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We present a fast method for the wavefront reconstruction from pyramid wavefront sensor (P-WFS)
measurements. The method is based on an analytical relation between pyramid and Shack–Hartmann
sensor (SH-WFS) data. The algorithm consists of two steps—a transformation of the P-WFS data to SH
data, followed by the application of cumulative reconstructor with domain decomposition, a wavefront
reconstructor from SH-WFS measurements. The closed loop simulations confirm that our method pro-
vides the same quality as the standard matrix vector multiplication method. A complexity analysis as
well as speed tests confirm that the method is very fast. Thus, the method can be used on extremely large
telescopes, e.g., for eXtreme adaptive optics systems. © 2013 Optical Society of America
OCIS codes: (000.3860) Mathematical methods in physics; (010.7350) Wave-front sensing;

(110.1080) Active or adaptive optics; (350.1260) Astronomical optics.
http://dx.doi.org/10.1364/AO.52.002640

1. Introduction

Over the past decade, important scientific results
were obtained based on observations with 8–10 m
class ground-based optical telescopes, equipped with
adaptive optics (AO) systems. AO systems compen-
sate the wavefront perturbations caused by the
atmospheric turbulence by using deformable mirrors
(DMs). In order to push the limits of astronomical
observations further, a new generation of extremely
large telescopes (ELTs) with primary mirrors over
30 m is currently under development. Such tele-
scopes will allow to observe fainter stars (i.e., will
possess an increased sensitivity) and to achieve
wide-field images with higher contrast as well as
better angular and spatial resolutions.

The direct imaging of extra-solar planets is one of
the most challenging fields in modern astronomy be-
cause of the huge contrast between the brightness of

the hosting star and of the orbiting planet. For high-
contrast imaging at very small angular separations,
dedicated exoplanet finding instruments are cur-
rently under development for ELTs, e.g., EPICS on
the European ELT (E-ELT) [1]. Such instruments
will include an eXtreme AO (XAO) system, which
is a single conjugate AO (SCAO) system with a very
high number of actuators.

A typical AO system consists of three main compo-
nents: a wavefront sensor (WFS) that measures in-
tensity changes due to the wavefront deformations
caused by atmospheric turbulence; a control algo-
rithm that relates the sensor data with the corre-
sponding wavefront shape; and a DM that
compensates for the distortions in real time. The
classical control approach, known as matrix vector
multiplication (MVM), is based on the interaction
matrix that maps the mirror commands to sensor
measurements. The mirror commands are computed
by multiplying the inverse of the interaction matrix
(called the control matrix) with a vector containing
the measured sensor data [2]. The MVM algorithm
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has a complexity of O�n2�, where n is the number of
active DM actuators. In the ELT setting, a huge num-
ber (104–105) of actuators need to be controlled at a
frequency of about 3 kHz, which makes the applica-
tion of the MVM method on available real time
computer systems rather difficult. Thus, the develop-
ment of new fast control algorithms is a crucial
task for the future successful operation of ELT
instruments.

Control (or wavefront reconstruction) algorithms
depend on the sensor type that is used in the AO sys-
tem. Instead of the widely used Shack–Hartmann
sensor (SH-WFS), for XAO systems a pyramid wave-
front sensor (P-WFS) is suggested due to its in-
creased sensitivity and adjustable pupil sampling.
Since the pyramid sensor was introduced by
R. Ragazzoni in 1990s [3,4], theoretical studies
and numerical simulations have shown the enhanced
and adjustable sensitivity as well as a better closed
loop performance compared to the SH sensor [5–7].
The advantages of the pyramid over SH sensor were
successfully demonstrated on sky [8,9].

The understanding of the physics behind the pyra-
mid sensor has changed over time. In the beginning,
the P-WFS was introduced with dynamic modulation
of the incoming beam, and described within the geo-
metric optics framework as a slope sensor similar to
SH, but with a higher sensitivity [3,5]. Later, the role
of the beam modulation was questioned and the
pyramid sensor without modulation was studied as
well [4]. According to the Fourier optics-based
analytical model derived in [10], the nonmodulated
P-WFS measures a nonlinear combination of one-
dimensional and two-dimensional Hilbert trans-
forms of the incoming light. Then, it was recognized
that the dynamic modulation of the beam allows to
linearize the sensor and to increase its dynamic
range [11]. Taking modulation into account within
the Fourier optics framework complicates the
nonlinear forward model even more. However, a lin-
earization of the model is possible under certain sim-
plifying assumptions [11,12]. Finally, it was shown
that the modulated pyramid sensor measures both
the slope and the Hilbert transform of the wavefront,
depending on the frequency range and the amount of
modulation [11].

There exist already several methods for wavefront
reconstruction from P-WFS data. The standard
MVM algorithm can handle both the nonmodulated
and modulated sensor data, but is too time consum-
ing for the XAO setting. As the interaction matrix is
nonsparse, the complexity O�n2� of the method can-
not be reduced with sparse matrix techniques.

The other two algorithms, which are computation-
ally cheaper than the MVM, are based on approxi-
mating the pyramid sensor with two orthogonal
roof sensors (R-WFS). For the nonmodulated sensor,
the reconstruction method presented in [13] is based
on computing the inverse Hilbert transform of the
sensor data. It requires the application of one-
dimensional Fourier transforms; due to the fast

Fourier transform (FFT), its complexity scales
as O�n log n�.

