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Abstract In this paper, we consider a special kind of overconstrained 6R closed
linkages which we call parallel 6R linkages. These are linkages with the property
that they have three pairs of parallel joint-axes. We prove that there are three types
of parallel 6R linkage. The first type is new, the other two also appear in a recent
classification of linkages with angle equalities. We give constructions for each of
the three types.
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1 Introduction

Movable closed 6R linkages have been considered by many authors (see [1, 4, 5,
11, 12, 13]). In this paper, we study a certain class of such linkages, which we call
parallel 6R linkages. By definition, they have three pairs of parallel joint-axes for all
possible configurations, or at least for infinitely many configurations (it could be that
a certain linkage has two components, where only one of them produces three pairs
of parallel joint-axes). Two of the pairs of parallel joint-axes are adjacent, and the
third one is a pair of opposite joint-axes. We came across this type of linkages when
we investigated 6R linkages with coinciding angles being equal, so called angle-
symmetric 6R linkages [10]. Also there, there exist three types of angle-symmetric
linkages, and one of the three types consists of parallel linkages. But not all parallel
linkages are angle-symmetric in the sense of [10]. A new type can be constructed
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by taking three arbitrary lines as axes and applying an arbitrary translation to get the
other three rotation axes.1

This paper also contains the complete classification of parallel linkages. These
parallel linkages would fit into [2, Section 3.8], a general investigation of 6H link-
ages; our case is labelled “get to be examined” there.

Our investigation uses Study’s description of Euclidean displacements by dual
quaternions (see [7, 8]).

The remaining part of the paper is set up as follows. In Section 2, we give the
theorems for classifying parallel 6R linkages, defining three types. In Section 3, we
give a construction for each type.

2 Classification

We recall some notations from [8]. The set of all possible motions of a closed 6R
linkage is determined by the position of the six rotation axes in some fixed initial
configuration. The choice of the initial configuration among all possible configura-
tions is arbitrary.

The algebra DH of dual quaternions is the 8-dimensional real vector space gener-
ated by 1,ε, i, j,k,εi,εj,εk (see [7, 8]). Following [7, 8], we can represent a rotation
by a dual quaternion of the form

(
cot

(
φ

2

)
−h

)
, where φ is the rotation angle and

h is a dual quaternion such that h2 = −1 depending only on the rotation axis. We
use projective representations, which means that two dual quaternions represent the
same Euclidean displacement if only if one is a real scalar multiple of the other.

Let L be a 6R linkage given by 6 lines, represented by dual quaternions h1, . . . ,h6
such that h2

i =−1 for i= 1, . . . ,6. A configuration (see [7, 8]) is a 6-tuple (t1, . . . , t6),
such that the closure condition

(t1−h1)(t2−h2)(t3−h3)(t4−h4)(t5−h5)(t6−h6) ∈ R\{0} (1)

holds. The configuration parameters ti – the cotangents of the rotation angles – may
be real numbers or ∞, and in the second case we evaluate the expression (ti−hi) to
1, the rotation with angle 0. The set of all configurations of L is denoted by KL. We
say L is movable when KL is a one-dimensional set. Mostly, we will assume, slightly
stronger, that there exists an irreducible one-dimensional set for which none of the ti
is fixed. Such a component is called a non-degenerate component. We also exclude
the case dimC KL ≥ 2. Linkages with mobility ≥ 2 do exist, for instance linkages
with all axes parallel have mobility 3, but they are well understood.

If L = [h1,h2,h3,h4,h5,h6] is a 6R linkage with mobility 1, then we say that L is
a parallel linkage if the axes h1, h6 are parallel and the axes h3, h4 are parallel, and

1 Just in the last moment, we learned that a special case of this linkage was discovered in A.
Gfrerrer and P.J. Zsombor-Murray, Robotrac Mobile 6R Closed Chain, Proc. CSME Forum 2002,
see also www.geometrie.tugraz.at/lehre/KinematikRobotik/CrankAxlePerspektive.gif.
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the non-adjacent axes h2, h5 are parallel for infinitely many configurations in KL.
The parallelity conditions in the initial configuration can be expressed as:

h1 = p1 + εq1, h2 = p2 + εq2, h3 = p3 + εq3,
h6 =−p1 + εq6, h5 =−p2 + εq5, h4 =−p3 + εq4,

(2)

where pi are the primal part of hi and h7−i for i = 1,2,3, and q j are the dual part of
h j for j = 1, . . . ,6.

There is a subset of KL, denoted by Kqsym, defined by the additional restrictions
t1 = t6, t2 = t5, t3 = t4. For all configurations in τ ∈ Kqsym, the transformed lines hτ

2
and hτ

5 are again parallel. Conversely, if K0 ⊆ KL is an irreducible component of di-
mension 1 that contains the initial configuration ∞6 and that preserves the parallelity
of the second and the fifth axis, then K0 ⊆ Kqsym.

