PROOF OF A CONJECTURE BY AHLGREN AND ONO

SILVIU RADU

ABSTRACT. Let p(n) denote the number of partitions of n. In this paper we
prove that if {An + B} is an arithmetic progression and ¢ > 5 a prime, such
that

p(An+B)=0 (mod¥¢), neN.

Then ¢|A and (%) #* (_71) This settles an open problem by Scott

Ahlgren and Ken Ono. Our proof is based on results by Deligne and Rapoport.

1. INTRODUCTION

For ¢ > 5 a prime we define

2 -1 —6
6[ = U 5 €y = (f)

Se:={pe€{0,....0—1}: </8_;6€) =0or — e}

Let p(n) denote the number of partitions of n € N. The pourpose of this paper is
to prove the following theorem conjectured by Scott Ahlgren and Ken Ono [2]:

and

Theorem 1.1. Suppose that £ > 5 is prime, A, B € N such that A > B and
p(An+ B)=0 (mod¥), neN.
Then L|A and there exists 3 € Sy such that B = (mod {).

The importance of this theorem is motivated by a previous paper [1] by the authors
where they prove the following theorem:

Theorem 1.2 (Ahlgren and Ono). If £ > 5 is prime, m is a positive integer, and
B € Sy, then there are infinitely many non-nested arithmetic progressions {An +
B} C {ln+ B}, such that for every integer n we have

p(An+ B) =0 (mod ™).

In [1, Sect. 1] the authors write: “In Section 4, we consider those progressions
In+p5 for B & Sy. We give heuristics that cast doubt on the existence of congruences
within these progressions.” The proof of the Theorem 1.1 is based on deep results
by Deligne and Rapoport [3] and some results in [5] or [7]. We are also using
theorems 4.2, 4 and 4.4 which were used in a previous paper and are also based on
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results in [3]. Our contribution is the Lemma 5.5 which takes the main part of the
last section.

The organization of this paper is as follows. In Section 2 we prove Theorem 1.1
by citing several theorems in Section 4. In Section 3 we give some preliminaries to
modular forms. In Section 4 we make a classification of congruences in the sense
that we show that some congruences are implied by others in a progression with
smaller modulus. In Section 5 we prove our main result Lemma 5.5 which is needed
for proving Lemma 4.6 in Section 4. Also in Section we prove Lemma 5.6 which is
a technical result needed to prove Lemma 4.5 in Section 4.

We continue the introduction with the following reformulation of the set S, in
Theorem 1.1.

Lemma 1.3. For { > 5 a prime we have

Sg:{b’e{o,...,f—l}: (2465_1> # (j)}

Proof. First note that

0 () 0n () (15 0e (5

Similarly

59 e () (559) - (e (57 - (2).

Note that (_71) = (—1)57Tl # 0 implies that for any 8 € {0,...,¢ — 1}
481\ _ 248 -1\ (-1
()0 o ()= (%)
248 — 1 1
(=) (%)

which together with (1) and (2) implies the desired result. O

is equivalent to

2. THE PROOF

Let A, B € N with A > B such that
p(An+B)=0 (mod¥), neN.

Then by Theorem 4.3 there exists a positive integer () coprime to 6 dividing A and
ate{0,...,Q —1} with £ = B (mod Q) such that

p(@n—+1t) =0 (mod¥), mneN.

Then ¢|Q because if not, then by Theorem 4.4 there exists a positive integer ng
such that €1 p(Qno + t). Hence we may write Q = Qof" for some positive integers
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Qo,r with ged(Qop,¢) = 1. Now if 24t — 1 = 0 (mod ¢), then we are finished. So
assume that 24t — 1 # 0 (mod £). Then by Lemma 4.5

(3) p(lQon+1)=0 (mod ), neN,

where " is the minimal nonnegative integer such that ¥ = 7 (mod /Q). Next we
apply Lemma 4.6 to the congruence (3) and we obtain (&[1) # (=) which
together with Lemma 1.3 implies the desired result.

