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1. Introduction

The problem of finding the nearest polynomial with given root structure has been considered by many people [1-11].
Substantial progress has been made by Pope and Szanto in [5]. They extended previous results from the univariate case to the
multivariate case and presented a symbolic—-numeric method for finding the closest multivariate polynomial system with
given root multiplicities. Motivated by the interesting results in [5], we derive explicit expressions of the nearest singular
polynomials, which extend the results in [10,11] to given arbitrary multiplicity structure.

Problem. Given a monic univariate polynomial f € C[x] with degree m and the multiplicity structure k = (kq, k2, ..., k) €
str Letn = st_:] kj < m, we want to find a polynomial hi € C[x] and zy, ..., z; € C such that
S m—n .
he=]Jx—2)" (x" "+ > g™ "), ¢ec, (1)
i=1 j=1
and Nnﬁk) = || f — hi || is minimal, where || f — hy ||? is the square of the [>-norm of its coefficient vector.

Prior works. In [5], they generalized the explicit formula of Nn(qk) in[10,11] to the case s > 1:

NI = M i, (2)
where they defined the column vectors

’ (ki—1) T

f=[r@.f @ ... @)]

and
T
fio=[67. 67, .. ], (4)
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and fy; denotes the conjugate transpose of fx. Here and hereafter, f 0 (z;) denotes the evaluation of the j-th derivative of f (x)
atz;, and M. ! denotes the inverse matrix of My. The matrix My can be decomposed into

My = ViV, (5)
where
1oz ... Zn! A
1 ... (m—1)z]"?
k1—1
00 .. (m— iz
i=1
Vie=| @ : e gl thsban, (6)
1z ... zm1
0 1 (m — 1)z"2
ks—1
0 0 ... [[m—iz
L 1 |
We define

m—1
Aij = Z(Zizj)t,
t=0

B A 8)\,3]- 3kj71)\,‘,j .
ij == e — 1
9z 9z}%9
0Aij 82)»1'11' 8kj)»,',j
Ag=| ™ BH T amarh | e gl (7)
f)kiil)ni’j aki)\.i.]‘ 3ki+kj72)»i,j
L oo™ agfihez T e okt
wherei,j=1,...,s,andZz; denotes the conjugate of z;.
. . . . . qu+t — _
Note 1. These partial derivatives denote the symbolic evaluation of g:u;ﬁ atx = z;andy = z;, where A = ;”:0] (xy)t. We
will use these notations throughout this paper.
From (5), (6), (7), we have
Akik; Ak, o Agks
Apky Aok, -0 Ak
Mg = : : ' : e CUattke)x kit tks) (8)
Akok;  Akly oo Apgkg
We denote the determinant of My by
qx = det M. 9)

It should be noted that gy is always different from zero; see Theorem 1 in [10] and Definition 3 in [5].

Main contribution. In previous papers [10,11], they studied the case of finding the nearest singular polynomial with one
multiple root K = (k) and gave recursive formulas related to the determination of the nearest singular polynomials for
consecutive multiplicity k. In [5], they extended results in [11] to find the nearest multivariate polynomial system to a given
one which has roots with prescribed multiplicity structure. In the univariate case, Pope and Szanto generalized the explicit
formula for the gradient of the distance function to thes > 1 case and gave a component-wise formula for the Gauss-Newton
iteration to find the optimum. We focus on extending symbolic recursive relations in [10,11] for determining the minimal
distance and the nearest singular polynomial to the case when the input univariate polynomial is near to a polynomial
with several multiple roots. Moreover, in [10], they derived explicit expressions of the nearest singular polynomial for
ki = 2, 3, 4. We generalize them to the case of roots with any given multiplicitiesk = (k, ka, ..., k;) € N2,, wheres > 1.
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Structure of the paper. The remaining part of the paper is set up as follows. In Section 2, we derive the explicit formula of

hi(x) defined in (1) for s = 1.In Section 3, we generalize explicit recursive formulasin [10,11] to the case s > 1. We illustrate
two numerical examples in Section 4.