Another Fourier transform-based reconstructor
(FTR) with the complexity O�n log n� was developed
for the modulated pyramid sensor [14]. However, this
method is based on the forward model derived within
the geometrical optics framework, which is valid only
for large modulations [11]. Simulations of an 8 m
telescope have shown that the FTR algorithm pro-
vides slightly lower quality than the MVM method,
which may be nonnegligible in the ELT setting [14].
Therefore, so far there exists no algorithm able to
handle both the nonmodulated and modulated
pyramid sensor data within the XAO real time
requirements.

In this paper we present a new method that satis-
fies both conditions. Our approach is based on the
relation between the pyramid and SH sensor in
the Fourier domain. Using this relation, we derive
a preprocessing step that transforms the pyramid
data into SH-like data, and then apply the cumula-
tive reconstructor with domain decomposition
(CuReD) developed for SH sensor [15–17]. Our two-
step method is called P-CuReD, which stands both
for the preprocessed CuReD and the CuReD for pyra-
mid WFS. The closed loop simulation results show
that our method provides the same quality as the
MVM method but is much faster. Both the data pre-
processing step and the application of the CuReD are
computationally very efficient. The whole algorithm
has a linear complexity, is highly parallelizable and
pipelinable, which makes the method attractive for
XAO applications.

In Section 2 we shortly explain the physics of the
pyramid sensor and summarize the existing theoreti-
cal models. The necessary details like the roof sensor
approximation, closed loop linearization, and beam
modulation are described therein as well. Section 3
provides the theoretical background of our method,
which consists of two steps—the data preprocessing
and the reconstruction step. Details concerning the
theory and practical implementation of the data pre-
processing step are provided in Section 4. The second
component of our approach, the CuReD method, is
described in Section 5. In Section 6 the closed loop
performance of our algorithm is compared to the
MVM results. Properties of the P-CuReD method
with respect to noise propagation are discussed in
Section 7. The computational complexity and the
speed of our method are estimated in Section 8.

2. Pyramid WFS

As one can see from Fig. 1, themain component of the
pyramid sensor is a four-sided glass pyramidal prism
placed in the focal plane of the telescope pupil. The
incoming light is focused by the telescope onto the
prism apex. The four facets of the pyramid split
the incoming light in four beams, propagating in
slightly different directions. A relay lens placed be-
hind the prism re-images the four beams, allowing
adjustable sampling of the four different images Ii,
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i � f1; 2; 3; 4g, of the aperture on the CCD camera.
The two measurement sets Sx, Sy are obtained from
the four intensity patterns [11,12] as

Sx�x; y� �
�I1�x; y�� I2�x;y��− �I3�x; y�� I4�x; y��

I0
; (1)

Sy�x; y� �
�I1�x; y�� I4�x;y��− �I2�x; y�� I3�x; y��

I0
; (2)

where I0 is the average intensity per subaperture.
Dynamic modulation of the incoming beam allows
to increase the linear range of the pyramid sensor
[11] and is also used to adjust its sensitivity. The
modulation can be accomplished in several ways:
either by oscillating the pyramid itself [3], with a
steering mirror [12,18] or by using a static diffusive
optical element [18]. Two modulation scenarios—
linear and circular—are usually considered in the lit-
erature. The circular modulation path of the focused
beam on the pyramid apex is shown with a dashed
circle in Fig. 1.

The full Fourier optics-based forward model of the
nonmodulated P-WFS, derived in [10], is mathemati-
cally difficult to invert. The sensor measures a com-
bination of one-dimensional and two-dimensional
Hilbert transforms of the nonlinear functions of the
phase [10]. For the modulated pyramid sensor, the
theoretical model becomes even more complicated.

However, several assumptions allow to simplify the
forward model significantly. In the remainder of
the section we will focus on these assumptions and
the corresponding approximate models.

A. Roof WFS Approximation

The theoretical model of the P-WFS becomes simpler
when the four-sided pyramidal prism is substituted
with two orthogonally placed two-sided roof prisms
[11–13]. Each roof provides two different images of
the aperture on the detector. The two data sets Sx,
Sy are obtained as the difference between the two in-
tensity patterns. Due to the physical decoupling of
the prisms and their orthogonal placement with re-
spect to each other, the two signal sets Sx and Sy are
independent and contain information about the
phase ϕ only in x- and only in y-direction correspond-
ingly. Under the roof assumption, the nonmodulated
P-WFS signal Sn

x is approximated as

Sn
x �x; y� �

1
π

Z �B�y�

−B�y�

sin�ϕ�x0; y� − ϕ�x; y��
x − x0

dx0; (3)

where B�y� denotes the boundary of the pupil images
for a fixed y. Due to the symmetry of the two identical
roofs, the measurements Sy are similar. Thus we will
consider only one set of measurements Sx, but keep
in mind that all the theory works in the same way for
the Sy signal.

For a linear modulation with amplitude α �
�bλ∕D� with a positive integer b, the pyramid sensor
signal Sl

x is approximated [11,12] by

Sl
x�x; y� �

1
π

Z �B�y�

−B�y�

sin�ϕ�x0; y� − ϕ�x; y��
x − x0

× sinc�αλ�x − x0��dx0; (4)

where αλ � �2πα∕λ�. Note that we keep the notations
as in [11], but change the sign in the denominator.

