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Abstract. In 2007, Andrews and Paule introduced the family of functions ∆k(n) which
enumerate the number of broken k–diamond partitions for a fixed positive integer k. In that
paper, Andrews and Paule proved that, for all n ≥ 0, ∆1(2n + 1) ≡ 0 (mod 3) using a stan-
dard generating function argument. Soon after, Shishuo Fu provided a combinatorial proof
of this same congruence. Fu also utilized this combinatorial approach to naturally define
a generalization of broken k–diamond partitions which he called k dots bracelet partitions.
He denoted the number of k dots bracelet partitions of n by Bk(n) and proved various
congruence properties for these functions modulo primes and modulo powers of 2. In this
note, we extend the set of congruences proven by Fu by proving the following congruences:
For all n ≥ 0,

B5(10n + 7) ≡ 0 (mod 52),
B7(14n + 11) ≡ 0 (mod 72), and

B11(22n + 21) ≡ 0 (mod 112)

We also conjecture an infinite family of congruences modulo powers of 7 which are satisfied
by the function B7.

1. Introduction

Broken k-diamond partitions were introduced in 2007 by Andrews and Paule [1]. These

are constructed in such a way that the generating functions of their counting sequences

(∆k(n))n≥0 are closely related to modular forms. Namely,

∞∑
n=0

∆k(n)qn =
∞∏
n=1

(1− q2n)(1− q(2k+1)n)

(1− qn)3(1− q(4k+2)n)

= q(k+1)/12η(2τ)η((2k + 1)τ)

η(τ)3η((4k + 2)τ)
, k ≥ 1,
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where we recall the Dedekind eta function

(1.1) η(τ) := q
1
24

∞∏
n=1

(1− qn) (q = e2πiτ ).

In their original work, Andrews and Paule proved that, for all n ≥ 0,

(1.2) ∆1(2n+ 1) ≡ 0 (mod 3)

by utilizing generating function manipulations. Soon after, Hirschhorn and Sellers [4] re-

proved (1.2) by finding an explicit representation of the generating function for ∆1(2n + 1)

which implied (1.2), and Mortenson [5] developed a statistic on the partitions enumerated

by ∆1(2n+ 1) which naturally breaks these partitions into three subsets of equal size (thus

proving (1.2) combinatorially).

More recently, Shishuo Fu [2] proved (1.2) via a combinatorial argument as well. In the

process, he generalized the notion of broken k-diamond partitions to combinatorial objects

which he termed k dots bracelet partitions. Fu [2] denoted the number of k dots bracelet

partitions of n by Bk(n). He then proved the following congruence properties satisfied by

these functions (the first of which Fu termed “a natural generalization of” (1.2)).

Theorem 1.1. For n ≥ 0, k ≥ 3, if k = pr is a prime power, then

Bk(2n+ 1) ≡ 0 (mod p).

Theorem 1.2. For any k ≥ 3, s an integer between 1 and p − 1 such that 12s + 1 is a

quadratic nonresidue modulo p, and any n ≥ 0, if p | k for some prime p ≥ 5, then

Bk(pn+ s) ≡ 0 (mod p).

Theorem 1.3. For n ≥ 0, k ≥ 3 even, say k = 2ml, where l is odd, we have

Bk(2n+ 1) ≡ 0 (mod 2m).

Our primary goal in this brief note is to prove the following theorem, thus extending the

set of congruences mentioned above for k dots bracelet partitions.

Theorem 1.4. For all n ≥ 0,

B5(10n+ 7) ≡ 0 (mod 52),

B7(14n+ 11) ≡ 0 (mod 72), and

B11(22n+ 21) ≡ 0 (mod 112).

2. Proof of Theorem 1.4

For p = 5, 7, 11, let

Fp(τ) := η(2pτ)12−pη(2τ)×
(
ηp(τ)

η(pτ)

)p−1

.
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We will see below that this is a natural choice since the generating function for Bp(n) is

given by
∞∑
n=0

Bp(n)qn =
∞∏
n=1

(1− q2n)(1− qpn)

(1− qn)p(1− q2pn)
.

We observe that

Fp(τ) = qp+
1−p2

12

∞∏
n=1

(1− q2pn)12−p(1− q2n)

(
(1− qn)p

1− qpn

)p−1

.

