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An ill-posed inverse problem of autoconvolution type is investigated. This inverse problem oc-
curs in nonlinear optics in the context of ultrashort laser pulse characterization. The novelty
of the mathematical model consists in a physically required extension of the deautoconvolu-
tion problem beyond the classical case usually discussed in literature: (i) For measurements
of ultrashort laser pulses with the self-diffraction SPIDER method, a stable approximate
solution of an autocovolution equation with a complex-valued kernel function is needed.
(ii) The considered scenario requires complex functions both, in the solution as well as in
the right-hand side of the integral equation. Since, however, noisy data are available not only
for amplitude and phase functions of the right-hand side, but also for the amplitude of the
solution, the stable approximate reconstruction of the associated smooth phase function rep-
resents the main goal of the paper. An iterative regularization approach will be described that
is specifically adapted to the physical situation in pulse characterization, using a non-standard
stopping rule for the iteration process of computing regularized solutions. The opportunities
and limitations of regularized solutions obtained by our approach are illustrated by means
of several case studies for synthetic noisy data and physically realistic complex-valued kernel
functions. Based on an example with focus on amplitude perturbations, we show that the
autoconvolution equation is locally ill-posed everywhere. To date, the analytical treatment
of the impact of noisy data on phase perturbations remains an open question. However, we
show its influence with the help of numerical experiments. Moreover, we formulate asser-
tions on the non-uniqueness of the complex-valued autoconvolution problem, at least for the
simplified case of a constant kernel. The presented results and figures associated with case
studies illustrate the ill-posedness phenomena also for the case of non-trivial complex kernel
functions.

1. Introduction

In the early 1990s motivated by applications from spectroscopy (cf. [1]) and stochas-
tics (cf., e.g., [2, p.74]) contributions to the deeper mathematical and numerical
analysis of deautoconvolution problems as a class of inverse problems in spaces of
continuous or quadratically integrable real functions were made. Precisely, deau-
toconvolution problems under consideration were mostly aimed at finding non-
negative functions x with compact support supp(x) ⊂ R from its autoconvolution
x ∗ x. After transformation to the unit interval supp(x) ⊆ [0, 1] they consist in
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finding solutions of the autoconvolution equation

s
∫

0

x(s− q)x(q) dq = y(s) , (1)

where the support of y belongs to the interval [0, 2]. Since the autoconvolution
operator x 7→ x ∗ x is nonlinear and ‘smoothing’, the deautoconvolution problem
is ill-posed in the sense that for given y the solutions x need not be uniquely
determined and mainly small perturbations in the right-hand side y caused by noisy
data may lead to arbitrarily large errors in the solution. To overcome the negative
consequences of ill-posedness up to some extent some kind of regularization is
required. Regularization techniques allow us to find stable approximate solutions of
equation (1) based on auxiliary problems. For data y on the subinterval 0 ≤ s ≤ 1
the paper [3] has analyzed the situation of equation (1) and the application of
Tikhonov’s regularization method including its convergence properties, whereas in
[4] the situation of data y on the whole interval 0 ≤ s ≤ 2 has been studied.
Alternative regularization methods applied to equation (1) and specific numerical
approaches were also discussed in [5–11].
Recently, the research group ‘Solid State Light Sources’ of the Max Born In-

stitute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, hit on the au-
toconvolution problem in the context of a new approach in ultrashort laser pulse
characterization called Self-Diffraction SPIDER or short, SD-SPIDER (cf. [12]).
For phase reconstruction as an auxiliary problem the solution of equation (1) is
needed, but for complex functions x : [0, 1] ⊂ R → C to be determined from com-
plex observations y : [0, 2] ⊂ R → C. To our knowledge, a thorough analysis of the
complex case in deautoconvolution is still missing in the literature, in particular
as the ill-posedness phenomenon arises in the complex case, too. Moreover, the
occurrence of a device-related kernel function k : [0, 2] × [0, 1] → C involved in
the mapping x 7→ y, which is non-trivial in the sense that k 6≡ 1, constitutes a
challenging additional difficulty in connection with this inverse problem behind SD
SPIDER. So as a part of the SD SPIDER approach it would be necessary to solve
(after transformation of the variables to the unit interval) the equation

s
∫

0

k(s, q) x(s− q)x(q) dq = y(s), 0 ≤ s ≤ 2, (2)

in a stable approximate manner when only noisy data of y are given. To simplify
the notation we write integrals like on the left-hand side of (2) even if a function
in the integrand is not defined there, as this is the case for x(s − q) if s − q > 1.
Then we set the corresponding function values as zero and avoid to distinguish the
integral representations for 0 ≤ s ≤ 1 and 1 < s ≤ 2.
The equation (2) is a complex-valued and kernel-based generalization of equation

(1) with solution

x(q) = A(q) exp[iϕ(q)], 0 ≤ q ≤ 1, (3)

and right-hand side

y(s) = B(s) exp[iψ(s)], 0 ≤ s ≤ 2. (4)

We consider in this paper two different aspects of solving the integral equation (2)
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as a mathematical model for inverse problems. The general inverse problem (a)
consists in finding the complex function x in (2) from noisy data of the complex
function y and for a given complex-valued kernel k. Alternatively, the SD-SPIDER-
motivated specification (b) lies in finding the phase function ϕ in (3) from noisy

data of y and given k when additional observations Â of the amplitude function
A are available. Below we will emphasize that the identifiability of the phase ϕ
requires measurement data of both the phase function ψ as well as its correspond-
ing amplitude function B in (4). In order to find the phase function ϕ in problem
(b) under some smoothness assumptions we will suggest a Tikhonov regulariza-
tion approach (cf., e.g., [13, 14]) combined with a specifically adapted strategy for
choosing the regularization parameter α > 0. In this context, iterative procedures
of Levenberg-Marquardt type (cf., e.g., [15]) are required to compute acceptable ap-
proximations of the Tikhonov-regularized solutions in an efficient manner. Exploit-
ing the additional knowledge of noisy data for the amplitude function A allowed
us to construct an adapted stopping rule for the developed iterative regularization
approach. Moreover, we illustrate the quite acceptable work of this approach by a
numerical case study.
Currently, not all questions concerning (a) and (b) can be answered by the au-

