ≡ −1 (mod ℓ),

which implies together with gcd(Q, 6ℓ) = 1 that there exists a ∈ N with gcd(a, 6ℓQ) =
1 such that

(10) a ≡ aQ (mod ℓ).

Let β ∈ {0, . . . , ℓQ− 1} be uniquely defined by the relation

(11) a2(24β − 1) ≡ (24β − 1) (mod ℓQ).

By [7, Th. 2.14], we have for a suitable positive integer k

(12) G
(k)

ℓQ,β
:= η24k

(

q
24β−1

ℓQ

∞∑

n=0

p(ℓQn+ β)qn

)24ℓQ

∈ M12(k−ℓQ)(Γ1(ℓQ)),

where η(τ) := eπiτ/12
∏∞

n=1(1− e2πinτ )24, τ ∈ H is the Dedekind eta function and
satisfies η24|12γ = η24 for all γ ∈ SL2(Z).

Let X > 0 and Y be integers such that

(13) 242ℓ2X + Y Q = 1.

Then
(

1
ℓ
−242Xℓ

Y Q

)

∈ SL2(Z). We apply Lemma 5.5 with γ =
(

A
C

B
D

)

=
(

1
ℓ
−242Xℓ

Y Q

)

,

x = 24ℓX, y = Y , m = ℓQ, t = β and r = −1. We then obtain

1For given positive integers k,N and f ∈ Mk(Γ(N)) with the coefficients of the q-expansion of

f in Z[1/N, e2πi/N ] we obtain by Theorem [3, VII, Cor. 3.13] that for γ ∈ SL2(Z) the coefficients
in the q-expansion of f |kγ have the same property. In this case there exists also a power Nj of N

such that for γ ∈ SL2(Z) the coefficients in the q-expansion of Njf |kγ are in Z[e2πi/N ] (see for

example [3, VII, Cor 3.11]). Consequently for a given prime p and a prime ideal π in Z[e2πi/N ]
lying above p it makes sense to write f |kγ ≡ 0 (mod πν) if all the coefficients in the q-expansion

of f |kγ lie in the ideal πν .
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e
πi(3−Q)

12 e−
48πiX(24β−1)

Q g(ℓQ, β,−1, γτ)(−i(ℓτ + Y Q))1/2

=
1

Q

∑

d|Q

d−1/2e−
πi(d−1)

4 ξ−1(d)e
2πi(24td−1)d2τ

24ℓQ ×
∞∑

n=0

e
2πind2τ

Q p(ℓn+ td)T (n, d)
(14)

where td is the unique integer satisfying

(15) (24β − 1) ≡ d2(24td − 1) (mod ℓ), 0 ≤ td < ℓ− 1,

ξ(d) =

(
24ℓ

Q/d

)

(−1)
Qd−1

2
d−1
2 ,

T (n, d) =
∑

0≤s<Q/d
gcd(s,Q/d)=1

(
24ℓs

Q/d

)

e−
48πiX
Q/d

{ιs,d(24(ℓn+td)−1)+s(24β−1)}

and for s, d ∈ Z such that d|Q and gcd(s,Q/d) = 1, the symbol ιs,d is any integer
satisfying s · ιs,d ≡ 1 (mod Q/d). Next we observe that T (n,Q) = 1 for all n ∈ N
because of

(
a
1

)
= 1 for a ∈ Z. Because of (9),(10) and (15) we have tQ = 0 and

consequently (14) transforms into

e
πi(3−Q)

12 e−
48πiX(24β−1)

Q g(ℓQ, β,−1, γτ)(−i(ℓτ + Y Q))1/2

=
1

Q
Q−1/2e−

πi(Q−1)
4 ξ−1(Q)q

−Q2

24
m

∞∑

n=0

qℓQ
2n

m p(ℓn)

+
1

Q

∑

d|Q,d 6=Q

d−1/2e−
πi(d−1)