3. PRELIMINARIES

For f a holomorphic function on the upper half plane H and v = (z Z) € SLy(Z)

(the set of all 2 x 2 matrices with integer entries and determinant 1), we define

(Flen)(r) = (er + d)* ( - b) rem

et +d

For every positive integer M we denote by I'(M) the set of all matrices in SLy(Z)
congruent to ((1) (1)) modulo M. For k an integer and I' a subgroup of SLa(Z) con-
taining I'(N) for some N we denote by M (T") the set of all holomorphic functions

on the upper half plane H satisfying
e for all v € I' we have f|yy = f;

e for all £ € SLy(Z) the function (f|x£)(7) admits a Laurent series expansion
in the variable gy := e2™7/N_ We call this expansion the g-expansion of

fley-

For N a positive integer let

{<ZZ> €SLy(Z):c=0 (mod N)}

' (N) :{(ab>€SL2(Z):a,d—l (mod N),c=0 (modN)}.

Fo(N) :

and

cd
In particular T'(NV) C Ty (N) C To(N).

4. A CLASSIFICATION OF CONGRUENCES

Definition 4.1. For m a positive integer and t € {0,...,m — 1} we define Py, (t)
to be the set of allt’ € {0,...,m — 1} such that
1—a?

t' = ta?
a” + o

(mod m),

for some a € Z with ged(a,bm) = 1.

We have the following important theorems:
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Theorem 4.2. Let m,l be positive integers and t € {0,...,m — 1} such that
p(mn+t)=0 (modl), neN.

Then for all t' € P,,(t) we have
pmn+t)=0 (modl), neN.

Theorem 4.3. Let a,b,Q,v € N and t € {0,...,293°Q — 1} with v,Q > 0 and
ged(Q,6). Assume that

(4) p(223°Qn+1t)=0 (modv), neN.

Then
p(Qn+t) =0 (modv), neN,

where t is the minimal nonnegative integer such that t =t (mod Q).

Theorem 4.4. Let Q,v be positive integers such that ged(Q,6v) =1, v # 1 and
t€{0,...,Q — 1}. Then there exists an integer n such that vt p(Qn +t).

‘We prove

Lemma 4.5. Let r, Q,v be positive integers, £ > 5 a prime and t € {0,... £"Q—1}.
Let b be the mazimal integer such that (°|(24t —1). If r > b+ 1 and

(5) p(l"Qn+1t) =0 (modv), neN,

then
p(l*T'Qn +1) =0 (modv), n €N,

where T is the minimal nonnegative integer such that t =1 (mod £471Q).

Proof. By (6) and Theorem 4.2 we have

(6) pl'Qn+t')=0 (modv), neN, t € Purg(t).
By (4.1) t’ € Pprg(t) iff there exists a € Z with ged(a, 6¢Q) = 1 such that
(7) a*(24t —1) =24t' — 1 (mod £"Q),

and ' € {0,...,£"Q —1}. By Lemma 5.6 we obatain that for each I € Z there exist
ar; with ged(a,;,60Q) = 1 such that

a7 (24t — 1) = 24(t + Q) — 1 (mod £"Q),
which implies by (7) that
T+ 1TQ € Prrg(t)

., 0r=b=1 — 1}, implying together with Theorem 4.2 that

for every [ € {0, ..
p(l"Qn+1+1T'Q)=0 (modv), neEN,
for every 1 € {0,...,¢77"=1 — 1}. Since
QAT HUTIQ = T QU T I 1 ) +- 8

and every nonnegative integer m can be written as m = £""°"In + [ for some
nonnegative integers n,l with [ € {0,...,¢" 7" — 1} we conclude

p(l*'Qm+1) =0 (modv), meN.
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Lemma 4.6. Let £ > 5 be a prime, Q a positive integer such that ged(Q,60) = 1
and B € {0,...,0Q — 1}. Assume that

(8) p(l@Qn+ ) =0 (mod¥), neN.
Then (25-1) # ().