thors. Therefore, it makes sense to show the local ill-posedness of problem (a) by
an analytic example and to illustrate ill-posedness phenomena of (b) by numerical
case studies. At the moment the analytical treatment of the impact of noisy data
on phase perturbations is an open question. Moreover, it seems to be reasonable to
present a uniqueness assertion on the inverse problem (a) in the case k ≡ 1 since
assertions for general complex kernels are missing to our knowledge. On the other
hand, all numerical case studies for problem (b) were performed with physically
relevant kernel functions k.
At this point we should note that the problem of finding a function (3) solving the

equation (2) is a generalization of the problem of recovery of a compactly supported
and complex-valued function from the modulus of its Fourier transform. This so-
called phase retrieval problem and its applications, for example in optics, electron
microscopy and astronomy, were intensively studied in the literature based on the
seminal paper [16], and we refer to the review paper [17], to [18, Section 1.2], and
references therein. In particular, rigorous uniqueness results were proven for the
one- and two-dimensional phase retrieval problem (cf., e.g., [16, 19–21]). Moreover,
numerical methods were proposed in [17, 20].
The paper is organized as follows: in Section 2 we briefly review the role of

deconvolution and decorrelation in the characterization of laser pulses. Then we
analyze in some more detail the previously unsolved deconvolution problem in self-
diffraction SPIDER, i.e., a specific variant of laser pulse characterization methods.
Leading from the notation commonly used in the physical literature to the one em-
ployed in mathematics, we reformulate the abstract mathematical problem behind
and investigate its ill-posedness in Section 3. Subsequently, in Section 4, we derive
consequences of the Titchmarsh convolution theorem for a constant kernel function
k and present an adapted regularization approach in Section 5. Finally, we consider
several case studies based on synthetic noisy data and illustrate the convergence
behavior of the iteration procedure, which requires a non-standard stopping rule.
After a summary of the autoconvolution problem and its specific regularization
approach, we conclude with a brief outlook at the relevance of the findings in the
physical sciences.
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Figure 1.: (a, left) Illustration of the pulse to be characterized. The shortest gener-
ated laser pulses comprise only few oscillation of the electrical field E(t). The aim
of pulse characterization is to retrieve the temporal evolution of the envelope of the
electric field A(t) or of the intensity I(t) = |A(t)|2. (b, right) The Fourier domain
representation of the pulse is often utilized within the process of pulse retrieval.
Therefore, it is decomposed into its amplitude A(ω) and the spectral phase ϕ(ω).

2. Physical background

2.1. The evolution of ultrashort pulse characterization

Ultrashort laser pulses constitute the shortest man-made controllable events, with
demonstrated pulse durations of 4 femtoseconds (4 × 10−15 seconds) and below
[22–24]. Using wavelength conversion techniques, pulses as short as 8 × 10−17 s
have been produced [25, 26], which is in the range of the fastest transient events in
atoms and molecules. Quite remarkably, these generated pulses approach a limiting
width of a single optical cycle of the underlying electric field carrier, as illustrated
in Figure 1. Nevertheless, these remarkable technological achievements also cause
a serious dilemma for their accurate characterization and measurement. Temporal
resolution of a dynamical process is always limited by the gate time of the sampling
process, similar as in photography, where temporal resolution is dictated by fastest
available shutter speed. As there simply exists no gate process faster than the
duration of the shortest laser pulses, the history of laser pulse characterization
and ultrafast spectroscopy has also always been a history of deconvolution and
decorrelation.
From a physicist’s point of view, a practical and easy-to-implement remedy for

the fundamental dilemma of pulse characterization is the use of identical replicas
of the input pulse as the pulse under investigation and for the gate function [27].
For implementation of the temporal gate, one has to form the product of the two
functions, which is conveniently done by employing a nonlinear optical process. In
the simplest case of sum frequency generation, this process generates the product
of two intensity envelopes I1(t) and I2(t), with one of these envelopes serving as
the gate event. Varying the delay between these temporally dependent signals then
allows recording their cross-correlation

C(τ) ∝
∫ ∞

−∞
I1(t)I2(t− τ) dt, (5)

where we employed the usual sign convention for the delay τ in optics and the
integration over time t resembles the integration that is carried out by the slow
detector recording the correlation signal. Reconstruction of I1(t) with known corre-
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lation function C(τ) and gate function I2(t) constitutes an inverse problem, which
is frequently solvable with satisfactory precision, see, e.g., [28] for a practical ex-
ample. It is important to understand that experimental noise mandates the gate
function to be kept as simply structured as possible. Ideally, it should be chosen a
single-maximum function with smallest possible temporal duration.
Using identical functions I(t) ≡ I1(t) = I2(t), Eq. (5) describes an autocorre-

lation, and the decorrelation problem turns out to be only ambiguously solvable
[29, 30]. This can be easily seen by use of the Fourier convolution theorem. In the
spectral domain, the correlation is written as a product

C(ω) ∝ I(ω)I∗(ω) = |I(ω)|2 , (6)

where ω is the optical angular frequency and I(ω) is the spectral intensity. The
Fourier transform f(ω) of a function F(t) is given by

f(ω) =

∞
∫

−∞

F(t) exp (−iωt) dt. (7)

In Eq. (6), the phase of the complex-valued I(ω) does not affect the correlation sig-
nal C(ω). This means that all information on temporal pulse asymmetry in the time
domain does not enter into the autocorrelation signal. Simplistic reconstruction,
trying to revert the absolute square in (6) by the principal square root, therefore
always yields a symmetric reconstructed I(t). Consequently, decorrelation does not
unambiguously work unless additional information on pulse asymmetry is obtained.
Several ways have been investigated to resolve this issue. Early attempts [31, 32]

relied on the availability of additional spectral information I(ω), further attempts
included more complex types of autocorrelations [33]. It could be shown, however,
that even the tiniest amounts of measurement noise render all these concepts un-
practical [34], yet again thwarting unambiguous reconstruction of I(t). In all these
types of decorrelation problems, therefore, thorough analysis typically pointed out
severe limitations rather than offering practical solutions.
This unsatisfactory situation changed dramatically with methods like frequency-

resolved optical gating (FROG [35]) and the sonogram technique [36]. In simple
words, the idea of these method is to replace the separate acquisition of a spec-
trum and an autocorrelation by measurement of a two-dimensional spectrogram-
like function S(τ, ω) with simultaneous functional dependence on delay and fre-
quency. In the simplest case of second-harmonic FROG,