2. Thecases =1

Let us consider the simplest case where s = 1. We take k = ki, k = (k), Ay = My = Ay, 1, 2 = 23,

m—1
G =h1=) (@@ q=detA (10)
t=0

for short. In [10], they derived explicit expressions of the nearest singular polynomial hy, for k = 2, 3, 4. We generalize them
to the arbitrary integer k > 1 case:

det HkJr‘l

hip1(x) = (11)
Ak
where
| Ak f
Hier1 = [qko«) f(x)] ’
, T
f=[f@f @ ... ).
3q11(x) g
Qx) = [qn(X), = az:] } :
and
m—1
mx =y @' (12)
t=0
Another expression for q(x) is
qx(x) = vV, (13)
where
v:[1,x,...,x"’1,...,xm’1], (14)

and Vj, is defined in Section 1 for the case s = 1.

Theorem 1. For k > 0, suppose the minimum of the Nn(qkﬂ) is attained at z, then the nearest singular polynomial with a root of
multiplicity k + 1is hy11(x) defined by (11).

Before we give the proof, we define the determinant of P, by

Pr+1 = detPyyq, (15)
where
Ay f
Py = |:w;'<‘ f(k)(z)i| , k>0, (16)
8kql ak+1q1 aZkflq] T
w25 (17)
0z 020z 0zk=19z
and p; = f(2).
Note 2. For k > 0, suppose the minimum of the MY is attained at z, then according to Theorem 5 in [11], we have
D1 = 0.

Proof of Theorem 1. According to the definition of hy, 1 (x), two rows are equal in the matrix Hy;; when taken derivatives
by x and evaluated at x = z; hence we have

M1 (@) = iy () = - = hi (@) = 0. (18)
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Since the minimum of N,,(qkﬂ) is attained at z, we derive that

Dk
hY (2) = q“ =0. (19)

k

It should be noted that py;1 = 0 follows from Note 2.
Furthermore, from the definition of hy, 1 (x) we have

he1 (%) = F(X) — qe(x) Ay .
As Ay is a Hermitian matrix (Theorem 1 in [10]),
_ 2
I B — £ 17 = 1| @Ay |
_ 2
= | WA i |
= fiA; "VVEAL T
=fiA ')

The last equality follows from py,; = 0 and Theorem 5 in [10]. O
Let hy(x) = f(x) and q11(x) = Y15 (zx)", we define

Q1. k41 (X) = det Q41, (20)
where

Qi = Ay ’Wk (21)

T a Ty |

There is an alternative method to determine hy(x) and g (x) for k > 1 recursively.

Theorem 2. For k > 0, the nearest singular polynomial hy1(x) with a root z of multiplicity k 4+ 1 can be obtained recursively
by the following formulas:

h' P (z)
hip1(x) = hi(x) — —qi.i(%), (22)
where
1 0qi—1,i-1(x)  9¢qi—
qii(x) = — | ¢i—1 1 Lo q7]Qi—1,i—1(X) , (23)
qi-—2 0z 0z

fori=2,....kand hy(x) = f(0) — {2q11(x), g0 = 1.

Techniques used in the proofs of Theorem 5 in [10] and Theorem 2 in [ 11] have been generalized to show the correctness
of the recursive relations (22) and (23).
Proof of Theorem 2. First, fori =2, ...,k let

’ . T
e=[f@.f@ .1 ] .
then

R A; €;
Hl+1 - [q,(x) f(X):| .
We have
hig1 () — hi(x) =f(x) — @A "e — F(X) — qi1 (DA e 1)
= g 0A e — aWA e
g1 (97l _ ~ )
— _dit <% — q,-,](X)Ai_llwii1 (f(' D7) — W;:]Ai_lleiﬂ)
gi 0z
_Gi-1 i) pi
qi 4di-1 qi—1
h'(ifl)(z)
=—= qi.i ().