For a circular modulation of the same amplitude α,
the P-WFS measurement Sc

x is given [12] as

Sc
x�x; y� �

1
π

Z �B�y�

−B�y�

sin�ϕ�x0; y� − ϕ�x; y��
x − x0

× J0�αλ�x − x0��dx0; (5)

where J0 denotes the zero-order Bessel function of
the first kind.

B. Closed Loop Approximation

Further simplification of the theoretical models is
possible under the two additional assumptions of
an infinite telescope size B�y� → ∞ and small wave-
front distortions ϕ ≪ 1 (as expected in the closed
loop). As for a small phase ϕ holds sin ϕ≃ ϕ, these
assumptions allow to approximate the pyramid sen-
sor measurements with linearized models. For the
nonmodulated case, the measurements Sn

x are given
as the Hilbert transform of the phase ϕ

Fig. 1. Scheme of an optical setup of a pyramidWFS. The circular
modulation path is shown in the dashed line.
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Sn
x �x; y� � −ϕ�x; y� � 1

πx
� −Hϕ: (6)

Here, � denotes the convolution operator. For linear
modulation, the P-WFS measurements Sl

x are given
[11] as

Sl
x�x; y� � −ϕ�x; y� � sinc�αλx�

πx
: (7)

For circular modulation the P-WFS measurements
Sc
x are approximated by

Sc
x�x; y� � −ϕ�x; y� � J0�αλx�

πx
: (8)

The wavefront reconstruction method presented in
this paper will be based on these linearized models.

3. Data Preprocessing: Transformation to SH Data

Our wavefront reconstruction approach consists of
two steps: first, we transform the P-WFS measure-
ments into SH-like data using the analytical Fourier
domain filters corresponding to these two sensors;
then, to the modified data we apply any of the
existing algorithms for wavefront reconstruction
from the SH data. The chosen algorithm for the sec-
ond step is the CuReD, see Section 5. In this section
we present the theoretical background for the data
preprocessing step.

Due to the symmetry between the measurements
Sx and Sy, we present the theory for the generalized
measurements, which we denote by Spyr. According to
[11], the linearized pyramid sensor with linear
modulation behaves in the Fourier domain as

�FSl
pyr��u� � �Fϕ��u� · glpyr�u� · sinc�du� (9)

with the filter glpyr derived from Eq. (7) as

glpyr�u� �
�
i sgn�u�; juj > umod;
iu∕umod; juj ≤ umod;

(10)

where u denotes the spatial frequency sampled in the
interval �−ucut; ucut� with sampling size ustep :� 1∕D,
ucut � 1∕�2d� is the cutoff frequency, D is the tele-
scope diameter, d � D∕ �����

ns
p

is the sensor subaperture
size defined by the number ns of subapertures, the
parameter umod > 0 is defined as umod � α∕λ � b∕D,
and b is a positive integer.

The S–H sensor is described [11] in the Fourier
domain as

�FSsh��u� � �Fϕ��u� · gsh�u� · sinc�du� (11)

with the filter function gsh given as

gsh�u� � 2iπdu: (12)

For pyramid sensor without and with circular
modulation, the Fourier domain relation (9) holds

with different filter functions, gnpyr and gcpyr corre-
spondingly. In the nonmodulated case, the Fourier
domain filter gnpyr is derived from Eq. (6) as

gnpyr�u� � i sgn�u�; ∀ u ∈ �−ucut; ucut�: (13)

And in the circular modulation case, the Fourier
filter gcpyr is derived from Eq. (8) (see Appendix A) as

gcpyr�u� �
�

i sgn�u�; juj > umod;
2i
π arcsin�u∕umod�; juj ≤ umod:

(14)

Therefore, for any modulation scenario, we can
derive a Fourier domain relation between the two
sensors as

�FSsh��u� � �FSpyr��u� · gsh∕pyr�u�; (15)

where the SH to pyramid data transmission filter
gsh∕pyr is defined as

gsh∕pyr�u� :�
�FSsh��u�
�FSpyr��u�

� gsh�u�
gpyr�u�

: (16)

According to the Fourier convolution theorem, we
derive the corresponding relation between the two
sensors in the space domain as

Ssh�x� �
1������
2π

p Spyr�x� � psh∕pyr�x�; (17)

where the kernel psh∕pyr�x� is obtained by computing
the inverse Fourier transform (IFT) of the SH to
pyramid data transmission filter gsh∕pyr as

psh∕pyr�x� :� �F−1gsh∕pyr��x�: (18)

Hence, the data preprocessing step consists in the
row-wise convolution of the pyramid sensor data
Sx with the one-dimensional kernel psh∕pyr, and the
column-wise convolution of Sy with the same kernel.
Theoretical details about the computation of the ker-
nel psh∕pyr�x� as well as its practical implementation
are given in Section 4.

4. Space Domain Kernel

Based on the Fourier domain filter functions gn;l;cpyr and
gsh introduced above, in this section we first derive
the three SH to pyramid data transmission filters
gn;l;csh∕pyr, and then compute the corresponding space

domain kernels pn;l;c
sh∕pyr.