S(τ, ω) ∝
∞
∫

−∞

I(t)I(t− τ) exp (−iωt) dt. (8)

In the experiment, the acquisition of FROG traces only requires replacing the
spectrally integrating detector by a spectrally resolving one and can be used with all
existing autocorrelation geometries. It can be shown [35] that FROG resolves most
but not all issues of decorrelation. There is a one-to-one correspondence between
a given FROG trace S(τ, ω) and the intensity envelope I(t), provided that the
pulse does not consist of temporally or spectrally separated segments with intensity
levels approaching the experimental noise floor in between. A detailed discussion
of remaining ambiguities can be found in [37, 38]. One additional ambiguity of a
second-order autocorrelation-type FROG method is time reversal, i.e., the method
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cannot distinguish between I(t) and I(−t). Nevertheless, there are alternative
methods relying on third-order nonlinearities [35] and other fixes [39] to overcome
this issue. Retrieving I(t) from a known S(τ, ω) is yet again an inverse problem,
and considerable effort went into reliable and numerically efficient algorithms for
retrieving the pulse shape from a FROG trace [35, 40–44].
As an alternative to FROG, spectral phase interferometry for direct electric-

field reconstruction (SPIDER) emerged [45, 46]. This method is conceptually dif-
ferent from all previous approaches and normally does not require any kind of
deconvolution. Being based on spectral interferometry [47, 48], SPIDER directly
measures the spectral phase ϕ(ω) of the electric field E(ω) = A(ω) exp [iϕ(ω)],
where both the spectrum A(ω) and the phase ϕ(ω) are real-valued functions. In
the time domain, the field can again be separated into amplitude and phase via
E(t) = A(t) exp [iφ(t)]. The electric field relates to the intensity via I(t) = |A(t)|2.
SPIDER requires the generation of two replicas of the input pulse I(t), which are
processed with an ancillary pulse Ia(t) in a second-order nonlinear crystal. This
ancillary pulse can also be derived from the same input field, i.e., the method is
self-referenced. To this end, a fraction of the input pulse is sent through a dis-
persive medium, e.g., a glass block. The dispersion of the glass block gives rise
to a non-vanishing chirp ζ(t) = dφ(t)/dt, i.e., the pulse’s carrier frequency varies
with time. Mixing the field of the ancillary pulse Ea with the two replicas con-
tained in Er causes a different frequency shift for each replica, which is referred to
as spectral shear. The spectrum of the nonlinear mixing product, i.e., the Fourier
transform of Er(t)Ea(t) can then be analyzed with the methods described in [49, 50]
to reconstruct the spectral phase ϕ(ω) of the original input pulse. With additional
knowledge of the amplitude A(ω), a simple Fourier transform then suffices for
complete reconstruction of I(t) in the time-domain.
While traditional SPIDER methods all rely on second-order nonlinearities, it

seems appealing to extend this proven method to third-order nonlinearities as they
are frequently used for autocorrelation and FROG. These higher-order methods
allow generating a FROG or SPIDER signal that is spectrally collocated with
the generating wave, which alleviates pulse characterization in the ultraviolet [12].
Moreover, third-order SPIDER has recently been demonstrated using a monolithic
waveguide device [51], bringing us closer to the dream of an all-optical oscilloscope
on a single optoelectronic chip. As third-order optical nonlinearities appear in any
kind of dielectric material and not only in non-isotropic crystalline media, their use
is essential for optically integrated characterization methods. Unfortunately FROG,
autocorrelation and also a SD-based spectral-interference pulse characterization
technique [54] involve mechanical scanning of optical delays, which rules them out
for integrated optical devices. At the current state of the art, this only leaves
SPIDER for such applications.
A third-order SPIDER, however, turns out to be difficult to implement [12].

Given that there is now the product formation of three waves involved, which in-
teract in the nonlinear mixing process, one can either generate two waves from the
ancillary pulse and one from the two replicas, or, vice versa, two replica waves Er(t)
and only one ancilla Ea. As the chirped and temporally stretched ancilla typically
displays a much lower peak intensity than the two replicas, the latter approach
with two replica waves and one ancilla therefore constitutes the more favorable
physical scenario, resulting in higher conversion efficiencies. Using, for example, a
SD geometry [52], the nonlinear mixing process forms a signal ESD(t) ∝ E2

r (t)E∗
a (t).

This duplicates the scenario of second-order SPIDER with two notable differences.
The replicas enter squared E2

r (t), and the ancilla enters complex conjugated. While
the latter essentially only corresponds to a sign reversal of ζ(t), the squared repli-
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cas cause SPIDER to measure the spectral phase ϕconv(ω) of the convolved signal
Econv(t) ∝ E2

r (t) rather than the spectral phase of the pulse itself. Hence, a decon-
volution is required in order to gain insight about the shape of the electric field
E(t) or of the intensity envelope I(t).

2.2. The deconvolution problem in SD SPIDER

The derivation of the deconvolution task formulated in Eq. (2) – (4) requires a more
detailed analysis of the generation process of the SD wave. In the last paragraph,
a simplifying time-domain-based formulation of the nonlinear signals generated for
pulse characterization has been employed in order to work out the basic differences
between the different characterization methods. A more general formulation is ob-
tained in the Fourier domain and by the use of the nonlinear wave equation for the
involved electro-magnetic waves [53]. From this approach one can derive under the
slowly varying envelope approximation that the strength of the SD signal is given
by

ESD(L,ω) = i
µ0cω

2n

∫ L

0
Pnl(ω)e

−iκSD(ω)z dz , (9)

where Pnl(z, ω) is the nonlinear polarization of the bound electrons inside the
materials employed for generation of the SD signal. The vacuum permeability µ0,
the speed of light c and the linear refractive index n = n(ω) are physical constants.
z denotes propagation direction of the electro-magnetic waves inside the material
that is used to generate the SPIDER signal and L denotes the material’s length.
ω is the frequency of the self-diffraction signal and κSD(ω) is the wave number of
this signal. The constants in Eq. (9) and the integral over the interaction length
will contribute to the kernel k of the autoconvolution problem Eq. (2). For further
analysis the nonlinear polarization Pnl(ω) has to be considered, which is in general
given by

Pnl(ω) =

∫ ∞

0

∫ ∞

0
χ(3)(ω,−ωa, ω1, ω2)E

∗
aEr(ω1)Er(ω2)δ(ω+ωa −ω1 −ω2) dω2dω1 .