1
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Second, by the definition of g; ;(x) in (20), (21), we obtain:

9q11(x) aq
DGa(X) = @1 —= — g () —.
0z 0z
Furthermore, fori = 3, ..., k, we have
9" 1q11(x) _
qi,i(X) = qi—1 <?,]_11 - CIi—1(X)Ai,11Wi—1)
3 1q11(x) _1 0w
= qi—1 (F - CIi—z(X)A,-_]z 812 > —qi-2
32q11(x) 1 3% =3¢, 1 OWi
(F —qi2(X)A; Wi (W —Wi A 97 )
" 1q11(x) 1 0Wi s gi2 qii1,ic1(X) 9Gi—q 1
=G| ——5 — G2A L, —— — —_—
9z 0z Gi-1 Qi 0Z qia
1 0qi-1,i-1(®)  9¢i—q
= di-1 — - ——Gi-1i-1(X) ] .
qi—2 0z 0z
It should be noted that the third equality above is derived from
i1 _ 3% 3q WA oW;_»
0z P \gzizgzt 2Nz )
0qi—1,i—1(%) 3 1q11(x) 1 0w
Tz = (qi-2 F —qi2(0A;, 9z )

where w;_, comes from (17). O

Note 3. For any given integer k > 1, suppose the minimum of Nnﬁk) is attained at z, then the nearest singular polynomial
with a root of multiplicity k can be obtained by substituting z into h;(x) computed by formulas (22) and (23). This is true by
Theorem 1.

3. Thecases > 1

3.1. Explicit recursive expression

In this section, let k, m, n and s be given as in the introduction. We denote the determinant of Py by

Pk = detPy, (24)
where
Ak Ay o Aggi—1 fi
A A ... A _ f
L R I ) (25)
Aoy Akl o+ Akke—1 K

We derive an alternative explicit expression for Nngk) in terms of gy and px. Some recursive relations to generate qx and px
are also provided. These expressions extend results in [10,11].
We search for the nearest polynomials with the roots of multiplicity structure r;:

() 1<i<k,
(k1,i—k1) kl <i§k1+k2,
I = . : (26)
(k1. ko ks, ... i — Y1 k) Yiiki<i<n
Theorem 3. Let k = (ki,k, ..., ks),n = Z;zl kiand 1 < i < n, then the distance to the nearest singular polynomial with
given root multiplicities is
N = Pr,Pry 4 PryPry NI PryPr, (27)

ar, Gr, Gr, G, ey
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Proof. Similar to the proof of Theorem 5 in [10], we divide My, , into

M, wy
M, = |:w* o ] )

T

(28)

where the last column of M, , is divided into wy; and «. Since the matrix My, is an invertible Hermitian matrix, the inverse
of My, , can be written as

Tit1
M M, 'w,p! I 0
-1 _ T Tj i
Ml‘i+1 - |: 0 B! —W;'.‘I,Ml._i1 11 (29)
where
B =a —w;Mywy, = drisn (30)
T
If we divide f;,,, into f;; and y, then we have

(rit1) -1
m

T T i Tl

Al M T =M w1 I 01,
M [ V][]

=M ' + 87 (v — M, W) (v —wiM,'fy,)

1

Ar; Prigy Prigy

— ‘Nn(lri) +
ql'pr] ql',' ql‘,'
:Nngri)+pfi+1pl'i+1' 0
ql‘iql'i+1

There are also recursive relationships between py, and gy, fori = 1, ..., n. Similar to the definition of py in (24), for an
integer I, we denote the determinant by

Pk,i = det Py, (31)
where
Ay Ak oo Akpke—1 81
Ak Ay oo Akgi—1 821
l-"k,l = . . . s (32)
Ay Ay oo Apgks—1  8si

and the evaluation vectors

Furthermore, for § = Z;Zl kj, we have
rg = (k1, ..., k).

