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Abstrat

Consider the problem: given a real number x and an error bound ε,

�nd an interval suh that it ontains

√
x and its width is less than ε.

One way to solve the problem is to start with an initial interval and

repeatedly to update it by applying an interval re�nement map on it until

it beomes narrow enough. In this paper, we prove that the well known

Seant-Newton map is the optimal among a ertain family of natural

generalizations.
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1 Introdution

Computing the square root of a given real number is a fundamental operation. Natu-

rally, various numerial methods have been developed [4, 9, 11, 6, 7, 5, 3, 1, 2, 10, 8℄.

In this paper, we onsider an interval version of the problem [7, 1, 8℄: given a real

number x and an error bound ε, �nd an interval suh that it ontains

√
x and its

width is less than ε. One way to solve the problem starts with an initial interval and

repeatedly updates it by applying a re�nement map, say R, on it until it beomes

narrow enough (see below).

in: x > 0, ε > 0
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out: I , interval suh that

√
x ∈ I and width(I) ≤ ε

I ← [min(1, x),max(1, x)]

while width(I) > ε

I ← R(I, x)

return I

A well known re�nement map R, tailored for square root, is obtained by ombining the

seant map and the Newton map where the seant/Newton map is used for determining

the lower/upper bound of the re�ned interval, that is,

R : [L, U ], x 7→
[

L+
x− L2

L+ U
,U +

x− U2

2U

]

whih an be easily derived from Figure 1.

1 2

A question naturally arises. Is there any

L L ' UU 'x

Figure 1: Derivation of Seant-Newton map

re�nement map whih is better than Seant-Newton? In order to answer the question

rigorously, one �rst needs to �x a searh spae, that is, a family of maps in whih we

searh for a better map. In this paper, we will onsider the family of all the �natural

generalization� of Seant-Newton map. The above piture shows that Seant-Newton

map is ontrating, that is, L ≤ L′ ≤ √x ≤ U ′ ≤ U . Furthermore, it �sales properly�,

that is, if we multiply

√
x, L and U by a number, say s, then L′

and U ′
are also

multiplied by s. This is due to the fat that the numerators are quadrati forms in√
x, L and U and the denominators are linear forms. These observations suggest the

1

An anonymous referee made an interesting observation that the Seant-Newton map an

be also viewed as an instane of the interval Newton map with slope:

[L,U ], x 7→ m −
m2 − x

m+ [L,U ]

where m ∈ [L,U ]. If we hoose m = U then it is idential to the Seant-Newton map.

2

It is important to note that there are faster non-interval algorithms for omputing square

roots [6, 5, 3, 2℄. They are based on stati error analysis, auto-orretive behavior of Newton

map, et. However, in this paper, we restrit our investigation to interval methods beause the

urrent work is arried out as a preliminary study, in the hope of identifying oneptual and

tehnial tools for �nding an optimal method for solving polynomial equations. Interval based

methods have the bene�t of providing a uniform paradigm for suh larger lass of problems.
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following hoie of a searh spae: the family of all the maps with the form

R : [L, U ], x 7→ [L′
, U

′]

L
′ = L+

x+ p0L
2 + p1LU + p2U

2

p3L+ p4U

U
′ = U +

x+ q0U
2 + q1UL+ q2L

2

q3U + q4L

suh that

L ≤ L
′ ≤
√
x ≤ U

′ ≤ U,

whih we will all ontrating quadrati maps. By hoosing the values for the pa-

rameters p = (p0, . . . , p4) and q = (q0, . . . , q4), we get eah member of the family.

For instane, Seant-Newton map an be obtained by setting p = (−1, 0, 0, 1, 1) and
q = (−1, 0, 0, 2, 0).

The main ontribution of this paper is the �nding that Seant-Newton map is the

optimal among all the ontrating quadrati maps. By optimal, we mean that the

output interval of Seant-Newton map is always proper subset of that of all the other

ontrating quadrati maps, as long as

√
x resides in the interior of the input interval.

The paper is strutured as follows. In Setion 2, we preisely state the main laim

of the paper. In Setion 3, we prove the main laim.

2 Main Result

In this setion, we will make a preise statement of the main result informally desribed

in the previous setion. For this, we reall a few notations and notions.

De�nition 1 (Quadrati map). We say that a map

R : [L, U ], x 7→ [L′
, U

′]

is a quadrati map if it has the following form

3

L
′ = L+

x+ p0L
2 + p1LU + p2U

2

p3L+ p4U

U
′ = U +

x+ q0U
2 + q1UL+ q2L

2

q3U + q4L

We will denote suh a map by Rp,q.