4 ξ−1(d)q
(24td−1)d2

24
m

∞∑

n=0

qnℓd
2

m p(ℓn+ td)T (n, d)

=q−Q2/24
m F (qm),

(16)

where m := ℓQ, qm := e
2πiτ
m and F (qm) is a Laurent series in qm because of

d2(24td − 1) +Q2 ≡ 0 (mod 24) because of Q2, d2 ≡ 1 (mod 24)2. Next note that

F (qm) has coefficients in Z[1/m, e2πi/m] because for d|Q we have d1/2e
πi(d−1)

4 =
±ǫ(d)d1/2 where

ǫ(d) :=

{
1, if d ≡ 1 (mod 4)
i, if d ≡ 3 (mod 4)

and by [4, p. 87] we have

ǫ(d)d1/2 =

d−1∑

λ=0

e2πiλ
2/d

which is obviously in Z[1/m, e2πi/m]. Furthermore, if π is a prime ideal in Z[e
2πi
ℓQ ]

lying above ℓ, then it makes sense to reduce the coefficients of F (qm) modulo π
because all denominators in the coefficients of F (qm) are invertible modulo π. We
observe that

(17) F (qm) 6≡ 0 (mod π)

because by (16) the order of F (qm) is 0 and the coefficient of the term constant

term is equal to 1
Q3/2 e

−
πi(Q−1)

4 ξ−1(Q) 6≡ 0 (mod π).

2In fact F (qm) is a Laurent series in qℓm because of d2(24td − 1) +Q2 ≡ 0 (mod ℓ) because of

(9)-(11) and (15).
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By (16), Definition 5.3 and Lemma 5.4 we have

G
(k)

ℓQ,β
|κ

(
1

ℓ

−242ℓX

QY

)

= η12kq−1F 24ℓQ(qm)

where κ := 12(k − ℓQ). Then (17) implies

G
(k)

ℓQ,β
|κ

(
1

ℓ

−242ℓX

QY

)

6≡ 0 (mod π),

and by Theorem 4.7

G
(k)

ℓQ,β
6≡ 0 (mod π),

and consequently p(ℓQn + β) 6≡ 0 (mod ℓ) for some n ∈ N and since β ∈ PℓQ(β)
because of (11) and Definition 4.1 we obtain by Theorem 4.2 that p(ℓQn+ β) 6≡ 0
(mod ℓ) for some n ∈ N which is a contradiction to our assumption (8).

5. A Modular Substitution Formula

Definition 5.1. Let m be a positive integer and c ∈ Z. Then we define π(m, c) :=
(m0,mc) where

• m0,mc are positive integers such that m0mc = m;
• gcd(m0, c) = 1;
• for every prime p we have p|mc implies p|c.

We also define the set

∆(m0,mc) := {(d, l, s) ∈ Z3|d|m0, d > 0, 0 ≤ s < m0/d, gcd(s,m0/d) = 1, 0 ≤ l < mc}.

Lemma 5.2. Let m be a positive integer coprime to 6 and a, c,m0,mc, x, y ∈ Z
such that

(i) gcd(a, c) = 1;
(ii) (m0,mc) := π(m, c);
(iii) 24xc+m0y = 1.

Then

(a) for any λ ∈ Z such that

(18) λ ≡ −ax+ sd+ lm0 (mod m)

for some (d, l, s) ∈ ∆(m0,mc) we have

(19) gcd(a+ 24λc,m) = d;

(b) for any λ ∈ Z there exists unique (d, l, s) ∈ ∆(m0,mc) such that (18).
Consequently, we have a mapping λ 7→ (d, l, s) and the restriction of this
mapping to a complete set of representatives of the residue classes modulo
m is a bijection.
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Proof. (a): First we note that gcd(a + 24λc,m) = gcd(a + 24λc,m0) because of
(i)-(ii). Next we have

a+ 24λc ≡ a+ 24(−ax+ sd)c ≡ a(1− 24cx) + 24sdc ≡ am0y + 24sdc (mod m0),

which implies

gcd(a+ 24λc,m0) = gcd(24sdc,m0) = d gcd(24sc,m0/d) = d.