The proof is based on the following lemma by Deligne and Rapoport:

Theorem 4.7. [3, VII, Cor. 3.12] Let k, N be positive integers, p a prime num-
ber and p™ the highest power of p dividing N, v = (pfflcg) € SLy(Z) and f €
M (T(N)). Let 7 be a prime ideal in Z[e*™/N] lying above p. Assume that the
coefficients in the g-expansion of f are in Z[ezm/N}. Let v be a nonnegative integer
such that f =0 (mod 7). Then flxy =0 (mod 7).

Proof of Lemma 4.6: Assume that
<24ﬁ — 1> B <1>
l L)
Then there exists a € Z such that

(9) (248 — 1)a®* = -1 (mod /),

which implies together with ged(Q, 6¢) = 1 that there exists @ € N with ged(a, 6/Q) =
1 such that

(10) a=a@ (mod{).
Let B € {0,...,£Q — 1} be uniquely defined by the relation
(11) (248 — 1) = (246 — 1)  (mod £Q).

By [7, Th. 2.14], we have for a suitable positive integer k

e 240Q

k 2481 = n

(12 Gy =n" <q @Y p(tQn + B)g ) € Mise—ug) (T1(4Q));
n=0

where (1) 1= e™T/12 T[> (1 — *"7)24 + € H is the Dedekind eta function and

satisfies n%4|12y = n?* for all v € SLo(Z).

Let X > 0 and Y be integers such that

(13) 202X +YQ = 1.

Then (; 72;;)“) € SLo(Z). We apply Lemma 5.5 with v = (é [B)) — (z 723’22)(4)’
x=24X,y=Y,m=1_(Q,t=p and r = —1. We then obtain

IFor given positive integers k, N and f € M (I'(N)) with the coefficients of the g-expansion of
fin Z[1/N, e*™*/N] we obtain by Theorem [3, VII, Cor. 3.13] that for v € SLa(Z) the coefficients
in the g-expansion of f|,y have the same property. In this case there exists also a power N7 of N
such that for v € SLa(Z) the coefficients in the g-expansion of N7 f|,~ are in Z[e2™/N] (see for
example [3, VII, Cor 3.11]). Consequently for a given prime p and a prime ideal 7 in Z[e2™*/N]
lying above p it makes sense to write f|py =0 (mod 7¥) if all the coefficients in the g-expansion
of f|rv lie in the ideal 7¥.
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7i(3—Q) 487i X (248 —1)

e om0 g(lQ, B, —1,y7)(—i(tr + YQ))?

mi 2mi(24tg—1)d>r e mind?r
de 1/2— TG 1)5 Hd)e b2, X 262 o3 p(n +t4)T(n,d)
d‘Q n=0

where t4 is the unique integer satisfying

(15) (245 — 1) = d*(24ty — 1) (mod ), 0<ty<{—1,
24£ Qd—1d—1
d)=|—=])(-1)"2 "=z,
s = (575) -1
T(n, d) = Z <24£s) o 5 {1e.a(24(En-+ta) 1) +5(245-1)}
0<s<Q/d Q/d

sed(s,Q/d)=1
and for s,d € Z such that d|Q and ged(s, @Q/d) = 1, the symbol ¢s 4 is any integer
satisfying s - ts9 = 1 (mod @Q/d). Next we observe that T'(n,Q) =1 for all n € N
because of (%) =1 for a € Z. Because of (9),(10) and (15) we have to = 0 and
consequently (14) transforms into

7i(3—Q) 487iX (248—1)

e 1moe @ (EQ,E,—LW)(—Z’(ET+YQ))1/2
1 _mi(Q-1) 1) _ "
:aQ 1/2 1 24 ZqéQ

(16)
1 2 m(d 1) 1 (2atg—1)a% 042
Z d~'/2e” Mm@ pltn + ta)T(n, d)
@ ndaro n=0
=02 F (g,
where m = (Q, ¢, = e and F(¢m) is a Laurent series in ¢, because of
d?(24ty — 1) + Q% = 0 (mod 24) because of Q2?,d?> =1 (mod 24)2. Next note that