De�nition 2 (Seant-Newton map). The Seant-Newton map is the quadrati map

Rp∗,q∗ where p∗ = (−1, 0, 0, 1, 1) and q∗ = (−1, 0, 0, 2, 0), namely

Rp∗,q∗ : [L, U ], x 7→ [L∗
, U

∗]

where

L
∗ = L+

x− L2

L+ U

U
∗ = U +

x− U2

2U

3

A areful reader would be onerned about the possibility of the denominators beom-

ing 0, making the expressions unde�ned. Fortunately it will turn out that these ases will be

naturally eliminated in the subsequent disussions.
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De�nition 3 (Contrating quadrati map). We say that a map

R : [L, U ], x 7→ [L′
, U

′]

is a ontrating quadrati map if it is a quadrati map and

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ L ≤ L

′ ≤
√
x ≤ U

′ ≤ U. (1)

Now we are ready to state the main result of the paper.

Theorem 1 (Main Result). Let Rp,q be a ontrating quadrati map whih is not

Rp∗,q∗ (Seant-Newton). Then we have

(a) ∀
L,U,x

0 < L ≤ √x ≤ U =⇒ Rp∗,q∗([L,U ], x) ⊆ Rp,q([L,U ], x)

(b) ∀
L,U,x

0 < L <
√
x < U =⇒ Rp∗,q∗([L,U ], x) ( Rp,q([L, U ], x)

Remark 1. It is important to pay a areful attention to a subtle di�erene between

the two laims (a) and (b). In the �rst laim,

√
x is allowed to lie on the boundary of

the input interval, namely

√
x = L or

√
x = U . In the seond laim,

√
x is required to

lie in the interior of the input interval.

Remark 2. The �rst laim states that Seant-Newton map is never worse than any

other ontrating quadrati map as along as

√
x resides in the input interval. The se-

ond laim states that Seant-Newton map is always better than all the other ontrating

quadrati maps as long as

√
x resides in the interior of the input interval.

3 Proof

In this setion, we will prove the main result (Theorem 1). For the sake of easy

readability, the proof will be divided into several lemmas, whih are interesting on

their own. The main theorem follows immediately from the last two lemmas (Lemmas

6 and 7).

Lemma 2. Let Rp,q be a ontrating quadrati map. Then we have

p0 = −1, p1 = 0, p2 = 0

q0 = −1, q1 = 0, q2 = 0

Proof. Let Rp,q be a ontrating quadrati map. Then p, q satisfy the ondition (1).

The proof essentially onsist of instantiating the ondition (1) on x = L2
and x = U2.

By instantiating the ondition (1) with x = L2
and realling the de�nition of L′,

we have

∀
L,U

0 < L ≤ U =⇒ L+
L2 + p0L

2 + p1LU + p2U
2

p3L+ p4U
= L.

By simplifying, removing the denominator and olleting, we have

∀
L,U

(L, U) ∈ D =⇒ g (L,U) = 0,

where

D = {(L,U) : 0 < L ≤ U} ,
g (L,U) = (1 + p0)L

2 + p1LU + p2U
2
.
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Sine the bivariate polynomial g is zero over the 2-dim real domain D, it must be

identially zero. Thus its oe�ients 1 + p0, p1 and p2 must be all zero.

By instantiating the ondition (1) with x = U2
and realling the de�nition of U ′

,

we have

∀
L,U

0 < L ≤ U =⇒ U +
U2 + q0U

2 + q1UL+ q2L
2

q3U + q4L
= U.

By simplifying, removing the denominator and olleting, we have

∀
L,U

(L,U) ∈ D =⇒ h (L, U) = 0,

where

D = {(L, U) : 0 < L ≤ U} ,
h (L,U) = (1 + q0)L

2 + q1UL+ q2L
2
.

Sine the bivariate polynomial h is zero over the 2-dim real domain D, it must be

identially zero. Thus its oe�ients 1 + q0, q1 and q2 must be all zero.

Lemma 3. Let Rp,q be a ontrating quadrati map. Then we have

L
′ = L+

x− L2

p3L+ p4U

U
′ = U +

x− U2

q3U + q4L
.

Proof. Let Rp,q be a ontrating quadrati map. From Lemma 2, we have

p0 = −1, p1 = 0, p2 = 0

q0 = −1, q1 = 0, q2 = 0

Realling the de�nition of L′
and U ′

, we have

L
′ = L+

x− L2

p3L+ p4U

U
′ = U +

x− U2

q3U + q4L
.

The following lemma will be used to simplify the proof of Lemma 5.