This proves (a).

(b): We need to show that for any λ ∈ Z there exist d|m0 with d > 0 and s ∈ Z
with gcd(s,m0/d) = 1 and 0 ≤ s < m0/d such that

λ ≡ −ax+ sd (mod m0).

We set d := gcd(a+24λc,m0) and s := (a+24λc)x
d . Obviously we have gcd(s,m0/d) =

1 and
−ax+ sd = −ax+ (a+ 24λc)x = 24λcx ≡ λ (mod m0).

It remains to show uniqueness. Let (d1, l1, s1), (d2, l2, s2) ∈ ∆(m0,mc) be such that

λ ≡ −ax+ s1d1 + l1m0 ≡ −ax+ s2d2 + l2m0 (mod m).

Then because of (19) we have d := d1 = d2 which implies that

(20) (s1 − s2)d+ (l1 − l2)m0 ≡ 0 (mod m)

and consequently s1 ≡ s2 (mod m0/d). Because of s1, s2 ∈ {0, . . . ,m0/d − 1} we
have s1 = s2 which together with (20) gives l1 ≡ l2 (mod mc).

The final fact that the association λ 7→ (d, l, s) indeed is a bijection modulo m is
just straight forward verification. �

Definition 5.3. For m a positive integer coprime to 6, t ∈ {0, . . . ,m − 1} and
r ∈ Z. Then we define

g(m, t, r, τ) :=
1

m

m−1∑

λ=0

e
2πiλ(−24t−r)

m ηr
(
τ + 24λ

m

)

, τ ∈ H.

A proof of the following lemma can be found in [7, Lem. 1.12].

Lemma 5.4. Let m be a positive integer coprime to 6, t ∈ {0, . . . ,m − 1} and
r ∈ Z. Then

g(m, t, r, τ) = q
24t+r
24m

∞∑

n=0

pr(mn+ t)qn, τ ∈ H, (q = e2πiτ ).

Lemma 5.5. Let m be a positive integer coprime to 6, t ∈ {0, . . . ,m− 1}, r ∈ Z,

γ =
(

A
C

B
D

)

∈ SL2(Z) with gcd(A, 6) = 1, A > 0, C > 0 and (m0,mC) := π(m,C)

and assume that mC |C. For any integers s and d|m0 such that gcd(s,m0/d) = 1
let ιs,d be any integer satisfying s · ιs,d ≡ 1 (mod m0/d). Let x, y,A′ be any integers
such that

(i) 24xC + ym0 = 1 and x ≡ 0 (mod 24C), x < 0;
(ii) AA′ ≡ 1 (mod 24C).
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Define

τ ′(s, d) :=
dτ + 24x(−xιs,d + dD)

m0/d
+ d2y(BA′ + 24sdD2)

and

ξ(d) :=

(
24C

m0/d

)(
Ad

CmC

)

(−1)
Cmd−1

2
Ad−1

2 .

Then

e
πiAr(mC−3)

12 e−
2πiAx(24t+r)

m g(m, t, r, γτ)(−i(Cτ +D))−r/2

=
1

m

∑

d|m0

dr/2e
πiAr(d−1)

4 ξr(d)
∑

0≤s<m0/d

gcd(s,m0/d)

(
s

m0/d

)r

e
2πi(−24t−r)s

m/d

×

mC−1∑

l=0

e
2πil(Am0y/d)2(−24t−r)

mC ηr
(
τ ′(s, d) + 24l

mC

)

(21)

and

e
πiAr(mC−3)

12 e−
2πiAx(24t+r)

m g(m, t, r, γτ)(−i(Cτ +D))−r/2

=
1

m0

∑

d|m0

e
πiAr(d−1)

4 dr/2ξr(d)e
2πi(24td+r)d2(τ+24xD+m0yBA′)

24m

×

∞∑

n=0

e
2πind2(τ+24xD)

m0 pr(mCn+ td)T (n, d)

(22)

where td is the unique integer satisfying

(23) A2(24t+ r) ≡ d2(24td + r) (mod mC)

and 0 ≤ td < mC − 1 and

T (n, d) :=
∑

0≤s<m0/d

gcd(s,m0/d)=1

(
24Cs

m0/d

)r

e
−

2πix/mC
m0/d

{ιs,d(24(nmC+td)+r)+s(24t+r)}
.

