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Abstract. In 2007, Andrews and Paule introduced the family of functions ∆k(n) which
enumerate the number of broken k–diamond partitions for a fixed positive integer k. Since
then, numerous mathematicians have considered partitions congruences satisfied by ∆k(n)
for small values of k. In this work, we focus our attention on the function ∆2(n) and explicitly
identify infinitely many Ramanujan–like congruences modulo 3 which are satisfied by this
function.

1. Introduction

Broken k-diamond partitions were introduced in 2007 by Andrews and Paule [2]. These

are constructed in such a way that the generating functions of their counting sequences

(∆k(n))n≥0 are closely related to modular forms. Namely,
∞∑
n=0

∆k(n)qn =
∞∏
n=1

(1− q2n)(1− q(2k+1)n)

(1− qn)3(1− q(4k+2)n)

= q(k+1)/12η(2τ)η((2k + 1)τ)

η(τ)3η((4k + 2)τ)
, k ≥ 1,

where we recall the Dedekind eta function

η(τ) := q
1
24

∞∏
n=1

(1− qn) (q = e2πiτ ).

In their original work, Andrews and Paule proved that, for all n ≥ 0,

(1.1) ∆1(2n+ 1) ≡ 0 (mod 3).

They also conjectured a few other congruences modulo 2 satisfied by certain families of

broken k-diamond partitions.

Since then, a number of authors [3, 4, 5, 7, 8, 10] have provided proofs of additional

congruences satisfied by broken k-diamond partitions. However, most of these works have

focused on congruences modulo primes other than 3; the exceptions to this are Hirschhorn
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and Sellers [4] who re-proved (1.1) by finding an explicit representation of the generating

function for ∆1(2n+ 1) which implied (1.1) and Mortenson [5] who developed a statistic on

the partitions enumerated by ∆1(2n+ 1) which naturally breaks these partitions into three

subsets of equal size (thus proving (1.1) combinatorially).

Our overarching goal in this work is to focus attention on the function ∆2(n) which

enumerates broken 2–diamond partitions and to prove infinitely many Ramanujan–like con-

gruences modulo 3 which are satisfied by this function. In order to do so, we will prove the

following congruence result related to the generating function for ∆2(3n+ 1) :

Theorem 1.1.
∞∑
n=0

∆2(3n+ 1)qn ≡ 2q
∞∏
n=1

(1− q10n)4

(1− q5n)2
(mod 3)

We will prove this theorem in the next section. Before doing so, we make a number of

important remarks.

First, note that the product
∞∏
n=1

(1− q10n)4

(1− q5n)2

which appears in the result in Theorem 1.1 is a function of q5. Thus, when written as a

power series in q,

2q
∞∏
n=1

(1− q10n)4

(1− q5n)2

will only contain powers of q raised to powers of the form 5n+1. Therefore, when we replace

n on the left–hand side of the equation in Theorem 1.1 by 5n, 5n+ 2, 5n+ 3 and 5n+ 4, we

immediately have the following congruences:

Corollary 1.2. For all n ≥ 0,

∆2(15n+ 1) ≡ 0 (mod 3),

∆2(15n+ 7) ≡ 0 (mod 3),

∆2(15n+ 10) ≡ 0 (mod 3), and

∆2(15n+ 13) ≡ 0 (mod 3)

This is a gratifying result, but much more can be said. Note that Theorem 1.1 implies

that

(1.2)
∞∑
n=0

∆2(3n+ 1)qn ≡ 2q

(
∞∑
n=0

q5n(n+1)/2

)2

(mod 3)

thanks to a well–known result of Gauss; see Andrews [1, Corollary 2.10] for more information.

Thus, (1.2) implies that

∆2(3n+ 1) ≡ 2r(n) (mod 3)
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where r(n) is the number of representations of n as

n = 1 +
5j(j + 1)

2
+

5k(k + 1)

2
for nonnegative integers j and k. By completing the square, we see that this is the same as

counting the number of representations of 40n+ 10 as

(1.3) 40n+ 10 = (5(2j + 1))2 + (5(2k + 1))2.

We are then reminded of the following theorem attributed to Fermat:

Theorem 1.3. A positive integer N is representable as a sum of two squares if and only

if in the prime factorization of N, each prime p ≡ 3 (mod 4) appears an even number of

times.

With these comments in mind, we can now prove the following corollary to Theorem 1.1.