Define the evaluation column vectors as
£, =[£.67,.. &,

T T g
8y = [gl,t+1 » 82,641 55 Btt41 ] )

T
gl‘g,l - [ngTv gZ,ITs ey gt,lT] .
Combining these notations with Theorem 3, we derive the following explicit expressions

g;keMr_e‘lgrg — pr],f+]pr1,f+1 + prz,t+1pr2,t+1 4ot pl'g,t+lpl‘g,[+l , (33)
ql‘] ql‘] ql‘z Qr9_1 ql'g
g;-keM;glfrg _ PriDrq,t+1 T PryDry,t+1 NI DrgDrg t+1 ’ (34)
ql‘] ql‘] ql‘z Qrg,l ql'g
g;keMr_elgrgJ — pl‘],lpl'l,t+] + prz,lprz,t+1 Fot pl'g,lpl'g.t-’-‘l ’ (35)
ql‘] ql‘] ql‘z Qr9,1 ql'g

where t and | are from 2 to s.
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Note 4. If t + 1 = [, Eqs. (33) and (35) are same. Otherwise, as the lengths of vectors g;, and g;, ; are not equal, we cannot
exchange them with each other. In our algorithm, we only need to consider the caset + 1 <

The following theorems give alternative methods to determine gy, py, and py, ; recursively.
Theorem 4. Letk = (kq, ko, ..., ki), n = Z;Zl kiandi=1,...,n, wehave
ay, =qi, i=1,...,k. (36)
Ifi= Z;:] ki +1forsomet =1,...,s — 1, we have
ri= (ki,ka, ..., ke, 1),
and
G = r,_, ()»r+1,r+1 - g:,-,er_i,llgri_l) . (37)
Otherwise, there exist two integersd, t with 1 < d < k.yyand 1 <t < s — 1such that
Tig = (k1, ko, ..., Kke),
and

aqu'i—l o aqri—l aql'i—l
1 020410Ze01 0Zes1 0Zem

q = ql'i_qu'," (38)
Proof. First, if s = 1 we obtain the recursive formula by Theorem 2 in [11]

Qri:qi, izl,...,k].

If
ri = (ki,ka, ..., ke, 1),
then
Ay Mgk, oo Argke 8t
Ak Mgy - Ay 2041
qr, = det| : : : :
A*k[,kl A*k[.,kz A*k[,kt 8t.t+1
ier1 o1 oo Blepr Akl
So we have
— A _ oF M71
ql‘i - ql‘,;] t+1,t4+1 gﬁ,] rf,lgl'i—l .
If

rig = (ki,ka, ..., ke),

applying the Gaussian elimination

lIVl 1 (1] 8 |: M, , u w M, [ Uy U ]
_UT ,\-_1.72 UT o g = o %- u* . ,
_u;Mr_i_]z 0 1 u; B n 0 B n - u% Ml'ifz [ul Uz ]

we have the following equalities

qr; = detMy;

Ml‘f,z up up
u; a £
u; B o

:detM,izdet([z i]—[zg]Mrilz[ul uz])

= detM;, , (a - ”TM;,-,]ZW) (n - ujM,‘ljzuz) — detM;,_, (,B - uzMr‘ifzul) (S - UTM:ZW) ,

= det
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and

Mer uq
*
1

Gr,, = detM;, , = det = detM;, , (a - u’l‘M;ijzm) ,

qr; , = detMy, ,.

In the expression of det My, ,, the partial derivative of the Ith row of My, , with respect to z,; is zerofor 1 < < Z;:] k;,
and the partial derivative of the Ith row of My, , with respect to z., is the (I 4+ 1)th row of My,_, for Z;:] k<l<i-1,
but the partial derivative of the last row of My, , is the last row of My, upon deletion of its last element; same facts exist for
the derivatives of the columns with respect to z; . Hence, we have

oqr, d det M;,
ql‘z—l — Ti—1 — det Ml‘,;z 251 — detMri_z (ﬂ _ u;Mr__] U]) ,
0Z¢41 0Z¢41 L) B =2
. o det M,
?nq _ ~ il _ det Mr,;k_z U] _ det M;, (f _ uTMr__l u2> i
0Z¢41 0Z¢41 U § i-2
9qr, , _ 9°detM U

Tl — det M,
- u* T2

02¢110Z¢41 0Z4410Z¢41 2

= detM;, , (77 —uwM; ! uz) )
Then we obtain the equality (38). O
Theorem 5. Letk = (ki, ka, ..., k),n=)";_ kjandi=1,...,n, we have