Proof. Proof of (21): By Lemma 5.2 and Definition we have

g(m, t, r, γτ)

=
1

m

∑

d|m0

∑

0≤s<
m0
d

−1

gcd(s,m0/d)=1

mC−1∑

l=0

e
2πi(−Ax+sd+lm0)(−24t−r)

m ηr
(
γτ + 24(−Ax+ sd+ lm0)

m

)

.

(24)

Next we note that for (d, l, s) ∈ ∆(m0,mc) we have

(25)
γτ + 24λ

m
= Mλ

dτ + (B + 24λD)xλ + 24mDyλ
m/d

,

where

(26) λ := −Ax+ sd+ lm0,

Mλ :=
(

A+24λC
d

Cm
d

−24yλ

xλ

)

and xλ, yλ are integers such that

(27) (A+ 24λC)xλ + 24mCyλ = d.
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Newman [6] proved that for each γ =
(

a
c
b
d

)

∈ SL2(Z) with a, c > 0 and gcd(a, 6) =

1 we have

(28) η(γτ) = (−i(cτ + d))1/2ǫ(a, b, c, d)η(τ), τ ∈ H,

where

(29) ǫ(a, b, c, d) :=
( c

a

)

e−
πia
12 (c−b−3).

By (25) and (28) we obtain

η

(
γτ + 24λ

m

)

= (−id(Cτ +D))1/2

×ǫ

(
A+ 24λC

d
,−24yλ, Cm/d, xλ

)

η

(
dτ + (B + 24λD)xλ + 24mDyλ

m/d

)

.

(30)

By (26) and (i) we have

A+ 24λC

d
=

A+ 24(−Ax+ sd+ lm0)C

d
=

A(1− 24Cx) + 24Csd+ 24lm0C

d

=
Aym0 + 24Csd+ 24lm0C

d
=

Aym0

d
+ 24(Cs+ lm0C/d),

(31)

which together with (29) implies that

ǫ

(
A+ 24λC

d
,−24yλ, Cm/d, xλ

)

=ǫ(Aym0/d+ 24(Cs+ lm0C/d),−24yλ, Cm/d, xλ)

=

(
Cm/d

Aym0/d+ 24(Cs+ lm0C/d)

)

e−
πiAym0/d

12 (Cm/d−3)

and by standard properties of the jacobi symbol

(
Cm/d

Aym0/d+ 24(Cs+ lm0C/d)

)

=(−1)
Cm/d−1

2
Aym0d−1

2

(
Aym0/d+ 24(Cs+ lm0C/d)

Cm/d

)

=(−1)
Cm/d−1

2
Aym0d−1

2

(
24Cs

m0/d

)(
Aym0/d

Cmc

)

=(−1)
Cm/d−1

2
Aym0d−1

2

(
24Cs

m0/d

)(
Aym0d

Cmc

)

=(−1)
Cm/d−1

2
Ad−1

2

(
24Cs

m0/d

)(
Ad

Cmc

)

,
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because by (i) we have ym0 ≡ 1 (mod 24C). By the above calculation we have

ǫ

(
A+ 24λC

d
,−24yλ, Cm/d, xλ

)

=(−1)
Cm/d−1

2
Ad−1

2

(
24Cs

m0/d

)(
Ad

CmC

)

e−
πiAym0/d

12 (Cm/d−3)

=(−1)
Cmd−1

2
Ad−1

2

(
24Cs

m0/d

)(
Ad

CmC

)

e−
πiAd
12 (Cmd−3)