Corollary 1.4. Let p ≡ 3 (mod 4) be prime and let r = 3
4
(p(4k+ 3)− 1) + 1 where 0 ≤ k ≤

p− 1 and p 6= 4k + 3. Then, for all n ≥ 0, ∆2(3p
2n+ r) ≡ 0 (mod 3).

Remark 1.5. Two remarks are in order here. First, note that exactly one of the values of k,

0 ≤ k ≤ p− 1, is the value such that p = 4k + 3. This is the value of k which is excluded in

the statement of Corollary 1.4. Moreover, for every other value of k, 0 ≤ k ≤ p−1, we know

p - 4k+ 3. Secondly, notice that Corollary 1.4 explicitly provides p− 1 different Ramanujan–

like congruences modulo 3 which are satisfied by ∆2 for each prime p ≡ 3 (mod 4). Thus,

we can explicitly state infinitely many different congruences satisfied by ∆2 modulo 3.

Proof. (of Corollary 1.4) Note that

∆2

(
3p2n+

3

4
(p(4k + 3)− 1) + 1

)
= ∆2

(
3(p2n+

1

4
(p(4k + 3)− 1)) + 1

)
.

Thanks to (1.3), we see that we want to consider the number of ways to represent

40

(
p2n+

1

4
(p(4k + 3)− 1)

)
+ 10

as a sum of two squares. However, notice that

40

(
p2n+

1

4
(p(4k + 3)− 1)

)
+ 10 = 40p2n+ 10p(4k + 3)

= p(40pn+ 10(4k + 3)).

From the way in which we chose the values of k, we know that p - 4k + 3. And, of course,

p - 10 since p ≡ 3 (mod 4). Thus, since p | 40pn, we see that p - 40pn + 10(4k + 3).

Therefore, the prime p appears in the factorization of 40(p2n+ 1
4
(p(4k+ 3)−1)) + 10 exactly

one time (which is odd). By Theorem 1.3, we know that the number of ways to represent

40
(
p2n+ 1

4
(p(4k + 3)− 1)

)
+ 10 as a sum of two squares is zero. Therefore, for all n ≥ 0,

∆2

(
3p2n+

3

4
(p(4k + 3)− 1) + 1

)
≡ 0 (mod 3).
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Hence, for example, we see that, for all n ≥ 0,

∆2(27n+ 16) ≡ 0 (mod 3),

∆2(27n+ 25) ≡ 0 (mod 3),

∆2(147n+ 16) ≡ 0 (mod 3),

∆2(147n+ 58) ≡ 0 (mod 3),

∆2(147n+ 79) ≡ 0 (mod 3),

∆2(147n+ 100) ≡ 0 (mod 3),

∆2(147n+ 121) ≡ 0 (mod 3),

∆2(147n+ 142) ≡ 0 (mod 3),

and, just for fun,

∆2(3 · (100000000003)2n+ 225000000007) ≡ 0 (mod 3)

along with 100000000001 other such congruences.

2. Proof of Theorem 1.1

We define
∞∑
n=0

a(n)qn :=
∞∏
n=1

(1− q2n)(1− q5n)(1− q10n)2

(1− q3n)(1− q30n)
.

Note that
∞∏
n=1

1− q30n

(1− q10n)3
×
∞∏
n=1

1− q3n

(1− qn)3
×
∞∑
n=0

a(n)qn =
∞∑
n=0

∆2(n)qn.

This implies that ∆2(n) ≡ a(n) (mod 3) for all n ≥ 0. We note that

q5

∞∏
n=1

(1− q30n)2(1− q15n)2(1− q3n)12

∞∑
n=1

a(n)qn

=q5

∞∏
n=1

(1− q2n)(1− q3n)11(1− q5n)(1− q10n)2(1− q15n)2(1− q30n)

=η(2τ)η11(3τ)η(5τ)η2(10τ)η2(15τ)η(30τ).
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We also note that

U3(η(2τ)η11(3τ)η(5τ)η2(10τ)η2(15τ)η(30τ))

=U3

(
q5

∞∏
n=1

(1− q30n)2(1− q15n)2(1− q3n)12

∞∑
n=1

a(n)qn
)

=
∞∏
n=1

(1− q10n)2(1− q5n)2(1− qn)12U3

(
q5

∞∑
n=0

a(n)qn
)

=
∞∏
n=1

(1− q10n)2(1− q5n)2(1− qn)12

∞∑
n=0

a(3n− 5)qn

=q7

∞∏
n=1

(1− q10n)2(1− q5n)2(1− qn)12

∞∑
n=0

a(3n+ 1)qn

where U3 is the usual operator on power series defined by

U3

(∑
n≥0

b(n)qn

)
=
∑
n≥0

b(3n)qn.