F(¢™) has coefficients in Z[1/m, €2™/™] because for d|Q we have d'/2e™T =

+e(d)d/? where
[ 1, ifd=1 (mod4)
e(d) = { i, ifd=3 (mod 4)
and by [4, p. 87] we have

d1/2 Z 2miN%/d

which is obviously in Z[1/m, e*™/™]. Furthermore, if 7 is a prime ideal in Z[e%}
lying above ¢, then it makes sense to reduce the coefficients of F'(g,,) modulo 7
because all denominators in the coefficients of F'(¢,,) are invertible modulo m. We
observe that

(17) F(gm) #0  (mod )

because by (16) the order of F(gn) is 0 and the coefficient of the term constant
term is equal to ﬁe‘wg_l(Q) # 0 (mod ).

2In fact F(gm) is a Laurent series in g%, because of d2(24ty — 1) + Q2 = 0 (mod £) because of
(9)-(11) and (15).
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By (16), Definition 5.3 and Lemma 5.4 we have

o, (1-24%X .
Craplx (6 QY ) =g A (g,)

where x := 12(k — £@Q)). Then (17) implies
| (1 —2420X

k)
¢ ¢ Qv

105 ) #Z0 (mod m),
and by Theorem 4.7

(k)
GeQ,E #0 (mod ),

and consequently p(fQn + B) # 0 (mod ¢) for some n € N and since 8 € Pyg(B)
because of (11) and Definition 4.1 we obtain by Theorem 4.2 that p({Qn + 5) £ 0
(mod ¢) for some n € N which is a contradiction to our assumption (8).

5. A MODULAR SUBSTITUTION FORMULA

Definition 5.1. Let m be a positive integer and ¢ € Z. Then we define w(m,c) :=
(mg, m.) where

® Mg, m. are positive integers such that mom. = m;
e gcd(mg,c) =1;
e for every prime p we have p|m. implies p|c.

We also define the set
A(mg,me) := {(d,1,s) € Z3|d|mo,d > 0,0 < s < mg/d,ged(s,mo/d) =1,0 <1 < m.}.

Lemma 5.2. Let m be a positive integer coprime to 6 and a,c,mg, Me, 2,y € Z
such that

(i) ged(a,c) =1;
(ii) (mo,me) := m(m,c);
(iil) 24azc+mey = 1.

Then

(a) for any A\ € Z such that
(18) A= —ax+sd+Img (mod m)
for some (d,l, s) € A(mg, m.) we have
(19) ged(a + 24M¢,m) = d;

(b) for any A € Z there exists unique (d,l,s) € A(mg,m.) such that (18).
Consequently, we have a mapping A\ — (d,l,s) and the restriction of this
mapping to a complete set of representatives of the residue classes modulo
m is a bijection.
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Proof. (a): First we note that ged(a + 24Ae, m) = ged(a + 24A¢, mg) because of
(i)-(ii). Next we have

a+ 24X ¢ = a+ 24(—ax + sd)c = a(l — 24cx) + 24sde = amoy + 24sde (mod my),
which implies
ged(a + 24M¢, mo) = ged(24sde, mg) = dged(24se, mg/d) = d.
This proves (a).
(b): We need to show that for any A € Z there exist d|lmg with d > 0 and s € Z
with ged(s,mo/d) =1 and 0 < s < mg/d such that
A= —ax+sd (mod my).

We set d := ged(a+24A¢, mg) and s := W. Obviously we have ged(s, mo/d) =
1 and
—ax + sd = —ax + (a + 24\c)x = 24 cx = X (mod my).