=e
πiA(3−mC)

12 e
πiA(d−1)

4 ξ(d)

(
s

m0/d

)

,

(32)

by using ym0 ≡ 1 (mod 24) and d2 ≡ 1 (mod 24). By (30) and (32) and because
of η(τ + 24) = η(τ) we obtain

e
πiA(mC−3)

12 (−i(Cτ +D))−1/2η

(
γτ + 24λ

m

)

=

d1/2e
πiA(d−1)

4 ξ(d)

(
s

m0/d

)

η

(
dτ + (B + 24λD)xλ

m/d

)

.

(33)

Next we obtain a better expression for xλ. By (27):

A+ 24λC

d
xλ ≡ 1 (mod m0/d)

and by (31):
A+ 24λC

d
≡ 24Cs (mod m0/d)

which implies

24Csxλ ≡ 1 (mod m0/d)

which together with (i) implies

(34) xλ ≡ xιs,d (mod m0/d).

By (34) we conclude that

(35) xλ = xιs,d + vm0/d.

By (27), (35) and (i) we find

(36) A(xιs,d + vm0/d) ≡ Avm0/d ≡ d (mod 24C)

because by assumption (i) we have x ≡ 0 (mod 24C). By (36), i and (ii) we obtain

v ≡ A′d2y (mod 24C),

which togeter with (35) implies

(37) xλ ≡ xιs,d +A′ydm0 (mod 24m0C/d)

Using the above formulas we compute (B + 24λD)xλ modulo 24Cm0/d. By using
(37) and (26) we find

(B + 24λD)xλ

=(24Dlm0A
′yd+BA′yd− 24AA′Ddxy + 24Dsd2A′y + 24Dlxιs,d)m0

+Bxιs,d − 24ADx2ιs,d + 24Ddxsιs,d

≡(24Dlm0A
′yd+BA′yd+ 24Dsd2A′y)m0 +Bxιs,d − 24ADx2ιs,d + 24Ddxsιs,d
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because of x ≡ 0 (mod 24C) by (i)

≡(24D2ld+BA′yd+ 24D2sd2y)m0 +Bxιs,d − 24ADx2ιs,d + 24Ddxsιs,d

because of ym0 ≡ 1 (mod 24C) by (i) and 24A′ ≡ 24D (mod 24C) because of
AD −BC = 1

≡(24D2ld+BA′yd+ 24D2sd2y)m0 + x(Bιs,d − 24ADxιs,d + 24Dd) (mod
24m0C

d
)

because of (ii) and x ≡ 0 (mod 24C) by (i)

≡(24D2ld+BA′yd+ 24D2sd2y)m0 + x(−24xιs,d + 24Dd) (mod
24m0C

d
)

because of B − 24ADx = B(1− 24Cx)− 24x = Bym0 − 24x by (i) and because of
AD −BC = 1.

Next note that if v1 and v2 are integers such that v2 = v1 + i(24m0C/d) for some
integer i, then

η

(
dτ + v2
m/d

)

= η

(
dτ + v1
m/d

+ i24m0C/m

)

= η

(
dτ + v1
m/d

)

,

because of η(τ + 24) = η(τ) and mC |C by assumption. Using this fact with v1 =
(B+24λD)xλ and v2 = 24D2ld+BA′yd+24D2sd2y)m0 +x(−24xιs,d+24Dd) on
(33) we obtain

(−i(Cτ +D))−1/2e
πiA(mC−3)

12 η

(
γτ + 24λ

m

)

=d1/2e
πiA(d−1)

4 ξ(d)

(
s

m0/d

)

η

(
dτ + (B + 24λD)xλ

m/d

)

=d1/2e
πiA(d−1)

4 ξ(d)

(
s

m0/d

)

×η





dτ+x(−24xιs,d+24Dd)
m0/d

+ (24D2l +BA′y + 24D2sdy)d2

mC





=d1/2e
πiA(d−1)