(10)
Here, ω1, ω2 are the frequency components of the two replica waves Er, and ωa

denotes the single frequency component of the ancilla Ea. The values of χ(3)

and δ(ω + ωa − ω1 − ω2) express physical constraints and relations of the light-
matter-interaction: χ(3), the third-order nonlinear susceptibility, denotes the in-
teraction strength between the field of light and the material in use. The factor
δ(ω+ωa −ω1 −ω2) ensures energy conservation in the expression above. Inserting
of Eq. (10) in Eq. (9) and simplification of the result yields

ESD(ω) =

∫ ω+ωa

0
χ(3)(ω,−ωa, ω1, ω + ωa − ω1)M(ω,−ωa, ω1, ω2)

E∗
aEr(ω1)Er(ω + ωa − ω1) dω1 .

(11)

Here,M collects the constants and the result of the z-integration of the exponential
term in Eq. (9) describing the phase matching conditions between all waves involved
in this four-wave-mixing process: The frequency dependent values of χ(3) and M
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are known from experiments and merge to the kernel

K(ω, ω1, ωa) =
µ0cω

2n
χ(3)(ω,−ωa, ω1, ω+ωa−ω1)E

∗
ae
i∆κ·(ξ,η,L

2
)T sinc(∆κzL/2) (12)

where ∆κ = (∆κξ,∆κη,∆κz)(ω,−ωa, ω1, ω+ωa−ω1) is the phase-mismatch vector
and (ξ, η, z) denotes spatial coordinates. Now (11) can be written as

ESD(ω) =

∫ ω+ωa

0
K(ω, ω1, ωa)Er(ω1)Er(ω + ωa − ω1) dω1. (13)

We note that the wave Er has a spectrum of finite width, i.e., there exist frequencies
0 < ωmin

1 < ωmax
1 < ∞ such that Er(ω1) = 0 for ω1 /∈ [ωmin

1 , ωmax
1 ]. Consequently

ESD is also compactly supported and ESD(ω) = 0 for ω /∈ [2ωmin
1 −ωa, 2ω

max
1 −ωa].

Substituting

ω + ωa = s ωmax
1 for s ∈ [0, 2],

ω1 = q ωmax
1 for q ∈ [0, 1]

in Eq. (13) and defining

k(s, q) :=ωmax
1 K(s ωmax

1 − ωa, q ω
max
1 , ωa),

x(q) :=Er(q ω
max
1 ),

y(s) :=ESD(s ω
max
1 − ωa),

(14)

allows us to trasnform the limits of the integral such that we arrive at the ab-
stract mathematical model equation (2), which will be studied in the following.
By designing the SPIDER apparatus in such a way that one of the replica beams
can be blocked, the SD signal’s amplitude B(s) and its phase ψ(s) in (4) can be
measured with the same device such that (noisy) data of the complex function
y(s), 0 ≤ s ≤ 2, are available. An independent measurement of the spectral in-
tensity I(ω) = |A(ω)|2 in front of the SPIDER apparatus allows us to compute

approximations Â(q) of A(q) corresponding to the incident pulse. Since for the
retrieval of the pulse shape, the complex function x(q), 0 ≤ q ≤ 1 has to be
Fourier transformed, the completely unknown phase function ϕ(q) or its derivative
GD(q) = ϕ′(q) called group delay remains to be determined. For simplicity, in
the following we neglect the uncertainty of kernel data and suppose to know in a
precise manner the continuous complex function k(s, q), (s, q) ∈ [0, 2] × [0, 1]. We
denote by

kmax := max
(s,q)∈[0,2]×[0,1]

|k(s, q)|

the maximum of its modulus.

3. The abstract mathematical model and its ill-posedness

The physical inverse problem under consideration described in Section 2 requires
the solution of the generalized autoconvolution equation (2). As outlined in Sec-
tion 1, the two aspects (a) and (b) are under consideration. As is well-known the
comprehension of additional information about expected solutions and the retrieval
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of data plays an important role for the stable approximate solution of inverse prob-
lems. Therefore, physicists are preferably interested in aspect (b) aimed at finding
the continuously differentiable phase function ϕ : [0, 1] → R in (3), given the kernel
k and noisy observational data of y and A. We note that the additional knowledge
of an estimate Â(q), 0 ≤ q ≤ 1, of the modulus function |x(q)| = A(q), 0 ≤ q ≤ 1,
in (3) will play a prominent role for choosing the regularization parameter in the
process of constructing stable approximate solutions to (15) in Section 5. Neverthe-
less, it will give some insight into the problem structure to focus in this and in the
subsequent section on aspect (a), where (2) is considered as a nonlinear operator
equation

F (x) = y , (15)

formulated in appropriate abstract function spaces.
Taking into account that the forward operator attains the form

[F (x)](s) :=

s
∫

0

k(s, q) x(s− q)x(q) dq, 0 ≤ s ≤ 2, (16)

we are searching for the function x : [0, 1] → C from noisy data yδ ∈ L2
C
(0, 2) of y

that satisfy the deterministic noise model

‖yδ − y‖L2
C
(0,2) ≤ δ , (17)

with noise level δ > 0. Our focus is on the Hilbert space situation F : L2
C
(0, 1) →

L2
C
(0, 2), where F is mapping between Hilbert spaces of square-integrable complex

functions. For x : [0, 1] → C, y ∈ [0, 2] → C, and k : [0, 2]× [0, 1] → C formula (16)
is an abbreviation of the form