It remains to show uniqueness. Let (dy, 11, $1), (da, l2, s2) € A(mg, m.) be such that

A= —ax + s1dy + limg = —ax + saday + lamg (mod m).
Then because of (19) we have d := d; = ds which implies that
(20) (s1—s2)d+ (I1 —la)mp =0 (mod m)
and consequently s; = so (mod mg/d). Because of s1,s2 € {0,...,mo/d — 1} we

have s; = s9 which together with (20) gives 1 =l (mod m).

The final fact that the association A — (d,l, s) indeed is a bijection modulo m is
just straight forward verification. O

Definition 5.3. For m a positive integer coprime to 6, t € {0,...,m — 1} and
r € Z. Then we define

1 2= 2miN(—24t—r) T+ 24\
t, = — n" , € H.
g(m,t,r,7) - Z ( - ) T

A proof of the following lemma can be found in [7, Lem. 1.12].

Lemma 5.4. Let m be a positive integer coprime to 6, t € {0,...,m — 1} and
r € Z. Then
g(m,t,r,7) 7q2§;fff Zpr (mn+t)q", T€eH, (¢=-e2T).

Lemma 5.5. Let m be a positive integer coprime to 6, t € {0,...,m — 1}, r € Z,
v = ( ) € SLy(Z) with ged(A,6) =1, A >0, C >0 and (mg, m¢) := w(m,C)
and assume that ma|C. For any integers s and d|mg such that ged(s,mo/d) = 1
let 15 q be any integer satisfying s-1s.q = 1 (mod mo/d). Let x,y, A’ be any integers
such that

(i) 242C+ymo =1 and x =0 (mod 24C), = < 0;
(i) AA’ =1 (mod 24C).



PROOF OF A CONJECTURE BY AHLGREN AND ONO

Define
(s, d) i T2t dD) o g ar L ogsip?)
m()/d
and o Ad
24 Cmd—1 Ad—1
d) = —— — ) (=1)" 2 Tz .
() <m0/d> (Cm0>( )
Then

wiAr(mC—3) 2miAx(24t4r)

e 12 e m g(m, t,r,y7)(=i(CT + D))~"/?

1 i Ar(d—1) s " omi(—24t—1)s
_ r/2 LU= er - —
—— S e @) S (mo/d> T

m
(21) d|mo 0<s<mq/d
ged(s,mq/d)

—1
mo 2mil(Amqy/d)?(—24t—r) . 7—’(3’ d) 4241
>< E e 'VYLC 77
m
1=0 c
and
miAr(mC—3) _ 2miAx(24t+r) ) B
e 12 e m g(m, t,r,y7)(—i(CT + D))~"/?
mAr(d 1) 27i(24t g +r)d? (r+24cD+moyBA’)
- E € dr/2£r( ) 24m
(22) d\mo

27ind? (14242 D)

X Z e mo pr(men +tq)T(n,d)

where ty is the unique integer satisfying

(23) A%(24t +7) = d*(24tg +7) (mod me)
and 0 <tg <me —1 and
24Cs\" _zmis/mo f, 04(nmetta)+r)+s(24t41)}
T(n,d) := () e~ mosa (tad o .
2, A

ged(s,mqg/d)=1

Proof. Proof of (21): By Lemma 5.2 and Definition we have
(24)
g(m’ t? r? ’YT)

Z Z mi:l 2mi(—Avtsdtimg)(—24t—r) <'y7' + 24(—Ax + sd + lm0)>
— e m ’]7 .
m

d\mo 0<s< ™ 201
ged(s,mg/d)=1

Next we note that for (d,l, s) € A(mg, m.) we have

(25) YT + 24 _ dr + (B +24\D)xy + 24mDy>\’
m m/d

where

(26) A= —Az + sd + Imy,

AT240C o5y .
My = ( S My*) and xy,y, are integers such that

(27) (A +240C)xx + 24mCyy = d.
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Newman [6] proved that for each v = (2 Z) € SLy(Z) with a,c > 0 and ged(a, 6) =

1 we have

(28) n(yr) = (—i(er + cl))1/2e(a,b7 e, dn(t), T€eH,
where

. E —’%‘l(c—b—S)
(29) e(a,b,c,d) : (a) e )

By (25) and (28) we obtain

(30)

" (W*ﬂf“) — (—id(CT + D))/

A+24 B+ 24)\D 24mD
XE(_|_d/\c,—24y)\,0m/d,x>\>n<d7-+( + )T\n/)dx/\_F mn y)\).