4 ξ(d)

(
s

m0/d

)

η

(
τ ′(s, d) + 24D2d2l

mC

)

(38)
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By (38) and (24)

e
πiAr(mC−3)

12 (−i(Cτ +D))−r/2g(m, t, r, γτ)

=
1

m

∑

d|m0

∑

0≤s<
m0
d

−1

gcd(s,m0/d)=1

mC−1∑

l=0

e
2πi(−Ax+sd+lm0)(−24t−r)

m

× dr/2e
πiAr(d−1)

4 ξr(d)

(
s

m0/d

)r

ηr
(
τ ′(s, d) + 24D2d2l

mC

)

=e
2πiAx(24t+r)

m
1

m

∑

d|m0

dr/2e
πiAr(d−1)

4

∑

0≤s<
m0
d

−1

gcd(s,m0/d)=1

e
2πis(−24t−r)

m/d

×

mC−1∑

l=0

e
2πil(−24t−r)

m/m0 e
πiAr(d−1)

4 ξr(d)

(
s

m0/d

)r

ηr
(
τ ′(s, d) + 24D2d2l

mC

)

.

(39)

Summing in the last sum over any set of modulomC representatives does not change
the value of the sum. In particular, we make the substitution l = A2(ym0/d)

2l′ and
observe that D2d2A2(ym0/d)

2 ≡ 1 (mod mC) because of (i) and AD − BC = 1.
Thus we obtain (21).

Proof of (22): By (21) and Definition 5.3

e
πiAr(mC−3)

12 e−
2πiAx(24t+r)

m g(m, t, r, γτ)(−i(Cτ +D))−r/2

=
mC

m

∑

d|m0

dr/2e
πiAr(d−1)

4 ξr(d)
∑

0≤s<m0/d

gcd(s,m0/d)

(
s

m0/d

)r

e
2πi(−24t−r)s

m/d g(mC , td, r, τ
′(s, d))

(40)

By Lemma 5.4

(41) g(mC , td, r, τ) = e
2πiτ(24t+r)

24mC

∞∑

n=0

p(mCn+ td)e
2πiτn, τ ∈ H.

By (41)

∑

0≤s<m0/d

gcd(s,m0/d)

(
s

m0/d

)r

e
2πi(−24t−r)s

m/d g(mC , td, r, τ
′(s, d))

=
∑

0≤s<m0/d

gcd(s,m0/d)

(
s

m0/d

)r

e
2πi(−24t−r)s

m/d e
2πiτ′(s,d)(24td+r)

24mC

∞∑

n=0

p(mCn+ td)e
2πiτ ′(s,d)n

=
∑

0≤s<m0/d

gcd(s,m0/d)

(
s

m0/d

)r

e
2πi(−24t−r)s

m/d e

2πi

{

dτ+24x(−xιs,d+dD)

m0/d
+d2y(BA′+24sdD2)

}

(24td+r)

24mC

×
∞∑

n=0

p(mCn+ td)e
2πi

{

dτ+24x(−xιs,d+dD)

m0/d
+d2y(BA′+24sdD2)

}

n
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=
∑

0≤s<m0/d

gcd(s,m0/d)

(
s

m0/d

)r

e
2πi(−24t−r)s

m/d e

2πi

{

dτ+24x(−xιs,d+dD)

m0/d
+d2y(BA′+24sdD2)

}

(24td+r)

24mC

×

∞∑

n=0

p(mCn+ td)e
2πi

dτ+24x(−xιs,d+dD)

m0/d
n

=

∞∑

n=0

p(mCn+ td)e
2πin(τ+24xD)d2

m0 e
2πiτd2(τ+24xD+m0yBA′)(24td+r)

24m

×
∑

0≤s<m0/d

gcd(s,m0/d)

(
s

m0/d

)r

e
2πi(−24t−r)s

m/d e

2πi

{

−24x2ιs,d
m0/d

+24d3yD2s

}

(24td+r)