Lemma 4. If

∀
X,Y,Z

0 < X < Y < Z =⇒ aX + bY + cZ ≥ 0

Then

a+ b+ c ≥ 0 b+ c ≥ 0 c ≥ 0

Proof. Assume

∀
X,Y,Z

0 < X < Y < Z =⇒ aX + bY + cZ ≥ 0
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Let x = X, y = Y −X and z = Z − Y. Then we an rewrite the above as

∀
x,y,z

x, y, z > 0 =⇒ ax+ b (x+ y) + c (x+ y + z) ≥ 0

Hene

∀
x,y,z

x, y, z > 0 =⇒ (a+ b+ c) x+ (b+ c) y + cz ≥ 0

Thus

a+ b+ c ≥ 0 b+ c ≥ 0 c ≥ 0

Lemma 5. Let Rp,q be a ontrating quadrati map. Then we have

p3 + p4 − 2 ≥ 0 p4 − 1 ≥ 0
q3 + q4 − 2 ≥ 0 q3 − 2 ≥ 0

Proof. Let Rp,q be a ontrating quadrati map. Using Lemma 3, we an rewrite the

ondition (1) as

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ L ≤ L+

x− L2

p3L+ p4U
≤
√
x ≤ U +

x− U2

q3U + q4L
≤ U.

Simplifying and splitting, we have

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ 0 ≤ (

√
x− L) (

√
x+ L)

p3L+ p4U
≤
√
x− L

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ 0 ≤ (U −√x)(U +

√
x)

q3U + q4L
≤ U −

√
x

By restriting the universal quanti�ation to

√
x 6= L and

√
x 6= U, we have

∀
L,U,x

0 < L <
√
x < U =⇒ 0 ≤

√
x+ L

p3L+ p4U
≤ 1

∀
L,U,x

0 < L <
√
x < U =⇒ 0 ≤

√
x+ U

q3U + q4L
≤ 1

By aneling the denominators, we have

∀
L,U,x

0 < L <
√
x < U =⇒

√
x+ L ≤ p3L+ p4U

∀
L,U,x

0 < L <
√
x < U =⇒

√
x+ U ≤ q3U + q4L

By rewriting it, we have

∀
L,U,x

0 < L <
√
x < U =⇒ (p3 − 1)L−

√
x+ p4U ≥ 0

∀
L,U,x

0 < L <
√
x < U =⇒ q4L−

√
x+ (q3 − 1)U ≥ 0

From Lemma 4, we have

(p3 − 1) + (−1) + (p4) ≥ 0 (−1) + (p4) ≥ 0 (p4) ≥ 0
(q4) + (−1) + (q3 − 1) ≥ 0 (−1) + (q3 − 1) ≥ 0 (q3 − 1) ≥ 0

Simplifying, we �nally have

p3 + p4 − 2 ≥ 0 p4 − 1 ≥ 0
q3 + q4 − 2 ≥ 0 q3 − 2 ≥ 0
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Now we are ready to prove the two laims in Main Theorem. The following lemma

(Lemma 6) will prove the laim (a) and the subsequent lemma (Lemma 7) will prove

the laim (b).

Lemma 6 (Main Theorem (a)). Let Rp,q be a ontrating quadrati map whih is not

Rp∗,q∗ (Seant-Newton). Then we have

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ Rp∗,q∗([L, U ], x) ⊆ Rp,q([L, U ], x)

Proof. Let Rp,q be a ontrating quadrati map whih is not Rp∗,q∗ (Seant-Newton),

that is, p 6= p∗ or q 6= q∗. Let L, U, x be arbitrary suh that 0 < L ≤ √x ≤ U. We

need to show

Rp∗,q∗([L,U ], x) ⊆ Rp,q([L, U ], x)

Note

Rp∗,q∗([L, U ], x) ⊆ Rp,q([L, U ], x)

⇐⇒ L
′ ≤ L

∗ ∧ U
∗ ≤ U

′

⇐⇒ L+ x−L2

p3L+p4U
≤ L+ x−L2

L+U

∧
U + x−U2

2U
≤ U + x−U2

q3U+q4L

(Due to Lemma 3)

⇐⇒
(

x− L2
)

(

1
L+U

− 1
p3L+p4U

)

≥ 0

∧
(

U2 − x
)

(

1
2U
− 1

q3U+q4L

)

≥ 0

⇐⇒
(

x− L2
)

(

1
2L+(U−L)

− 1
(p3+p4)L+p4(U−L)

)

≥ 0

∧
(

U2 − x
)

(

1
2L+2(U−L)

− 1
(q3+q4)L+q3(U−L)

)

≥ 0

⇐⇒
(

x− L2
) (p3+p4−2)L+(p4−1)(U−L)

(2L+(U−L))((p3+p4)L+p4(U−L))
≥ 0

∧
(

U2 − x
)

(q3+q4−2)L+(q3−2)(U−L)
(2L+2(U−L))((q3+q4)L+q3(U−L))

≥ 0

⇐⇒
(

x− L2
)

((p3 + p4 − 2)L+ (p4 − 1) (U − L)) ≥ 0
∧
(

U2 − x
)

((q3 + q4 − 2)L+ (q3 − 2) (U − L)) ≥ 0
(Due to Lemma 5)

⇐⇒ true. (Due to Lemma 5)

Main Theorem (a) has been proved.