The SH/pyramid transmission filter gnsh∕pyr in the
nonmodulated case is given as

gnsh∕pyr�u� � 2πdu sgn�u�; ∀ u ∈ �−ucut; ucut� (19)

with
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lim
u→0

gnsh∕pyr�u� � lim
u→0

gsh�u�
gnpyr�u�

� lim
u→0

2iπdu
i sgn�u�

� lim
u→0

2iπdjujsgn�u�
i sgn�u� � lim

u→0
2iπdjuj � 0:

In the linear modulation case, the transmission
filter glsh∕pyr is

glsh∕pyr�u� �
�
2πdu sgn�u�; juj > umod;
2πdumod; juj ≤ umod;

(20)

with

lim
u→0

glsh∕pyr�u� � lim
u→0

gsh�u�
glpyr�u�

� lim
u→0

2iπduumod

iu

� 2πdumod:

And in the circular modulation case, the transmis-
sion filter gcsh∕pyr equals

gcsh∕pyr�u� �
�
2πdu sgn�u�; juj > umod;

π2du
arcsin�u∕umod� ; juj ≤ umod;

(21)

where with L’Hôpital rule we obtain

lim
u→0

gcsh∕pyr�u� � lim
u→0

gsh�u�
gcpyr�u�

� lim
u→0

2iπ2du
2i arcsin�u∕umod�

� lim
u→0

�π2du�0u
�arcsin�u∕umod��0u

� lim
u→0

π2d
���������������������
u2
mod − u2

q
� π2dumod:

Figure 2 shows the three transmission filters
gn;l;msh∕pyr corresponding to the following XAO settings:
telescope diameter D � 42 m, ns � 200 × 200 sub-
apertures, modulation amplitude (where applicable)
α � 4λ∕D.

The space domain kernel pn
sh∕pyr corresponding

to the nonmodulated case is equal, as shown in
Appendix B, to

pn
sh∕pyr�x� � 4πdu2

cut sinc�2xucut�
− 2πdu2

cut sinc
2�xucut�: (22)

In the linear modulation case, as shown in
Appendix C, the space domain kernel pl

sh∕pyr equals

pl
sh∕pyr�x� � 4πdu2

cut sinc�2xucut�
� 2πdu2

mod sinc
2�xumod�

− 2πdu2
cut sinc

2�xucut�: (23)

Figure 3 shows the analytically computed space
domain kernel pl

sh∕pyr�x�, x ∈ Ω � �−D∕2; D∕2�

corresponding to the modulation amplitude
α � 4λ∕D. For circular modulation the analytical ex-
pression for pc

sh∕pyr is not available, however it can be
computed numerically by using the FFT.

As the sensor measurements Sx�x; ·� depend on the
discretized space variable x ∈ Ω̄ � �−D∕2; D∕2�,
where the domain Ω̄ is sampled with the step size
d, we need to find a discrete representation of the
kernels pn;l

sh∕pyr that would fit the sensor data. Several
possibilities are available. First of all, we can discre-
tize the kernels pn;l

sh∕pyr by averaging the kernel
values over the subapertures. Another way to get
the discretized kernels is to use the discrete domain

Fig. 2. SH to pyramid data transmission filters gn;l;msh∕pyr in the
Fourier domain corresponding to the following AO system param-
eters: telescope diameter D � 42 m, number of WFS subapertures
n � 200, modulation amplitude (where applicable) 4λ∕D. The
difference between the three filters is only in the low frequency
domain.

Fig. 3. Analytical space domain kernel pl
sh∕pyr corresponding to

the following AO system parameters: telescope diameter
D � 42 m, number of WFS subapertures ns � 200 × 200, linear
modulation with amplitude 4λ∕D.
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Ω̄ when computing the analytical expressions
(22,23). Finally, the kernels pn;l;c

sh∕pyr can be computed
numerically by using the FFT routine.

The three discretization approaches are compared
in Fig. 4 for the space domain kernel pl

sh∕pyr corre-
sponding to linear modulation with amplitude
α � 4λ∕D. As one can see, the last two approaches
lead to the identical result, and the first approach
gives a similar result.

It is important to note that for the small modula-
tion amplitude 4λ∕D, the numerically computed ker-
nels pl

sh∕pyr and pc
sh∕pyr, corresponding to linear and

circular modulation, practically coincide. The differ-
ence between the two kernels is of the order of 10−3,
hence negligible for our needs. However, for larger
modulation amplitudes the difference between
pl
sh∕pyr and pc

sh∕pyr increases.
The quality test results presented in Section 6

were obtained with the kernels pn;c
sh∕pyr computed

numerically with the FFT routine. Note that the dis-
cretized kernels pn;c

sh∕pyr have very few nonzero values.
Therefore, the data preprocessing step that consists
in convolving the WFS measurements row-wise and
column-wise with the kernels pn;c

sh∕pyr is very efficient
from the computational point of view (for details see
Section 8).

5. Wavefront Reconstruction from Preprocessed Data:
CuReD

The data preprocessing step transforms the
pyramid sensor measurements into SH like data.
Therefore, we need to apply an algorithm used for
reconstruction of the wavefront from these measure-
ments. According to the mathematical model, the SH

sensor measures wavefront gradients, averaged over
the subapertures.