[F (x)](s) :=















s
∫

0

k(s, q) x(s− q)x(q) dq, 0 ≤ s ≤ 1,

1
∫

s−1

k(s, q) x(s− q)x(q) dq, 1 < s ≤ 2,

which we always use for simplicity assuming that x, y can be extended to R and
k to R2 as zero outside of the original domains. In this context, we remember the

structure of the norm ‖z‖L2
C
(0,a) =

(∫ a
0 |z(q)|2dq

)1/2
for elements z ∈ L2

C
(0, a). If we

consider square-integrable real functions z ∈ L2(0, a), then the norm is the same,
but |z(q)| denotes the modulus of the real value z(q).
The ill-posedness phenomena of non-uniqueness and instability well-established

for the equation (1) (cf. [3, 4]) also occur when the complex-valued function x :
[0, 1] → C is determined from Eq. (2) and also in case that only ϕ has to be found.
Together with x also the function −x having the same modulus |x| satisfies (2).
Hence, if a continuously differentiable function ϕ : [0, 1] → R as a part of x in (3)
can be chosen such that equation (2) is satisfied for given functions A and y, then
ϕ+π also solves the equation. On the other hand, together with ϕ also ϕ+2π and
hence all ϕ+mπ, m ∈ Z, solve the equation. This type of non-uniqueness cannot
be neglected, but is of inferior significance, since the corresponding group delays
ϕ′ are uniform for all integers m.
Instability is a more important difficulty occurring in all linear and nonlinear in-

finite dimensional least-squares problems which are aimed at solving inverse prob-
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lems with smoothing forward operators. Therefore, extreme care must be exer-
cised when discretizing an infinite dimensional least-squares problem since the
finite-dimensional approximating least-squares solutions may not converge (cf.,
e.g., [55]) or, even worse, they may diverge from the true solution with arbi-
trarily high speed (cf., e.g., [56]). For the nonlinear operator F from (16) we
unfortunately have that for every x0 ∈ L2

C
(0, 1) there exist, in case of arbitrar-

ily small radii r > 0, sequences {xn}∞n=1 ⊂ L2
C
(0, 1) ∩ Br(x0) in a neighborhood

Br(x0) := {x ∈ L2
C
(0, 1) : ‖x− x0‖L2

C
(0,1) < r} of x0 with

‖F (xn)− F (x0)‖L2
C
(0,2) → 0, but ‖xn − x0‖L2

C
(0,1) 6→ 0 as n→ ∞. (18)

We call this local ill-posedness at the point x0 and it has the consequence that
a solution of equation (2) cannot be approximated arbitrarily good even if the
noise level of the data tends to zero (cf. [57–59]). For injective operators F local
ill-posedness indicates that F is not continuously invertible, and this mostly results
from compactness of the forward operator F . However, in [3] it was shown that
the autoconvolution operator from equation (1) is locally ill-posed everywhere in
L2(0, 1), but fails to be compact. So compactness also cannot be expected as an
intrinsic property of F in the complex case, but following an idea from [4], which
was extended in [60], we can nevertheless prove local ill-posedness (18) of F from
(2) everywhere in L2

C
(0, 1) by Example 3.1.

Example 3.1 For any radius r > 0 the positive function Ψβ(q) := r
√
1−2β
qβ ,

0 < q ≤ 1, possesses for all 0 < β < 1
2 the properties

Ψβ ∈ L2(0, 1) ⊂ L2
C
(0, 1) and ‖Ψβ‖L2

C
(0,1) = r.

Then the equalities

[Ψβ ∗Ψβ](s) = r2(1−2β)s1−2β

∫ 1

0
(1−u)−βu−βdu = r2(1−2β)s1−2βB(1−β, 1−β)

with Euler’s beta function B(·, ·), satisfying for 0 < β < 1/2 the condition
0 < B(1− β, 1 − β) < π, yield the estimate

‖Ψβ ∗Ψβ‖L2
C
(0,2) ≤

√
2 max
s∈[0,2]

[Ψβ ∗Ψβ](s) ≤
√
2r2(1− 2β)π21−2β → 0 as β → 1

2
.

By setting xn := x0 +Ψ 1

2
− 1

n

we have for every x0 ∈ L2
C
(0, 1) and all 0 ≤ s ≤ 2

|[F (xn)](s)− [F (x0)](s)| ≤

∣

∣

∣

∣

∣

∣

s
∫

0

(k(s, q) + k(s, s− q))x0(s− q)Ψ 1

2
− 1

n

(q)dq

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

s
∫

0

k(s, q)Ψ 1

2
− 1

n

(s− q)Ψ 1

2
− 1

n

(q)dq

∣

∣

∣

∣

∣

∣

≤ kmax{2
s

∫

0

|x0(s− q)|Ψ 1

2
− 1

n

(q)dq + [Ψ 1

2
− 1

n

∗Ψ 1

2
− 1

n

](s)} → 0 as n→ ∞,

because Ψ 1

2
− 1

n

is weakly convergent in L2(0, 1) to the zero function as n → ∞.
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Since moreover |[F (xn)](s)− [F (x0)](s)| is bounded from above by a constant that
does not depend on s, Lebesgue’s dominated convergence theorem implies that
‖F (xn)−F (x0)‖L2

C
(0,2) → 0 as n→ ∞ and hence, with ‖xn−x0‖L2

C
(0,1) = r > 0, (18)

is valid. Consequently, we have local ill-posedness for all functions x0 ∈ L2
C
(0, 1).

Note that with respect to x(q) = A(q) exp[iϕ(q)] the local ill-posedness men-
tioned in Example 3.1 refers to exploding amplitudes A(q) for small q as a con-
sequence of the fact that Ψβ(q) has a weak pole at q = 0. If A(q) is given as a
continuous function, then the ill-posedness with respect to the remaining unknown
continuous phase function ϕ is less obvious, but case studies show that instability
also occurs in the sense that clearly distinguished phase functions ϕ can lead to
nearly the same complex-valued function [F (x)](s) = B(s) exp[iψ(s)]. Such stud-
ies also prove that ϕ is not identifiable alone from the phase function ψ. Both
functions, amplitude B and phase ψ, are required to recover ϕ when A is known.

4. Titchmarsh convolution theorem and its consequence

For any function x ∈ L1
C
(0, 1) the elements F (x) and F (−x) according to the

operator F from (16) coincide and belong to L1
C
(0, 2). However, it is of interest

whether this is the only ambiguity of solutions to equation (2). For the special
case k ≡ 1 a positive answer can be given by the Titchmarsh convolution theorem
(cf. [61]) which we formulate as a lemma:

Lemma 4.1: Let f, g ∈ L1
C
(R) with supp(f) ⊂ [0,∞), supp(g) ⊂ [0,∞), and let

for some constant a > 0

[f ∗ g](s) :=
s

∫

0

f(s− q) g(q) dq = 0 for almost all s ∈ [0, a] .

Then there are non-negative constants a1 and a2 such that a1 + a2 ≥ a and

f(q) = 0 for almost all t ∈ [0, a1], g(q) = 0 for almost all q ∈ [0, a2].