Lemma 7 (Main Theorem (b)). Let Rp,q be a ontrating quadrati map whih is not

Rp∗,q∗ (Seant-Newton). Then we have

∀
L,U,x

0 < L <
√
x < U =⇒ Rp∗,q∗([L, U ], x) ( Rp,q([L, U ], x)

Proof. Let Rp,q be a ontrating quadrati map whih is not Rp∗,q∗ (Seant-Newton),

that is, p 6= p∗ or q 6= q∗. Let L, U, x be arbitrary suh that 0 < L <
√
x < U. We

need to show

Rp∗,q∗([L, U ], x) ( Rp,q([L,U ], x)
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Following a similar proess as in the proof of Lemma 6, we have

Rp∗,q∗([L, U ], x) ( Rp,q([L,U ], x)

⇐⇒ L
′
< L

∗ ∨ U
∗
< U

′
(Due to Lemma 6)

⇐⇒ L+ x−L2

p3L+p4U
< L+ x−L2

L+U

∨
U + x−U2

2U
< U + x−U2

q3U+q4L

(Due to Lemma 3)

⇐⇒ 1
L+U

− 1
p3L+p4U

> 0

∨
1
2U
− 1

q3U+q4L
> 0

(sine L <
√
x < U)

⇐⇒ 1
2L+(U−L)

− 1
(p3+p4)L+p4(U−L)

> 0

∨
1

2L+2(U−L)
− 1

(q3+q4)L+q3(U−L)
> 0

⇐⇒ (p3+p4−2)L+(p4−1)(U−L)
(2L+(U−L))((p3+p4)L+p4(U−L))

> 0

∨
(q3+q4−2)L+(q3−2)(U−L)

(2L+2(U−L))((q3+q4)L+q3(U−L))
> 0

⇐⇒ (p3 + p4 − 2)L+ (p4 − 1) (U − L) > 0
∨
(q3 + q4 − 2)L+ (q3 − 2) (U − L) > 0

(Due to Lemma 5)

⇐⇒ p3 + p4 − 2 6= 0 ∨ p4 − 1 6= 0
∨
q3 + q4 − 2 6= 0 ∨ q3 − 2 6= 0

(Due to Lemma 5)

⇐⇒ ¬ (p3 + p4 − 2 = 0 ∧ p4 − 1 = 0 ∧ q3 + q4 − 2 = 0 ∧ q3 − 2 = 0)

⇐⇒ ¬ (p3 = 1 ∧ p4 = 1 ∧ q4 = 0 ∧ q3 = 2)

⇐⇒ ¬ (p = p
∗ ∧ q = q

∗) (Due to Lemma 2)

⇐⇒ p 6= p
∗ ∨ q 6= q

∗

⇐⇒ true.

Main Theorem (b) has been proved.

4 Conlusion

In this paper we investigated optimal methods for real square root omputation by

interval re�ning. More exatly, we proved that the well known Seant-Newton re�ne-

ment map is the optimal among its natural generalizations, that is, among the maps

that are ontrating and are ertain rational funtions. This result motivates several

interesting further questions.

• What about n-th root? It is natural to generalize the family of ontrating

quadrati maps to ontrating degree n maps, that is, rational funtions whose

numerators are n-degree forms and whose denominators are (n−1)-degree forms.

One asks what is the optimal map among the family of maps.

• What about dropping the ondition �ontrating�? Reall that Seant-Newton

map is a partiular instane of interval Newton map with slope where m is
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hosen to be U (footnote 1). If one hooses a di�erent m value (from U), then

the interval Newton map with slope is not ontrating. In pratie, one remedies

this by interseting the result of the map with [L, U ] before the next iteration.
This trivially ensures that the resulting map is ontrating. This motivates a

larger family of maps where a map is de�ned as a quadrati map omposed with

intersetion with [L, U ]. Again, one asks what is the optimal map among the

larger family of maps.

We leave them as open problems/hallenges for future researh.
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