Py =Di, i=1,...k. (39)
Ifi= Z;zl ki + 1forsomet =1,...,s — 1, we have

ri = (ki, koo ke, 1),
and

Py =, (F@n) — g M ). (40)
Otherwise, there exist two integers d, t with 1 < d < k;y1and 1 <t < s — 1such that

Tig = (ki, ko, ..o ke),

and

= Qri,zpri- (41)
1

Proof. First, for the s = 1 case, we can obtain the recursive formula by Theorems 2 and 4 in [11]

pri:pi, i:‘l,“_,k].

If
I = (I<1a k27 R kta 1)7
then
Ay Al oo Ak f;
Akz,k] Akz,kz Y Akz,kt f2
pr =det) : P :
Akt,lq Ak[,kz ... Akt,kt ft
g1 ey1 - Sy f@)
So we have
pl’i = Qr,-,l (f(zf+1) - g:i,1Ml'7i,]1fri—l) .
If

Tig = (ki, ko, oo k),
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applying the Gaussian elimination

I 0 0 M, , u Uy M, [L“ “2]
—uM;! 10 ut a B | = o B uf
ok ut 3 B N 0 ; —| o |M; [u u ] ,
_ 1 M—] 0 1 1 o da B ouj Ti 2 1 2
9ze41 Vrip 0zep1  0ze41 9z 0ze11 ze; 32041
we have
pr, = detPy,
Ml‘,‘,z Uy up
*

=det| 4 o B

ouy da B

0244 0ze41  0ze4

« B oy
= det Mri72 det P ap — ut Ml'i—z [Ll] up ]
0zry1  0Zp4q 02411
0 ouy
= detM;, , (a - uTM,‘_lzu1> < po_ o M;12u2>
- 0zey1 0z ¢
detM dor M g (ﬂ ™ )

— det M, —_— = u —uiM_ " uy ),

fi-2 0Zep1 0Zeyr 2 ! W2

and
M, up —1
pr,_, = detP;,_, = det JL{—Z gl= detM, , (,B - uTMri_zuz) ,

Qr;_, = detM, ,.

IndetP;, ,, the partial derivative of the Ith row of Py, , withrespecttoz;iszerofor1 <1 < 2;21 k;, and the partial deriva-

tive of the Ith row of Py, _, with respect to z;11 is the (I 4+ 1)throw of Py, , for Z;Zl ki <1 < i— 1, but the partial derivative
of the last row of Py,_, is the last row of Py, upon deletion of the second last element; similar facts exist for det My, ,. Hence,

d ou?
= detMriz( po_ M! u2>,

0Z41 0Z41 fi-2

OPr;_, _ ddetPy, | .
0Z¢41 0Z41

Mn:z Uy
uy 9B
0z 0ze4

0qr. d det M. Fi Uy da ou*
el Bl —det| auis g | = det My, [ — — — M, u ).
0zt 41 0Z¢41 FP A P 0Zep1 0Zerq

Then we obtain the equality (41). O

Theorem 6. Let k = (k{, ka, ..., ks),n = Zle kiandi=1,...,n.Ifi =1, ..., ki, we can obtain all py, ; by replacing f, in
piwithgy . Ifi= 2;21 ki +1forsomet =1,...,s — 1, we have

ri = (ki, ko, ..., ke, 1),

and

Prit = Gri_, (/\m,z - M;,,}]gr,-,l,z) : (42)
Otherwise, there exist two integersd, t with 1 < d < k.;yand 1 <t < s — 1such that

Tig = (k1, ko, ..., Kke),
and

ap i—1,1 aq i
Tji—1 fi _Pri,1,1 it = qr,‘,zpl‘i,l- (43)
0Z¢41 1

q

The proof of Theorem 6 is similar to the proof of Theorem 5, since we only need to replace all f; in Py, by g;;, where
j=1,...,s.
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3.2. Explicit expression of the nearest singular polynomial