This lemma allows us to prove the following theorem:

Theorem 4.2 : If for given y ∈ L2
C
(0, 2) the function x ∈ L2

C
(0, 1) solves the

equation (2) with k ≡ 1, then x and −x are the only solutions of this equation.

Proof : Let x ∈ L2
C
(0, 1) and x + ∆ ∈ L2

C
(0, 1) solve for all 0 ≤ s ≤ 2 the

equation (1). Then we have [(x+∆) ∗ (x+∆)− x ∗ x](s) = [∆ ∗ (2x+∆)](s) = 0
for almost all s ∈ [0, 2]. If we set

q∆ := sup{q ≥ 0 : ∆(τ) = 0 for almost all τ ∈ [0, q]},

then x and x+∆ are different elements of L2
C
(0, 1) if and only if a1 := q∆ < 1. For

that case, Lemma 4.1 ensures with a2 > 1 that [2x +∆](q) = 0 and [x +∆](q) =
[−x](q) for almost all q ∈ [0, 1]. Thus −x is the second solution besides x and other
solutions can be excluded by this proof. �

It seems to be an open problem under what conditions imposed on k 6≡ 1 the
result of Theorem 4.2 of having just a twofold solution of (2) can be formulated
and proven.
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5. An adapted regularization approach

Now we return to the SD-SPIDER-motivated aspect (b), where additional data

Â are available. To find stable approximate solutions for the operator equation
(15) with the nonlinear operator F : L2

C
(0, 1) → L2

C
(0, 2) from (16), we can ex-

ploit the nonlinear Tikhonov regularization (see, e.g., [13, Chapter 10]), where the
regularized solutions xδα ∈ L2

C
(0, 1) are minimizers of

‖F (x)− yδ‖2L2
C
(0,2) + αΩ(x) → min, subject to x ∈ D(Ω) ⊆ L2

C
(0, 1), (19)

with a regularization parameter α > 0 and a stabilizing functional Ω : D(Ω) →
[0,∞) (cf. [18, Chapter 4]) having the domain D(Ω). To prefer smooth solutions x
the penalty functional is frequently set as

Ω(x) := ‖x− x‖2L2
C
(0,1) and Ω(x) := ‖Lx‖2L2

C
(0,1), respectively,

where x ∈ L2
C
(0, 1) is a reference element and ‖x − x‖2L2

C
(0,1) attains small values

if x is close to x, and on the other hand L : D(L) ⊆ L2
C
(0, 1) → L2

C
(0, 1) denotes

a densely defined differential operator such that ‖Lx‖2 attains small values if for
example first or second derivatives of x are ‘small’. For the calculations we chose
the second derivative Lx = ∂2

∂t2x. The specific measurement situation of our inverse
problem in ultrashort laser pulse characterization, where only the phase ϕ in x is to
be determined, whereas an observation Â = |x̂| of the amplitude can be observed,
allows us define the problem specific rule for choosing the regularization parameter,
which in continuous formulation reads as

α∗ = α∗(y
δ, Â) :

1
∫

0

∣

∣

∣
|xδα∗

(q)| − Â(q)
∣

∣

∣

2
dq ≤

1
∫

0

∣

∣

∣
|xδα(q)| − Â(q)

∣

∣

∣

2
dq for all α > 0,

(20)
and to use xδα∗

as the adapted approximate solution to Eq. (15). Owing to that

additional data information Â the common search of α > 0 based on heuristic
rules like the quasi-optimality rule, for example successfully applied in [62], can be
completely avoided. Although analytic properties of (20), especially existence of a
minimizer α∗, are hard to verify for a search over all α > 0, the situation simplifies
in the practically relevant case of a set of discrete values {α1, α2, . . . , αN} with
n ∈ N fixed. A minimizer of (20) over only the αj , j = 1, . . . , N, exists. In the
unlikely case that α∗ is not unique, we may pick one of the minimizers. Since the
total amount of computational work for obtaining xδα∗

from (19) and (20) is rather
high, iterative regularization procedures (cf. [15, 63] for an overview) can yield
alternatives to the Tikhonov regularization with reduced computational expenses.
Our focus is on a variant of the Levenberg-Marquardt method, which is a Newton-
type method for nonlinear least-squares problems. For the mathematical theory of
this method see the recent paper [64]. Here, we consider the iteration process

xδ(l+1) := xδ(l) + γ
(

F ′(xδ(l))
∗F ′(xδ(l)) + αL∗L

)−1
F ′(xδ(l))

∗(yδ − F (xδ(l))), (21)

with appropriate relaxation factors γ > 0 and a regularization parameter α > 0,
aimed at minimizing the linearized functional

‖yδ − F (x(l))− F ′(x(l))(x− x(l))‖2L2
C
(0,2) + α‖L(x − x(l))‖2L2

C
(0,2)
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and terminated for l = l∗ early enough according to some stopping rule. The last
iterate xδα := xδ(l∗) acts as regularized solution. In contrast to the classical version of

the Levenberg-Marquardt method we do not diminish the regularization parameter
α with growing l ∈ N, but keep it constant. Under all such regularized solutions
we select xδα∗

by the parameter choice rule (20) and use it as approximate solution
to Eq. (15). Numerical experiments proved for our problem that the squared de-
viations of absolute values occurring in (20) are also helpful for any fixed α > 0
to define the index l∗ for stopping the iteration process. Precisely, we always ob-

served that the values of discretized versions of the integral
1
∫

0

∣

∣

∣
|xδ(l)(q)| − Â(q)

∣

∣

∣

2
dq

decrease with growing l = 1, 2, ... in the initial part of the iteration up to some turn
around point with iteration number l∗ after which the integrals tend to increase
with growing l. As the studies show, this turn around point is frequently connected
with appropriate phase functions. This essentially motivates the stopping rule. A
numerical example is given in Table 1.
We still mention that for continuous kernels k the bounded linear operators of

the form F ′(x0) : L
2
C
(0, 1) → L2

C
(0, 2) in formula (21) denote Fréchet derivative of

the operator (16) at the point x0 ∈ L2
C
(0, 1), which can simply be verified as

[F ′(x0)h](s) =

s
∫

0

(k(s, q) + k(s, s− q))x0(s− q)h(q)dq, 0 ≤ s ≤ 2, h ∈ L2
C
(0, 1).