There are numerous algorithms that reconstruct
the wavefront from these measurements and all of
them could be used in combination with the prepro-
cessing step to solve the reconstruction problem for
the P-WFS. As in an XAO system the resolution of
the sensor and the frequency of the system are espe-
cially high, the requirements with respect to compu-
tational speed on a reconstruction algorithm are
demanding. We propose to use the CuReD, as this
method reconstructs the wavefront accurately and
is extremely fast (it needs only 20ns operations,
where ns is number of the sensor subapertures) as
well as parallelizeable and pipelineable. It was intro-
duced in [17] and adapted to real life telescope geom-
etries in [15]. The domain decomposition for the
reduction of the noise propagation is presented in
[16]. The CuReD algorithm was used as the second
step of our method to obtain the test results in
Section 6.

6. Closed Loop Performance

To test the quality of our reconstruction method in a
closed loop setting, we use the end-to-end simulator
OCTOPUS provided by the European Southern
Observatory (ESO) [19]. The used simulation param-
eters are summarized in Table 1. We consider an
XAO system with telescope diameter of D � 42 m
and a pyramid sensor. The software simulates a nine-
layer atmospheric model, each layer being a random
realization of the von Karman power spectrum.

We consider three test cases (A, B, C), summarized
in Table 2. Test cases A and B deal with a 200 × 200
pyramid sensor (meaning a sensor with 200 × 200
subapertures) with (A) and without (B) circular
modulation correspondingly, while in case C we con-
sider an 84 × 84 pyramid sensor without modulation.
The large-scale XAO system (cases A and B) runs at a
frequency of 3 kHz, while the smaller AO system
(test case C) is running at 1 kHz.

For the temporal control of the closed loop we use a
simple integrator, the gain is optimized manually.
The used quality metrics are the long-exposure

Fig. 4. Discretized space domain kernel pl
sh∕pyr computed in three

different ways: using the FFT routine (large dashed line); with the
analytical formula evaluated at a discretized grid (small dashed
line); and by averaging the analytical formula over subapertures
(solid line). The kernels correspond to the following AO system
parameters: telescope diameter D � 42 m, number of WFS suba-
pertures ns � 200 × 200, linear modulation with amplitude 4λ∕D.

Table 1. Simulation Parameters

Telescope diameter D 42 m
Central obstruction 28%
Science target On-axis (SCAO)
Science band K, λStrehl � 2200 nm
Sensing band R, λWFS � 700 nm
WFS Pyramid
Type of modulation Circular
Controller Integrator
Atmospheric model von Karman
Number of simulated layers 9
Outer scale L0 25 m
Fried radius r0 at λ � 500 nm
For good atmosphere 0.172 m
For median atmosphere 0.129 m
For bad atmosphere 0.094 m
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(LE) Strehl ratio and the corrected point spread
function (PSF). In the following we present the per-
formance results separately for each of the three
test cases.

A. Test Case A

First, we test the closed loop performance of our
reconstruction method for a 200 × 200 pyramid sen-
sor with the modulation radius α � 4λ∕D. We evalu-
ate the quality in a wide range of atmospheric
conditions and photon flux levels as given in Table 2.
The photon flux levels are indicated by the number of
photons per subaperture per frame. For the defini-
tion of the good, median, and bad atmosphere via
the Fried radius see Table 1. The loop gain for the
temporal control is optimized (on 100 time steps)
for each photon flux level with a resolution of 0.1.
The results are obtained simulating 500 time steps.
Higher-order DM influence functions are assumed.

We compare the quality of our method with the re-
sults achieved by the MVM method, which were pro-
vided to us by ESO. Table 3 gives a comparison of the
LE Strehl ratios obtained with the two methods for
three “ESO-standard atmospheres” and varying pho-
ton flux. The result obtained for the median atmos-
phere is visualized in Fig. 5. It shows that our
method achieves the same quality in the high photon
flux case, and a slightly better quality in the low flux
case. In Fig. 6 we compare the PSFs in theK-band for
the median atmosphere obtained with our recon-
structor (P-CuReD) and with the MVM method for
the high-flux case (1e4 photons/subaperture/frame).
It shows that the PSFs obtained with the two
approaches are very similar apart from the high
frequency domain.

Hence, the quality achieved with our two-step
approach is comparable to or slightly better than
the quality obtained with the MVM method.

Additionally, Fig. 7 illustrates the convergence
rate of P-CuReD compared to that of the MVM
method. It shows the simulated SE Strehl ratio in
K band obtained with two wavefront reconstruction
methods using the parameters for the test case A,
median atmosphere and high photon flux level
(1e4 photons/subaperture/frame). As one can see,
the P-CuReD converges slightly faster than the
MVM method. One should remark that, for the sake

of reducing the computational effort, the CuReD
algorithm without any data preprocessing was used
in the first seven AO loops.

B. Test Case B

The next set of tests evaluates the performance of the
P-CuReD for a 200 × 200 pyramid sensor without
modulation. The quality is evaluated for the median
atmosphere and varying photon flux. The loop gain
for the temporal control is optimized (on 100 time
steps) for each photon flux level with a resolution
of 0.1. The results are obtained simulating 1000 time
steps. Higher-order DM influence functions are
assumed.