24mC e
−2πi

24x2ιs,d
m0/d

n

=e
2πid2(τ+24xD+m0yBA′)(24td+r)

24m

∞∑

n=0

p(mCn+ td)e
2πin(τ+24xD)d2

m0

×
∑

0≤s<m0/d

gcd(s,m0/d)

(
s

m0/d

)r

e−
2πi
m/d

{x2ιs,d((24td+r)+24nmC)+s(24t+r−(24td+r)d2D2ym0)}

=e
2πid2(τ+24xD+m0yBA′)(24td+r)

24m

∞∑

n=0

p(mCn+ td)e
2πin(τ+24xD)d2

m0

×
∑

0≤s<m0/d

gcd(s,m0/d)

(
s

m0/d

)r

e−
2πix
m/d

{xιs,d((24td+r)+24nmC)+24Cs(24t+r)}

︸ ︷︷ ︸

=T (n,d)

,

by first substituting d2D2ym0(24td + r) ≡ ym0(24t + r) (mod m) which follows
from (23) and AD−BC = 1 and next substituting 1− ym0 = 24xC because of (i).
Next we exploit the identity,

T (n, d) =
∑

0≤s<m0/d

gcd(s,m0/d)=1

(
s

m0/d

)r

e−
2πix
m/d

{xιs,d((24td+r)+24nmC)+24Cs(24t+r)}

=
∑

0≤s<m0/d

gcd(s,m0/d)=1

(
24Cs

m0/d

)r

e
−

2πix/mC
m0/d

{ιs,d((24td+r)+24nmC)+s(24t+r)}
,

because s 7→ xs is a bijection modulo m0/d together with 24xC ≡ 1 (mod m0/d).

Finally substituting in (40) we obtain (22). �

Lemma 5.6. Let Q be a positive integer, v ∈ Z with v 6= 0 and p ≥ 5 a prime. Let
b be maximal such that pb|v. Then for any integer r ≥ b+ 1 and l ∈ Z there exists
ar,l ∈ Z with gcd(ar,l, 6pQ) = 1 such that

a2r,lv ≡ v + 24lpb+1Q (mod prQ).

Proof. Fix l ∈ Z. Then the statement holds for r = b + 1 with ar,l = 1. Next
assume that the statement is true for r = R ≥ b + 1 and prove it for r = R + 1.
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That is there exists aR,l such that

(42) a2R,lv ≡ v + 24lpb+1Q (mod pRQ).

We make the “ansatz” aR+1,l := aR,l + 24pR−bQx. Because of (42) it makes sense
to define s to be the integer satisfying

(43) a2R,lv − v − 24lpb+1Q = spRQ.

Then we need to show that there exists x such that

(aR,l + 24pR−bQx)2v ≡ v + 24lpb+1Q.

We have

(a2R,l + 48aR,lxQpR−b + 242p2R−2bQ2x2)v − v − 24lpb+1Q

≡(a2R,l + 48aR,lxQpR−b)v − v − 24lpb+1Q

because of 242x2Q2p2R−2bv ≡ 0 (mod pR+1Q) becuase of v ≡ 0 (mod pb) and
R ≥ b+ 1

≡48aR,lp
R−bQxv + spRQ ≡ 0 (mod pR+1Q),

because of (43).

This implies
48aR,lxvp

−b + s ≡ 0 (mod p),

which is solvable for x because of gcd(48aR,lQvp−b, p) = 1. Hence the proof is
finished by the induction principle. �

References

[1] S. Ahlgren and K. Ono. Congruence Properties for the Partition Function. Proceedings of the

National Academy of Science, 98(23):12882–12884, 2001.
[2] S. Ahlgren and K. Ono. Congruences and Conjectures for the Partition Function. In B. C.

Berndt and K. Ono, editors, Proceedings of the Conference on q-series with Applications to

Combinatorics, Number Theory and Physics, AMS Contemporary Mathematics 291, pages
1–10. AMS, 2001.
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