Solving (16) on a computer requires discretization of the problem, which we did
as follows. The function values of x are to be reconstructed at N supporting points
qn which are chosen equidistantly in an interval [qmin, qmax]. The discrete signal is
denoted by

x = (xn)
N
n=1 = (x(qn))

N
n=1 = (Â(qn)e

iϕ(qn))Nn=1 (22)

for n = 1 . . . N and qn = qmin + (n− 1)∆q with ∆q = qmax−qmin

N−1 .
The notation for the output signal is analogous,

y = (ym)
2N−1
m=1 = (y(sm))

2N−1
m=1 = (B̂(sm)e

iψ(sm))2N−1
m=1 (23)

for m = 1 . . . 2N − 1 and sm = 2qmin − qcw + (m− 1)∆q.
Here qcw is the frequency of the quasi-continuous wave ancilla pulse. The kernel
takes the form

K = km,n = K(sm, qn, qcw), m = 1, 2, . . . , 2N − 1, n = 1, 2, . . . , N, (24)

with K(·, ·, ·) from (12). The autoconvolution operator F is discretized using the
rectangular rule. That way,

ym =

N
∑

j=1

k(sm, qj, qcw)x(qj)x(sm + qcw − qj)∆q, m = 1, 2, . . . , 2N − 1. (25)

Because of the finite support of x, x(sm+qcw−qj) = 0 for sm+qcw−qj < qmin and
sm + qcw − qj > qmax. The complete operator can be written as a multiplication of
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a matrix F (x) ∈ C2N−1×N with the vector x,

y = F (x)x (26)

where

F (x) = ∆q































k1,1x1 0 . . . 0 0
k2,1x2 k2,2x1 . . . 0 0

. . .
. . .

...
kN−1,1xN−1 kN−1,2xN−2 . . . kN−1,N−1x1 0
kN,1xN kN,2xN−1 . . . kN,N−1x2 kN,Nx1

0 kN+1,1xN . . . kN+1,N−1x3 kN+1,N−1x2
...

. . .
. . .

0 0 . . . k2N−2,N−1xN k2N−2,NxN−1

0 0 . . . 0 k2N−1,NxN































. (27)

Analogously the Fréchet derivative F ′(x0) is discretized. The m-th entry (F (x0)h)m
then reads as

(F ′(x0)h)m =

N
∑

j=0

(k(sm, qj, qcw)+k(sm, sm+qcw−qj, qcw))x0(sm+qcw−qj)h(qj)∆q.

(28)

Discretizing the operator L = ∂2

∂q2 as

L =
1

∆q2











2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0

0
. . .

. . .
. . .

0 . . . −1 2











, (29)

the iteration rule (21) reads as

xδ(l+1) := xδ(l) + γ
(

F ′(xδ(l))
∗F ′(xδ(l)) + αL∗L

)−1
F ′(xδ(l))

∗(yδ − F (xδ(l))). (30)

As initial value xδ(0) we take the measured absolute values and a zero phase.

6. Case studies

Before turning to examples for the reconstruction of a phase, we want to give an idea
about the dependency of the measurements on the unknown phase. An example
is given in Figure 2. There, two slightly different phases are shown together with
their autoconvolution signal split into phase and absolute values. Both convolutions
have been performed using the same function for the absolute values Â and the
physical kernel. Although the resulting phases look quite alike, there is a much
more obvious difference in the resulting absolute values B̂. The example indicates
that the complete autoconvolution signal is necessary for the reconstruction. In
the following we give two examples for the reconstruction. For a more detailed
discussion about the numerical results and effects we refer to [60]. To test our

reconstruction algorithm, we chose functions for the absolute values Â(q) and for
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Figure 2.: In the top row, two different, yet similar looking examples of phases
for the unknown x are shown. Both are convolved with the same function for the
absolute values. In the second row, the phases of the convolved pulse y are plotted,
again being quite alike. However, the absolute values of y, pictured in the bottom
row, show larger distinctions.

the phase ϕ(q). Since the real magnitude of Â(q) is unknown, we did most of the

testing with a maximum value of Âmax = 10−7 so that both x and y were neither
too large nor too small. Since the kernel adds a magnitude of 1028 we arrived
at approximately 1014 for the SD-Spider signal. To get reasonable values for the
regularization parameter, we rescaled it. With α and ∆q from the previous section
we define α̂ = α · Â2

max · ∆q−4 · (1028)−2. The normalized parameter α̂ will be
the one given in the evaluation of the experiments. In order to follow the physical
background of the problem, huge numbers appear inevitable. Both pulses were
sampled on a fine grid and according to (26). From this representation we extracted

absolute values B̂(s) and phase ψ(s), which we again sampled on a coarser grid to
avoid inverse crime, i.e., an overly good reconstruction that arises as an artifact
because forward and backward calculations were either performed on the same grid
or because one grid was a multiple of the other. To all data that is assumed to
be given as measurements, i.e. the absolute values of both the spectrum of the
pulse to be reconstructed Â(q) and of SD-Spider signal B̂(s), as well as the phase
of the SD-signal ψ(s), we added to each data point normally distributed random
noise with zero mean and a standard deviation of δ percent relative to the correct
value. The final regularization parameter was chosen according to (20), using the

noisy data Â as reference. This means that we assume the solution to be best if
the deviation of the corresponding absolute values is minimal.
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(b) Result of the autoconvolution of the fundamental pulse, where we added 5% relative noise
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(c) Reconstruction of the fundamental pulse and comparison with the true solution, δ = 5%,
α̂ = 5.86 · 106

Figure 3.: First example using a very smooth fundamental pulse

6.1. Case I: A very smooth pulse

As a first example we consider a very smooth pulse shown in Figure 3(a). The
absolute values possess only one peak and the values of the phase increase from −π
and π. It should be mentioned that both functions the phase and its first derivative
are zero in the middle of the frequency domain. Figure 3(b) shows the result of
the autoconvolution including the added noise. The noise level here is δ = 5%. The
best reconstruction was achieved for α̂ = 5.86 · 106. Since we are looking for a very
smooth solution and use a smoothness penalty for the regularization, the parameter
is very large. The result is given in Figure 3(c). We were able to recover the phase in
an acceptable way. Although there are problems for lowest and highest frequencies,
the middle part is retrieved close to the original phase. Due to the fairly large value
of the regularization parameter, only few remainders of the highly oscillating noise
(cf. Figure 3(b)) are still visible.
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(b) Result of the autoconvolution of the fundamental pulse
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(c) Reconstruction of the fundamental pulse and comparison with the true solution, noise-free,
α̂ = 2.17
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(d) Reconstruction of the fundamental pulse and comparison with the true solution with noise
δ = 1%, α̂ = 2.82

Figure 4.: Second example with a more complicated fundamental pulse. See Table 1
for characteristic values of certain iterations.