The LE Strehl ratios obtained with our
reconstruction method are plotted in Fig. 8. Up to
our knowledge, for this XAO setting there are no re-
ported quality tests of other methods. Thus, in order
to compare the performance of our wavefront recon-
structor in the nonmodulated sensor case with the
MVMmethod, test case C is designed and performed.

C. Test Case C

The last tested configuration is a telescope with
diameter of 42 m and a nonmodulated pyramid sen-
sor with 84 × 84 subapertures. We compare the per-
formance of our approach to the MVM results
from [20]. We evaluate the quality for the median
atmosphere and high photon flux (1e4 photons/
subaperture/frame). The loop gain for the temporal
control is optimized (on 200 time steps) with a reso-
lution of 0.1. The results are obtained simulating
1000 time steps. Bilinear DM influence functions
are assumed in this test case. The P-CuReD provides
the LE Strehl ratio of 0.71, the corresponding MVM
result is 0.43.

7. Noise Propagation

In this section, we analyze the properties of the
P-CuReD method with respect to propagation of
white noise, independent for each subaperture. Since
the preprocessing of the pyramid sensor data is lin-
ear, it can be represented as aNMVM. We denote the
corresponding matrix by P. According to [15], the
CuReD algorithm is linear as well, and can be repre-
sented by a matrix C. Therefore, the matrix M � CP
is equivalent to the P-CuReD method.

Table 2. Test Case Parameters

Test Case A and B C

Number of subapertures ns 200 × 200 84 × 84
Number of active subapertures 28,800 out of 40,000 5040 out of 7056
Frame rate 3 kHz 1 kHz
DM delay 1 2
Influence functions Higher order Bilinear spline
Photon flux [5, 10, 50, 100, 1000, 10,000] 10,000

Test case A B C

Modulation radius in λ∕D 4 0 0
Atmosphere [good, median, bad] Median Median
Iterations per simulation 500 1000 1000
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The noise propagation of the P-CuReD method is
estimated by the mean squared error (mse) as

mse � tr�MMT�
n

; (24)

where tr denotes the trace of a matrix, and n denotes
the number of actuators.

To illustrate the noise propagation properties of
our method, we have performed several tests. First,
we fix a telescope diameter D � 42 m and a modula-
tion amplitude α � 4λ∕D, and vary the number of
subapertures ns (hence, the subaperture size d)
and the level of subdivisions in the CuReD algo-
rithm. In this configuration, the frequency sampling
size ustep and the parameter umod are fixed, while the
cutoff frequency ucut grows with the number of sub-
apertures ns. For larger ns, the frequency range, for
which the pyramid sensor acts as a slope sensor, be-
comes relatively smaller. The obtained estimates of
noise propagation are shown in Fig. 9. As one can
see, the mse increases with the number of actuators,
however by increasing the number of subdivisions
in the CuReD algorithm, one can reduce the mse
significantly.

Fig. 6. Simulated LE PSF in K band obtained with the P-CuReD
and with the MVM method using parameters for the test case A,
median atmosphere and high photon flux level (1e4 photons/sub-
aperture/frame). The two PSFs are equal up to approximately
800 mas.

Table 3. Comparison of the LE Strehl Ratios Obtained with the MVM Method and with the P-CuReD for Different Atmospheres and Photon
Fluxes Using the Parameters Defined in Test Case A

Atmosphere Good Median Bad

Photon flux MVM P-CuReD MVM P-CuReD MVM P-CuReD

5 0.8709 0.9317 0.7260 0.8969 0.4355 0.8203
10 0.9524 0.9582 0.9261 0.9380 0.8785 0.9006
50 0.9742 0.9748 0.9585 0.9607 0.9260 0.9344
100 0.9765 0.9766 0.9621 0.9630 0.9335 0.9378
1000 0.9785 0.9780 0.9651 0.9649 0.9384 0.9405
10,000 0.9788 0.9781 0.9654 0.9650 0.9387 0.9408

Fig. 5. Simulated LE Strehl in K band obtained with the
P-CuReD and with the MVM method using the parameters for
the test case A and median atmosphere versus the detected
natural guide star (NGS) photon flux.

Fig. 7. Simulated SE Strehl in K band obtained with the
P-CuReD and with the MVM method using the parameters for
the test case A, median atmosphere and high photon flux level
(1e4 photons/subaperture/frame).
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Second, we fix a subaperture size d � 0.21 m, and
a modulation amplitude α � 4λ∕D, and vary the
number of subapertures ns (hence, the telescope
diameter D) and the level of subdivisions in the
CuReD algorithm. In this configuration, the cutoff
frequency ucut is fixed, while the frequency sampling
size ustep and the parameter umod decrease when the
number of subapertures ns increases. For larger ns,
the frequency range, for which the pyramid sensor
acts as a slope sensor, becomes relatively smaller.
As one can see in Fig. 10, the mse stays at the same
level, which is again lower for a larger number of sub-
divisions in the CuReD algorithm.

Third, we fix the telescope diameter D � 42, the
subaperture size d � 0.21 m, the number of
subapertures ns � 200 × 200, and vary the modula-
tion amplitude α. In this configuration, the cutoff fre-
quency ucut and the frequency sampling size ustep are
fixed. The relative range where the pyramid sensor
acts as a slope sensor increases with the parameter
umod. However, as one can see from Fig. 11, the mse
seems to be optimal for a small modulation ampli-
tude α � 4λ∕D, and grows with increasing α. Again,

Fig. 8. Simulated LE Strehl in K band obtained with the
P-CuReD method using parameters for the test case B versus
the detected NGS photon flux.