By (26) and (i) we have

(31)
A+240C A+ 24(—Ax + sd +1mo)C  A(1 — 24Cx) + 24Csd + 24lmoC
d N d N d
_ Aymg + 24C;d + 24lmoC _ Ay(;no +24(C's + ImoC/d),

which together with (29) implies that

A+24
€ (J’_d)\(j7 _24y)\7 Cm/d7 x)\)

=e(Aymo/d + 24(Cs + ImoC/d), —24yx, Cm/d, x)

_ Cm/d o T/ (G d—-3)
Aymg/d + 24(Cs + ImoC/d)

and by standard properties of the jacobi symbol

Cm/d
(Aymo/d +24(Cs + lmoC’/d)>
_(-1) Om/d—1 Aymgd=1 (Aymo/d +24(Cs + lmoC/d)>
Cm/d

_(_I)Cm/Qd—l Aymgd=1 (2403) <Aym0/d>
B mo/d Cme
_(_1)% Aymga=1 (24C's Aymod

N mo/d Cm,

_( 1)Cm/2d—l# 24C's Ad
a mo/d) \Cm.)’




PROOF OF A CONJECTURE BY AHLGREN AND ONO 11

because by (i) we have ymo =1 (mod 24C'). By the above calculation we have

A+ 240C
¢ d

:(_1)Cméd—1 Ad—1 24C's Ad o "iAﬁgzU/d(Cm/d—S)
mo/d Cmc

:(71)0711.21171% 2405 Ad 67%‘3‘1(0711(173)
mo/d Cmc

TiA(B—mC) mwiA(d—1) S
= 12 Z d
g (),

by using ymgo = 1 (mod 24) and d? = 1 (mod 24). By (30) and (32) and because
of n(1 + 24) = n(r) we obtain
T + 24)\> B

(-itcr + D)) (7L
FYSETTSTI <mj/d>’7 (dT + (BJ/EZL/\D);EA) |

Next we obtain a better expression for z. By (27):

A+240C
d

, —24y,,Cm/d, x)\>

(32)

7iA(mC —3)
e 12

(33)

zx =1 (mod mg/d)

and by (31):
A+ 240C

= =24Cs (mod mg/d)

which implies

24Csxzy =1 (mod my/d)
which together with (i) implies
(34) T\ =tsq (mod mg/d).
By (34) we conclude that

(35) T\ = Tis,q + vmg/d.
By (27), (35) and (i) we find
(36) A(xts g +vmo/d) = Avmg/d =d  (mod 24C)

because by assumption (i) we have = 0 (mod 24C). By (36), ¢ and (7i) we obtain
v=A'd*y (mod 24C),

which togeter with (35) implies

(37) xy =5 g+ A'ydmo  (mod 24moC/d)

Using the above formulas we compute (B + 24\D)x, modulo 24C'mg/d. By using
(37) and (26) we find

(B + 24\D)x)y
=(24DImgA'yd + BA'yd — 24AA’ Ddxy + 24Dsd* A’y + 24Dlxi, g)mo
+ Batsg — 24AD£C2LS’d + 24Ddxsts q
=(24DImgA’'yd + BA'yd + 24Dsd* A'y)mg + Bxis g — 24ADz? 14 4 + 24Ddxs1s 4
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because of z =0 (mod 24C) by (i)