Set
∞∑
n=0

ap(n)qn :=
∞∏
n=1

(1− q2pn)12−p(1− q2n)

(
(1− qn)p

1− qpn

)p−1

.

Then

U2p(Fp(τ)) = U2p

(
qp+

1−p2
12

∞∑
n=0

ap(n)qn

)

=
∞∑
n=0

ap

(
2pn+ p+

p2 − 1

12

)
where U2p is the “standard” U -operator [6, p. 28]. From Ono [6, Theorems 1.64 and 1.65] we

find that
(
ηp(τ)
η(pτ)

)p−1

is a modular form for the group Γ0(p) of weight (p − 1)2/2. Similarly,

we find that η(2pτ)12−pη(2τ) is a modular form of weight k(p) := (13− p)/2 with character

χp(d) :=
(

(−1)k(p)p
d

)
for the group Γ0(4p). Consequently, Fp(τ) is a modular form of weight

wp := (13 − p)/2 + (p − 1)2/2 and character χp(d) for the group Γ0(4p). Then because of

[6, Prop. 2.22] also U2p(Fp(τ)) is a modular form of weight wp and character χp(d) for the

group Γ0(4p). Using a variant of Sturm’s theorem (see Ono [6, Theorem 2.58]) we find that
∞∑
n=0

ap

(
2pn+ p+

p2 − 1

12

)
= U2p(Fp(τ)) ≡ 0 (mod p2)

iff

ap

(
2pn+ p+

p2 − 1

12

)
≡ 0 (mod p2)

for the finite sequence of values n = 0, 1, . . . , wp
24

[SL2(Z) : Γ0(4p)] or equivalently, using the

notation of [6], ordm(U2p(Fp(τ)) > wp
24

[SL2(Z) : Γ0(4p)] with m := {i ∈ Z : p2|i} = 〈p2〉. Using

Ono [6, Proposition 1.7], we find that

wp
24

[SL2(Z) : Γ0(4p)] =
p+ 1

8
(13− p+ (p− 1)2).

We have verified that this finite set of congruences hold, and therefore

U2p(Fp(τ)) ≡ 0 (mod p2)

for p = 5, 7, 11.

Next note that

U2p(Fp(τ)) ≡ 0 (mod p2)
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implies that
∞∏
n=1

(1− qn)p−13U2p(Fp(τ)) ≡ 0 (mod p2).

However,
∞∏
n=1

(1− qn)p−13U2p(Fp(τ)) = U2p

(
∞∏
n=1

(1− q2pn)p−13Fp(τ)

)
and

U2p

(
∞∏
n=1

(1− q2pn)p−13Fp(τ)

)
≡ U2p

(
∞∏
n=1

(1− q2pn)p−13Fp(τ)

(
(1− qn)p

1− qpn

)−p)
(mod p2).

This implies that

U2p

(
∞∏
n=1

(1− q2pn)p−13Fp(τ)
∞∏
n=1

(
(1− qn)p

1− qpn

)−p)
≡ 0 (mod p2).

From the definition of Fp(τ) we know

∞∏
n=1

(1− q2pn)p−13Fp(τ)
∞∏
n=1

(
(1− qn)p

1− qpn

)−p
=qp+

1−p2
12

∞∏
n=1

(1− q2n)(1− qpn)

(1− qn)p(1− q2pn)

=qp+
1−p2

12

∞∑
n=0

Bp(n)qn.

Hence,

U2p

(
qp+

1−p2
12

∞∑
n=0

Bp(n)qn

)
=
∞∑
n=0

Bp
(

2pn+ p+
p2 − 1

12

)
≡ 0 (mod p2).

This completes the proof of Theorem 1.4.

3. Concluding Remarks

We close with two comments. First, given the combinatorial genesis of the definition of

Bk(n), it would be nice to have a combinatorial proof of Theorem 1.4. Secondly, we state

the following conjectured infinite family of congruences:

Conjecture: For all n ≥ 0 and all α ≥ 1,

B7(7
αn+ λα) ≡ 0 (mod 7d

α−1
2
e)

where λα = 1+7α

2
. This is an intriguing family of congruences given the similarity to the

infinite family of congruences modulo powers of 7 which holds for the ordinary partition

function p(n) (as was originally proved by Watson [7] in 1938 and later proved in a more

elementary fashion by Garvan [3]).
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