Fig. 9. Noise propagation of the P-CuReD method for annular
aperture of a fixed diameter D � 42 m and different number of
sensor subapertures ns (and correspondingly the subaperture
sizes d). Modulation amplitude α � 4λ∕D is assumed. The results
are shown for three different levels of subdivision in the CuReD
algorithm.

Fig. 10. Noise propagation of the P-CuReD method for annular
apertures of different diameters and a fixed subaperture size
d � 0.21 m. The number ns of sensor subapertures changes corre-
spondingly. Modulation amplitude α � 4λ∕D is assumed. The re-
sults are shown for two different levels of subdivision in the
CuReD algorithm.

Fig. 11. Noise propagation of the P-CuReD method for annular
apertures of the fixed diameter D � 42 m, subaperture size
d � 0.21 m, and number of sensor subapertures ns � 200 × 200
and varying modulation amplitudes α. The results are shown
for two different levels of subdivision in the CuReD algorithm.
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more levels of subdivision in the CuReD method
allow to reduce the noise propagation significantly.

8. Complexity and Speed

The first step of our method, the data preprocessing,
consists in the row-wise convolution of Sx and
column-wise convolution of Sy with a c-point filter,
where c is a small integer. For instance, c � 7 for
the XAO settings tested in Section 6. Hence, the
number of operations needed for the data preprocess-
ing step is

�����
ns

p
· �c� �c − 1�� · �����

ns
p

· 2 � �4c − 2�ns,
where ns denotes the number of active sensor suba-
pertures. The second step, application of the CuReD
algorithm, requires 20ns operations [16]. Therefore,
the whole method (P-CuReD) has a linear complexity
O�ns�. Both steps of the method are parallalizable
and pipelinable.

The prototype was tested on a computer with 2
Intel hexacore processors, so with a total number of
12 processor cores available, running at a speed of
2.66 GHz. The code is not specialized to any specific
aperture geometry. The parallelization was tested
with openMP and in the figures the minimal runtime
of the algorithm is given. Figure 12 shows the
reconstruction times for the full XAO system (for dif-
ferent levels of subdivision in the CuReD algorithm),
whereas Fig. 13 shows the standalone runtime of the
data preprocessing step.

For a comparison, we tested the MVM method on
the samemachine and obtained theminimal runtime
of 402 ms. This shows that the CuReD with the data
preprocessing is indeed much faster than the MVM
method.

9. Conclusion

We developed a new two-step method for wavefront
reconstruction from pyramid WFS data. The first
step consists in the data preprocessing and trans-
forms the pyramid sensor measurements into SH
like data. As a second step we apply the CuReD al-
gorithm, which reconstructs the unknown wavefront
from SH measurements. The P-CuReD method pro-
vides the same or better reconstruction quality com-
pared to the MVM method, but is significantly more
efficient from a computational point of view. Both
steps of our approach are computationally very
cheap, the whole method has a linear complexity,
is highly parallelizable and pipelinable. These
features make our method especially attractive for
usage in extreme AO.

Appendix A: Derivation of the Fourier Domain Filter in
Case of Circular Modulation

In the circular modulation case, the linearized pyra-
mid sensor measurements are given as

Sc
x�x; y� � −

1
π
ϕ�x; y� � J0�αλx�

x
;

hence the FD filter function gcpyr is given as

πgcpyr�u� � −

�
F
�
J0�αλx�

x

��
�u�

� −�F �J0�αλx����u� �
�
F
�
1
x

��
�u�;

where

�
F
�
1
x

��
�u� � −iπ sgn�u�;

and

�F �J0�αλx����u� �
1

πumod

����������������
1 − u2

u2
mod

q Π
�

u
2umod

�

Fig. 12. Reconstruction times obtained with the P-CuReD (k) al-
gorithm for an XAO systemwith a 200 × 200 pyramidWFS. Here k
indicates the number of subdivisions in the CuReD algorithm [16].

Fig. 13. Computation time for applying the data preprocessing
step to the 200 × 200 pyramid WFS measurements.
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with Π being a characteristic function of the interval
�−1∕2; 1∕2�

Π�u� :�
�
1; juj ≤ 1

2 ;
0; juj > 1

2 :

Hence,

πgcpyr�u� �
i

umod

Z �∞

−∞
sgn�u − u0�

×
1����������������

1 −
�u0�2
u2
mod

r Π
�

u0

2umod

�
du0

� i
umod

Z
umod

−umod

sgn�u − u0�����������������
1 −

�u0�2
u2
mod

r du0:

Using the substitution v � u − u0, we get

πgcpyr�u� �
i

umod

Z
u�umod

u−umod

sgn�v��������������������
1 −

�u−v�2
u2
mod

r dv:

On the interval −ucut < u < −umod < 0, with the
substitutions w � u − v and k � �w∕umod� we get

πgcpyr�u� � −
i

umod

Z
u�umod

u−umod

1�������������������
1 −

�u−v�2
u2
mod

r dv

� −
i

umod
umod

Z
1

−1

1��������������
1 − k2

p dk � −2i arcsin�1�

� −iπ:

On the interval 0 < umod < u < ucut

πgcpyr�u� �
i

umod

Z
u�umod

u−umod

1�������������������
1 −

�u−v�2
u2
mod

r dv � iπ:

And on the interval −umod ≤ u ≤ umod we get

πgcpyr�u� � −
i

umod

Z
0

u−umod

1�������������������
1 −

�u−v�2
u2
mod

r dv

� i
umod

Z
u�umod

0

1�������������������
1 −

�u−v�2
u2
mod

r dv

� −
i

umod
umod

Z
1

u∕umod

1��������������
1 − k2

p dk

� i
umod

umod

Z
u∕umod

−1

1��������������
1 − k2

p dk

� 2i arcsin�u∕umod�:

Hence,

gcpyr�u� �
�
i sgn�u�; juj > umod;
2i
π arcsin�u∕umod�; juj ≤ umod:

Appendix B: Derivation of the Space Domain Kernel
in the Nonmodulated Case

The space domain kernel pn
sh∕pyr is defined as the IFT

of the Fourier domain SH/pyr transmission filter
gnsh∕pyr given as

gnsh∕pyr�u� � 2πdjuj;

juj ≤ ucut �
�
−2πdu; −ucut ≤ u < 0;

2πdu; 0 < u ≤ ucut;

The kernel pn
sh∕pyr is computed as

pn
sh∕pyr�x� � �F−1gnsh∕pyr��x�

�
Z

ucut

−ucut

gnsh∕pyr�u� exp�2πixu�du

� −2πd

Z
0

−ucut

u exp�2πixu�du
|������������������{z������������������}

pn
1�x�

� 2πd

Z
ucut

0
2πdu exp�2πixu�du|����������������������{z����������������������}

pn
2�x�

;

where integration by parts gives

pn
1�x� �

ucut

2πix
exp�−2πixucut� �

1

4π2x2

−
1

4π2x2
exp�−2πixucut�;

and
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pn
2�x� �

ucut

2πix
exp�2πixucut� �

1

4π2x2
exp�2πixucut�

−
1

4π2x2
:

Therefore,

pn
sh∕pyr�x� � −2πdp1�x� � 2πdp2�x�

� −
ducut

ix
exp�−2πixucut�

� d

2πx2
exp�−2πixucut�

� ducut

ix
exp�2πixucut�

� d

2πx2
exp�2πixucut� −

d

πx2
:

Using the equalities

exp�ix� − exp�−ix�
2

� i sin�x�; (B1)

exp�ix� � exp�−ix�
2

� cos�x�; (B2)

we get

pn
sh∕pyr�x� �

2ducut

x
sin�2πxucut� �

d

πx2
cos�2πxucut�

−
d

πx2
:

And using the trigonometric equality

cos�x� � 1–2 sin2

�
x
2

�
; (B3)

we obtain the kernel pn
sh∕pyr as a sum of real-valued

periodic functions

pn
sh∕pyr�x��

2ducut

x
sin�2πxucut�−

2d

πx2
sin2�πxucut�

�4πdu2
cutsinc�2πxucut�

−2πdu2
cut sinc

2�πxucut�: (B4)

Appendix C: Derivation of the Space Domain Kernel in
Case of Linear Modulation

The space domain kernel pl
sh∕pyr is defined as the IFT

of the Fourier domain SH/pyr transmission filter
glsh∕pyr given as

glsh∕pyr�u� �
8<
:
− 2πdu; u < −umod;
2πdumod; −umod ≤ u ≤ umod;
2πdu; u > umod.

The kernel pl
sh∕pyr can be written as a sum of three

terms

pl
sh∕pyr�x� � �F−1gsh∕pyr��x�

�
Z

ucut

−ucut

glsh∕pyr�u� exp�2πixu�du

� −pl
1�x� � pl

2�x� � pl
3�x�;

where p2 is an elementary integral

pl
2�x� � 2πdumod

Z
umod

−umod

exp�2πixu�du

� dumod

ix
exp�2πixumod� −

dumod

ix
exp�−2πixumod�;

and the terms p1 and p3 are integrated by parts
as

p1�x� � 2πd
Z

−umod

−ucut

u exp�2πixu�du

� −
dumod

ix
exp�−2πixumod�

� ducut

ix
exp�−2πixucut�

� d

2πx2
exp�−2πixumod� −

d

2πx2
exp�−2πixucut�;

p3�x� � 2πd
Z

ucut

umod

u exp�2πixu�du

� ducut

ix
exp�2πixucut� −

dumod

ix
exp�2πixumod�

� d

2πx2
exp�2πixucut� −

d

2πx2
exp�2πixumod�:

Collecting the three terms and using the equalities
(B1) and (B2), we obtain the kernel pl

sh∕pyr as a
sum of real-valued periodic functions

pl
sh∕pyr�x� �

2ducut

x
sin�2πxucut� −

d

πx2
cos�2πxumod�

� d

πx2
cos�2πxucut�:

Using the trigonometric equality (B3), we finally
obtain the kernel psh∕pyr as a sum of (squared) sinc
functions

pl
sh∕pyr�x� � 4πdu2

cut sinc�2πxucut�
� 2πdu2

mod sinc
2�πxumod�

− 2πdu2
cut sinc

2�πxucut�: (C1)
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