=(24D%1d + BA'yd + 24D*sd*y)mq + Bais g — 24ADz” 14 g + 24Ddxs1 4

because of ymg =1 (mod 24C) by (i) and 24A’ = 24D (mod 24C') because of
AD - BC =1

24
=(24D%1d + BA'yd + 24D*sd*y)m¢ + 2(Bts.q — 24ADx15 4 + 24Dd)  (mod 7200

)

because of (i) and x =0 (mod 24C) by (i)

24m00)
d

=(24D?1d + BA'yd + 24D*sd*y)mg + x(—24x15 4 + 24Dd)  (mod

because of B —24ADx = B(1 —24Cx) — 242 = Bymg — 24« by (i) and because of
AD — BC =1.

Next note that if v; and v are integers such that vo = v1 + i(24meC/d) for some
integer 7, then

dr + vg dr +v1 . dr + vy
o(Tra) = (St mocim) = ().

because of n(7 + 24) = n(7) and m¢|C by assumption. Using this fact with v; =
(B+24AD)zy and vg = 24D?Id + BA'yd + 24D?sd*y)mg + x(—24xt5 4 + 24Dd) on
(33) we obtain

miA(mC— 24\
(7i(OT+D))71/2e A 3)77 <’YT+ >

m

_j1/2 miAG@-1) s dr + (B 4 24\D)xy
=i () (T

Y 7riA(4d—1) s
@ 4 T (mo/d)

drte(C2ea 2400 | (94D + BA'y + 24D sdy)d’

x1n
mc

miA(d—1 ! 24D?%d?
_ /2, TA )§(d)( s )n<7'(8,d)+ dl)

mo/d mo
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By (38) and (24)
BT (Li(Or + D)) 2g(my b A7)
me—1

Z Z Z 2mi(—Ax+sd+lmg)(—24t—r)

d|mo 0<s<m7071
ged(s,mqg/d)=1

miAr(d— " "(s,d) + 24D?d?l
Xdr/2€A‘idl)fr(d)( 5 ) " (T (s,d) + )

mo/d me
2miAz(24t+T) 1 mAr(d 1) 2mis(—24t—1)
=e m E d’l‘/2 E e m/d

d|m0 0<S<T—1

ged(s,mq/d)=1

(39)

mc

1, . r / 2 72
2mil(=24t=1) riAr(d—1) S T(s, d) + 24D=d=l
X E e‘m/mo e 4 é‘ (d) ( O/d> ,',]T < ( ) . ) )

=0

Summing in the last sum over any set of modulo m¢ representatives does not change
the value of the sum. In particular, we make the substitution I = A?(ymg/d)?l’ and
observe that D2d?A%(ymg/d)? = 1 (mod m¢) because of (i) and AD — BC = 1.
Thus we obtain (21).

Proof of (22): By (21) and Definition 5.3
(40)

miAr(mC—3) 2miAx(24t+r)

e 12 e m g(mv tv T, ’YT)(_Z(CT + D))_T/2
MO S e g Y <m/d> e gty 7 (s,d)

d|mg 0<s<mq/d
ged(s,mq/d)

By Lemma 5.4
2miT (24t +7) .
(41) g(me,te,r,7) =€ *mo Zp(mcn +tq)e*™™, T EeH.
n=0
By (41)

27”( 24t—r)s

Cooma g(mCatdarv T,(57d))

( s
0<<<m0/d mo/d

ged(s,mg/d)

s 2mi(—24t—r)s 2mit’(s,d) (24t g+7)
( ) m/d e Zdmo E p men + td) 2mit’(s,d)n
O<s<'m0/d

mo/d n=0
ged(s,mq/d)
dr+24x(—aLg d+dD)