6.2. Case II: An oscillating phase

As a second example we have a more complex situation in mind. Here we choose an
amplitude function with two peaks leading to the noisy function Â(q). The phase
function shown in Figure 4(a) has more of a sinusoidal structure. Figure 4(b) again
shows the result after the autoconvolution, this time without any noise. Even in this
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Iteration Residual Solution smoothness Deviation of absolute values
(l) ||F (xδ

(l)
)−yδ || ||Lxδ

(l)
|| || |xδ

(l)
|−Â||

1 9.5819e-01 1.6806 0.5252
20 2.4115e-02 4.3935 0.7916
40 2.0682e-02 4.9909 0.7937
60 1.5369e-02 4.6496 0.6077
80 2.2482e-03 3.9273 0.2563
100 1.3792e-03 3.7857 0.1964
120 1.1022e-03 3.9429 0.1701
140 9.4595e-04 4.3199 0.1623
142 9.3083e-04 4.3642 0.1622
143 9.2340e-04 4.3865 0.1622
144 9.1606e-04 4.4090 0.1623
150 8.7480e-04 4.5451 0.1632
200 5.7859e-04 5.8612 0.1832
250 3.1613e-04 7.2540 0.2020

Table 1.: Characteristic values of the iteration process for the solution in Fig. 3(d).
All values have been normalized to simplify comparison. Since the iteration is
aimed at minimizing the residuals, the values of the residuals decrease steadily
during the process. The iteration must be terminated early enough, otherwise the
solution smoothness gets lost for late iterates. Moreover, the solutions increasingly
oscillate as a consequence of the ill-posedness. On the other hand, the deviation
of the absolute values decreases after some starting phase until they reach some
turning point. At iteration l∗ = 143 the minimum is reached, and according to our
stopping rule we choose this as the final solution. If the iteration is continued the
difference in absolute values increases again, and the reconstructions tend to the
worse.

case we need an appropriate parameter α̂ to recover the phase in an acceptable way.
The noise-free reconstruction is shown in Figure 4(c) with α̂ = 2.17. While in the
middle part both phases coincide nearly perfectly, problems arise at the boundaries
as we already observed in the previous example. Because of the structure of the
autoconvolution equation, the amount of information on the boundaries is much
lower than in the middle, c.f. (26) and (27). The higher the noise level δ, the
more severe those problems become. In the last figure a reconstruction for δ = 1%
and α̂ = 2.82 is shown where a lot of noise artifacts remained. However, it seems
that the absolute values are influenced more by the measurement errors than the
phase. Numerical values for certain iterations are shown in Table 1. Especially
our criterion to stop the iteration for fixed α is clearly visible there. Namely, at
l∗ = 143, the difference of the absolute values of the iterate to the noisy reference
values reaches its minimum. The solution at this iteration is the one shown in
Figure 4(d).

7. Conclusions

In this paper, we have studied a new type of kernel-based autoconvolution prob-
lems, for which a stable approximate solution is required for measurements of
ultrashort laser pulses with the self-diffraction SPIDER method. The problem is
formulated as a nonlinear integral equation with complex-valued functions over a
finite real interval on both sides of the equation. With respect to the mathematical
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model, the novelty of this inverse problem consists in the occurrence of a physically
motivated complex kernel function and the observability of the amplitude of the
incident pulse such that the focus of the paper is on phase reconstruction. After
reviewing recent developments in ultrashort pulse characterization we have intro-
duced an appropriate physical model (11) with kernel (12) and its mathematical
description as a nonlinear operator equation. Using this abstract setting, which
supports the mathematical analysis of the problem, we outlined by Example 3.1
the local ill-posedness of the inverse problem under consideration. That is, for given
data the solution cannot be approximated arbitrarily precise, even if the noise on
the data is sufficiently small. Titchmarsh’s convolution theorem formulated for our
model in Lemma 4.1 enabled us to show that the autoconvolution equation has
two complex conjugate solutions in case of a trivial kernel. However, the situation
for arbitrary kernels seems to be an open question. A main goal of this article was
to suggest and test an adapted regularization approach. We used a variant of the
Levenberg-Marquardt algorithm (21) in the discretized form (30). A crucial point
in the regularization process is the choice of the regularization parameter α. Since
the amplitude function can be measured as part of the solution, we could motivate
a specific parameter choice rule (20). Under all regularized solutions, which are
calculated for varying α > 0, we recommend to take the one that approximates
the observed absolute values in an optimal way. It is known that iterates for reg-
ularized solutions to ill-posed problems tend to worsen whenever the iteration is
not stopped early enough. To find an appropriate stopping rule, we monitored the
deviation between the measured and calculated absolute values, which reaches a
minimum during the iteration process and then increases again. This minimum is
used to stop the iteration for fixed α. Table 1 illustrates such behavior for some
numerical example. Case studies with two different pulses and different noise levels
indicate opportunities and limitations of our regularization method.
From a physicist’s point of view, the formalism described here opens a perspec-

tive for using a wider class of nonlinearities for the SPIDER pulse characterization
method, making it more universally applicable. χ(3) nonlinearities such as the self-
diffraction process are much more widespread than χ(2) processes that have been
used nearly exclusively for SPIDER so far. With the solution of the χ(3) SPIDER
autoconvolution problem at hand, the integration of a complete optical pulse char-
acterization set-up in an integrated optical device becomes feasible. As SPIDER
is the only method that does not require mechanical variation of an optical de-
lay this enables, in principle, the construction of an optical oscilloscope on chip,
of course with the requirement to externally process the measured data by the
discussed regularization procedure. Moreover, there appear other interesting appli-
cations of χ(3) SPIDER variants for the characterization of broadband ultraviolet
pulses, where χ(2) processes do not offer viable options. For all these intriguing
applications, we now demonstrated a viable way of retrieving the relevant phase
data by regularization of the respective autoconvolution problem.
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