Remark 1. There exist a 6R linkage L with a one dimensional K0 ⊆ Kqsym, but L is
not a parallel 6R linkage. A possible construction can be found in [7, 8]).

Before the following lemma, we recall the definition of coupling space and its
dimension in [6, 9]. For a sequence hi,hi+1, . . . ,h j of consecutive joints, we de-
fine the coupling space Li,i+1,..., j as the linear subspace of R8 generated by all
products hk1 · · ·hks , i ≤ k1 < · · · < ks ≤ j. (Here, we view dual quaternions as real
vectors of dimension eight.) The empty product is allowed, its value is 1. The
coupling dimension li,i+1,..., j is the dimension of Li,i+1,..., j.

For a parallel 6R linkage L in (2), we make a special transformation as following:

h′1 := P1h1P1, h′6 := P1h6P1, h′3 := P2h3P2, h′4 := P2h4P2,

where Pi denote the conjugations of Pi for i = 1,2, and P1 and P2 are translations
such that h′1,h

′
2,h
′
3 meet in a common point. This is equivalent to the statement that

the dimension of coupling space L′123 is 4. Furthermore, we have (t1−h6)(t1−h1) =
(t1−h′6)(t1−h′1) and (t3−h3)(t3−h4)= (t3−h′3)(t3−h′4), and we get the following.

Lemma 1. Parallel 6R linkage L and its transformed linkage L′ as above have the
same quasi-angle-symmetric configuration space Kqsym.

Three consecutive rotation axes through the same point can be replaced by a
spherical joint. The next lemma follows from the classification of S3R linkages.

Lemma 2. For the transformed parallel linkage L′, we have l′654 = 4 or 6.

If l′654 = 4, then the lines h′4, h′5, and h′6 also meet in a common point. There is an
unique translation P that maps the common point of h′1, h2, h′3 to the common point
of h′4, h5, h′6. So, P maps h′1 to h′6, h2 to h5, and h′3 to h′4. But then, P also maps h1 to
h6 and h3 to h4.

Conversely, assume that for six lines h1, . . . ,h6, there exists a translation taking
h1 to h6, h2 to h5, and h3 to h6. Then the linkage L = [h1, . . . ,h6] is mobile.

If l′654 = 6, then two cases are possible: either L′ is a composition of a spherical
linkage [h′1,h2,h′3,h7] and a Bennett linkage [h′6,h5,h′4,h7], with a suitable line h7,
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or L′ is a composition of a spherical linkage [h′1,h2,h′3,h7,h8] and a Goldberg 5R
linkage [h′6,h5,h′4,h7,h8], with suitable lines h7, h8 passing through the common
point of h′1, h2, h′3. In both cases, we get t1 = t3, so the linkage L′ – therefore also L
– is angle-symmetric in the sense of [10]. The first case coincides with the “rank 3”
case in [10], and the second case is subsumed by the “rank 4” case in [10].

We have sketched the proof of the following theorem.

Theorem 1. If L is a parallel linkage, then it either has the translation property, or
four of the rotation angles are equal.

3 Constructions

All constructions in this section are given in algebraic terms, using dual quaternions.
The examples have been produced by an implementation of the constructions in
MapleTM.

3.1 Translation property

Here is a construction of parallel 6R linkage with translation property.

Construction 1 (Parallel 6R Linkage with Translation Property)
I. Choose three rotation axes h1,h2,h3, i.e. dual quaternions such that h2

i =−1.
II. Choose a translation P= 1+ai+bj+ck, with a,b,c in the set of real numbers.
III. Set h4 =−Ph3P, h5 =−Ph2P and h6 =−Ph1P.
IV. Our parallel 6R Linkage with translation property is L= [h1,h2,h3,h4,h5,h6].

ut

Example 1. A random instance of the above construction is

h1 =

(
7
9
− 80

81
ε

)
i−

(
4
9
+

34
81

ε

)
j+

(
4
9
+

106
81

ε

)
k,

h2 =

(
3
5
+

8
25

ε

)
i− 8

5
εj−

(
4
5
− 6

25
ε

)
k,

h3 =−
(

1
3
− 4

9
ε

)
i−

(
2
3
+

4
9

ε

)
j−

(
2
3
− 2

9
ε

)
k,

P = 1− 16
27

εi− 20
27

εj+
8

27
εk,

h4 =

(
1
3
− 148

81
ε

)
i+

(
2
3
+

116
81

ε

)
j+

(
2
3
− 14

27
ε

)
k,
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h5 =−
(

3
5
+

1016
675

ε

)
i+

296
135

εj+
(

4
5
− 254

225
ε

)
k,

h6 =−
(

7
9
− 112

81
ε

)
i+

(
4
9
− 46

81
ε

)
j−

(
4
9
+

242
81

ε

)
k.

Its configuration curve is irreducible of genus 1. Its equations are:

−21t2
1 +9t2

1 t2 +25t2
2 t1 +6t1t2−9t1 +6−9t2−15t2

2 = 0,
−21+63t1 +5t2−27t1t2−6t3 +72t3t2 = 0.