2
2mi(—24t—1)s { mo/d
m/d e 24m e

+d2y(BA/+24sdD2)}(24td+7-)

o<b<m0/d (mo/d

ged(s,mq/d)
e [ dr424x(—zig g+dD) o 2
2 ————— 5@ T 7 4 42y (BA+24sdD n
X E p(men +tq)e { mo/d u )}

n=0
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[ dr424w(—wig g+dD) o , 5 }
opid LT s d TR L g2, (B A 4245dD 24t 41
( s )r 27i(—24t—7r)s l{ mo/d v )y (atatn)
— [ e m/d e 24m e
0<s<mg/d m()/d
ged(s,mq/d)
> gq LT 24z (—wes g +dD)
X g p(men +tg)e mo/d
n=0
St : 2 o2 /
2min(r+24eD)d?  2mird?(r424aD+mgyBA’) (24t 41)
= E p(mcn + td)e mo e 24m
n=0

2
—24220, 4 .
2mid —— 228 19443y D26 b (24t g+1) 2
2mi(—24t—1)s { mo/d 24w7t5 .4

T
s o
X § I e m/d e 2dmg e 2mi—Ta
mo/d

0<s<mq/d
ged(s,mqg/d)

27id? (4242 D+moyBA’) (24t 4+1) > 2min(r+24zD)d?
—e 24m E p(mcn-i—td)e mo
n=0
r .
> z : ( S ) e—Ti’;ld{Q:QLS’d((24td+r)+24nmc)+s(24t+r—(24td+r)d2D2ymo)}
0<s<mqg/d mo/d
ged(s,mqg/d)
27id? (r424x D+moyBA’) (24t 4 +r) > 2min(r+24xD)d>?
—=e 2dm E p(chH—td)e mo
n=0
s .
" Z ( s ) o~ B (w00,((24ta+7)+24nm o) +24Cs(24t+1)}
b
0<s<mq/d mo/d
ged(s,mqg/d)
=T(n,d)

by first substituting d?D?*ymq(24ty + r) = ymo(24t + r) (mod m) which follows
from (23) and AD — BC =1 and next substituting 1 — ymg = 24xC because of (7).
Next we exploit the identity,

T(n, d) _ Z (mj/d) e—f;;l’;{ms,d((24td+r)+24nmc)+24cs(24t+r)}

0<s<mg/d
ged(s,mqg/d)=1

Z 24Cs\" 67%{std((24td+r)+24nmc)+s(24t+1”)}
mo/d

)
0<s<mg/d
ged(s,mqp/d)=1

because s — xs is a bijection modulo mg/d together with 24zC =1 (mod mg/d).

Finally substituting in (40) we obtain (22). O

Lemma 5.6. Let Q be a positive integer, v € 7 with v # 0 and p > 5 a prime. Let
b be mazimal such that p|v. Then for any integer r > b+ 1 and | € Z there exists
ar; € Z with ged(ar,;,6pQ) =1 such that

aiv=v+ 241p"T1Q  (mod p Q).

Proof. Fix | € 7Z. Then the statement holds for » = b+ 1 with a,; = 1. Next
assume that the statement is true for r = R > b+ 1 and prove it for r = R + 1.
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That is there exists ar; such that
(42) a?ﬂv =v+24p""Q (mod pfQ).

We make the “ansatz” art1,; :=ar,; + 24pT=tQx. Because of (42) it makes sense
to define s to be the integer satisfying

(43) a%ylv — v = 241p"TQ = pQ.

Then we need to show that there exists x such that

(apg+ 24pT=0Qux)%w = v + 241p"T1Q.

We have

(a%yl + 48ap 12QpT T + 24%p*F20 Q22 — v — 241p" T Q
E(a?u + 48aR,leprb)v — v —241p"TQ

because of 24222Q%*p*~2by = 0 (mod p#*+1Q) becuase of v = 0 (mod p®) and
R>b+1

548aR,lpR*bev +5pQ =0 (mod p*ttQ),

because of (43).

This implies

48aR,lxvp7b +s=0 (mod p),

which is solvable for x because of gcd(48aR,lep’b,p) = 1. Hence the proof is
finished by the induction principle. O

(1]
2]

3]

(4]
(5]
[6]

[7]
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