Our goal now is to prove that

(2.1)
∞∑
n=0

a(3n+ 1)qn ≡ 2q
∞∏
n=1

(1− q10n)4

(1− q5n)2
(mod 3)

or, equivalently,

U3(η(2τ)η11(3τ)η(5τ)η2(10τ)η2(15τ)η(30τ))

=q2

∞∏
n=1

(1− q10n)2(1− q5n)2(1− qn)12

∞∑
n=0

a(3n+ 1)qn

≡q2

∞∏
n=1

(1− q10n)2(1− q5n)2(1− qn)12 × 2q
∞∏
n=1

(1− q10n)4

(1− q5n)2
(mod 3).

Note that

q2

∞∏
n=1

(1− q10n)2(1− q5n)2(1− qn)12 × 2q
∞∏
n=1

(1− q10n)4

(1− q5n)2
= 2η(10τ)6η12(τ).

Thus, we want to prove

U3(η(2τ)η11(3τ)η(5τ)η2(10τ)η2(15τ)η(30τ)) ≡ 2η(10τ)6η12(τ) (mod 3).

As in [10], we use [6, Theorem 1.64] to find that η(2τ)η11(3τ)η(5τ)η2(10τ)η2(15τ)η(30τ)

is a modular form of weight 9 for the group Γ0(360) with character χ(d) :=
(−3
d

)
. This

implies U3(η(2τ)η11(3τ)η(5τ)η2(10τ)η2(15τ)η(30τ)) is also a modular form of weight 9 for

the group Γ0(360) with character χ(d) :=
(−3
d

)
. Again using [6, Theorem 1.64] we find that

η(10τ)6η12(τ) is a modular form of weight 9 for the group Γ0(360) with character
(−1
d

)
.

Therefore,

(2.2)
{
U3(η(2τ)η11(3τ)η(5τ)η2(10τ)η2(15τ)η(30τ))

}2 −
{
η(10τ)6η12(τ)

}2
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is a modular form of weight 18 for the group Γ0(360). Using Sturm’s criterion [9] we see that

we need to check that 18
12

[SL2(Z) : Γ0(360)]+1 = 18
12
·360(1+1/2)(1+1/3)(1+1/5)+1 = 1297

coefficients are congruent to 0 modulo 3 in (2.2) in order to prove that the modular form in

(2.2) is congruent to 0 modulo 3. We have checked that this is the case using MAPLE.

Note that (2.2) is of the form X2 − Y 2 = (X − Y )(X + Y ), where

X := U3(η(2τ)η11(3τ)η(5τ)η2(10τ)η2(15τ)η(30τ))

and

Y := η(10τ)6η12(τ).

By coefficient comparison we easily find that X−Y 6≡ 0 (mod 3). Hence X+Y ≡ 0 (mod 3)

and this implies X ≡ 2Y (mod 3). This proves (2.1), and because a(n) ≡ ∆2(n) (mod 3)

for all n ≥ 0, this proves Theorem 1.1. �

3. Concluding Remarks

We close with two comments. First, we note that the following congruence properties

(which are similar to the result given in Theorem 1.1) can also be proven using our techniques:

∞∑
n=0

∆2(3n)qn ≡
∞∏
n=1

(1− q2n)6(1− q5n)2

(1− qn)4(1− q10n)2
(mod 3)

and
∞∑
n=0

∆2(3n+ 2)qn ≡ 2
∞∏
n=1

(1− qn)(1− q5n)(1− q10n)

(1− q2n)
(mod 3)

Unfortunately, these do not appear to readily imply any particular Ramanujan–like congru-

ences modulo 3 for broken 2–diamond partitions.

Secondly, it is a straightforward matter to prove that, for all n ≥ 0,

∆2(27n+ 7) ≡ ∆2(3n+ 1) (mod 3),

a truly satisfying “internal” congruence because it gives us the ability to generate infinitely

many non–nested arithmetic progressions which yield congruences modulo 3 for broken 2–

diamond partitions.
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