Here are the Denavit-Hartenberg parameters [3] of the above linkage. These are
the orthogonal distance between two adjacent joint axes ai j, the distance di between
the two footpoints of the two neighboring axes on the i− th axis, and the twist angle
between two adjacent joint axes αi j, for i = 1, . . . ,6 and j = i+ 1 (modulo 6). For
any parallel linkage with translation property, the parameters fulfill the conditions

a12 = a56, a23 = a45,

d1 = d4 = 0, d2 = d5, d2
3 +a2

34 = d2
6 +a2

61,

α34 = α61 = 0, α23 = α45, α56 = α12.

In the example, the values are

a12 = a56 =
58
√

5
225

, a23 = a45 =
2
√

2
3

, a34 =
8
√

305
81

, a61 =
8
√

5
9

,

α34 = α61 = 0, α23 = α45 = arccos
(

1
3

)
, α56 = α12 = arccos

(
1
9

)
,

d1 = d4 = 0, d2 = d5 =
11
25

, d3 =
80
81

, d6 = 0.

3.2 Parallel 6R linkage with angle-symmetric property

There are two constructions, corresponding to the two sub cases of angle-symmetric
parallel linkages. The first appeared in [10] gives Parallel 6R Linkage with angle-
symmetric property (type 1). Here is the second construction.

Construction 2 (Parallel 6R Linkage with angle-symmetric property, type 2)
I. Choose two rotation axes h1 and h2, i.e. dual quaternions such that h2

1 = h2
2 =

−1.
II. Choose another rotation axis h6 parallel to h1; the primal part of h6 should

be the primal part of h1 times −1.
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III. Compute two rotation axes m1 and m2 such that h1,h2,m1,m2 form a Bennett
4R linkage. One way to do this is to use the factorization algorithm for motion
polynomials [8].

IV. Compute two rotation axes m3 and h5 such that h6,m2,m3,h5 form a Bennett
4R linkage, and such that the configuration curve is equal to the one in step III.
Again, this can be done by factorizing a motion polynomial.

V. Choose a translation P = 1+bi+ cj+dk, where b,c,d are real numbers.
V. Set h3 =−Pm1P, h4 =−Pm3P.
VI. Our parallel 6R Linkage is L = [h1,h2,h3,h4,h5,h6]. ut

Example 2. A random instance of the above construction is

h1 =

(
1
3
− 4

9
ε

)
i−

(
2
3
− 2

9
ε

)
j+

(
2
3
+

4
9

ε

)
k,

h2 =−
(

1
3
+

8
9

ε

)
i−

(
2
3
− 8

9
ε

)
j+

(
2
3
+

4
9

ε

)
k,

h6 =−
1
3

i+
2
3

j− 2
3

k,

a =
1
2
,

m1 =

(
119
411

+
124340
168921

ε

)
i+

(
226
411
− 172130

168921
ε

)
j−

(
322
411

+
74860
168921

ε

)
k,

m2 =−
(

119
411
− 100888

168921
ε

)
i+

(
322
411
− 15560

168921
ε

)
j−

(
226
411

+
75292
168921

ε

)
k,

m3 =

(
11601824
8614971

ε− 119
411

)
i−

(
226
411
− 13771184

8614971
ε

)
j+

(
322
411

+
4651040
2871657

ε

)
k,

h5 =

(
1
3
− 344

459
ε

)
i+

(
2
3
− 776

459
ε

)
j−

(
2
3
+

316
153

ε

)
k,

P = 1− 2
3

εi− 1
2

εj+ εk,

h3 =

(
119
411

+
177770
168921

ε

)
i+

(
226
411
− 10388

18769
ε

)
j−

(
322
411
− 79

168921
ε

)
k,

h4 =−
(

119
411
− 8876894

8614971
ε

)
i−

(
226
411
− 9760646

8614971
ε

)
j+

(
322
411

+
3377077
2871657

ε

)
k.

Here we found that the configuration curve is reducible. It has one non-degenerate
component in Kqsym, with rational parametrization:

(t1, t2, t3) = (t, t +1, t) .

In Figure 1, we present twelve configuration positions of this linkage produced by
Maple. ut

Here are the numeric values of the Denavit-Hartenberg parameters.
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a61 =
2
3
, a12 =

√
2

3
, a23 =

4151
√

34
41922

, a34 =
274
√

17
459

, a45 =
6617
√

34
41992

, a56 =
86
√

2
153

,

α34 = α61 = 0, α23 = α45 = arccos
(

135
137

)
, α56 = α12 = arccos

(
7
9

)
,

d1 = d4 = 0, d2 = d5 =
923
1224

, d3 =
4795
1836

, d6 =
225
68

.

We do not know the general conditions of the Denavit-Hartenberg parameters of a
linkage obtained by the construction.
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