Let k, n, i and r; be given as in the previous subsection. We introduce auxiliary polynomials qi x(x) and hg(x) to obtain
the generalized explicit expression of the nearest singular polynomial.
We denote the auxiliary polynomial by

Qick(x) = det Q, (44)

where
Ml‘ -1 gl‘ —1
n n , ks =1,
|:qrn1 *x)  q1s%) s
Qk = My, (-.n—1) (45)
Mrn—l 0Zs
s 1g15() oo ks> 1,
qrn_1 (X) W
m—1 )
G, () =W, | q1s(x) =D @x)', (46)
i=0
and My, , (-, n — 1) denotes the last column of M;, _,. We define the polynomial as
det Hy
he(x) = , (47)
In—1
where
Ml‘ fl‘
H, = n—1 n—1 .
: [q ® f

Note 5. Suppose the minimum of N,flk) is attained at zq, . . ., z;, according to Proposition 13 and Remark 14 in [5], we have
pk=0.
Theorem 7. Letk = (kq, ..., ks),n = Z;Zl k; and r; be defined in (26) for 1 < i < n. Suppose the minimum of./v,,(1k) is attained
atzy, ...,z then the nearest singular polynomial with roots of multiple structure K is hy(x).

Proof. If k, = 1, similar to Theorem 1, we obtained
(kji—1)

h@) = @) = =h @) =0,
wherej = 1,...,s — 1. Furthermore, as the minimum of Nrﬁk) attained at zq, . .., z;,, we have
Dk
hy(z5) = =0
n—1
according to Note 5. If k; > 1, similarly, we have
(kj—1)
he(z) = h(z) =---=h’ (z) =0,
forj=1,...,s—1and
— K _ _ p(ks=2) —
hk(zs) - hk(zs) - = hk (Zs) =0.
Furthermore,
h:(ks_l)(zs) _ Pk —o.
Tn—1

It follows that every z; is a root of hy(x) with multiplicity k;. At the end, we have
— 2
I he—f 17 =1l @, OM; " £l

Tn—1

-1 2
=[lwg M. £, |l

Tn—1"Th-1

=f M!'v, V¢ M!Tf
Tn—1

— Trp—1 Tn—1%rp_1 " rp—1 Tn—1
= t:'knflMl”_nlflf’n—l

— Nrﬁl"n—l)

= NP,

The last equality is derived from Note 5 and Theorem 3. O
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Similarly, we obtain a recursive method to determine hy(x) and qy x(x) for k = (kq, ..., ks).

Theorem 8. Let k, n and r; be defined before. For he, (x) = f(x) and q, = 1, hx(x) can be obtained recursively for i from 2 to n
by the following recursive formula:

Pri_4

hl‘,‘ (X) = hl‘f,] (X) - ql‘i,1 L1 (X)7 (48)

i1y
where

Orr () = qii(%), 1=2,... kq. (49)
Ifi= Z;:l ki +1forsomet =1,...,s— 1, we have

ri = (ky, ko, ... ke, 1),
and then

Qr;r;(X) = subs(z; = x, qy,). (50)
Otherwise, there exist two integersd, t with 1 < d < k.yyand 1 <t <s — 1such that

rig = (ki, ka, ..., ke),

and

1 0r_ o () 001
ql',',l'i (X) = (qr,‘,1 d Lr : - 7" : ql'i,1.l'i,1 (X) . (51)
ri_o 0Z41 0Z41

Proof. We have
My, () = b, (0 = FX) — G, OM; ! £ — (FX) — G, COM; £ )
=4, (X)Mr:jzfl'ffz —Ori4 (X)Mrﬂ]fl‘m
_Grg i ®) Pry
ri_y  Ar, G

ql‘i,1 T (X),
wherei=2,...,n.
The proof of the recursive relation of gy, r, () is similar to proofs of Theorem 2 and Theorem 4 for the s = 1 case. O
Note 6. For any given multiplicity structure defined by k, suppose the minimum of the n(lk) is attained at z4, . . ., z;, then

the nearest singular polynomial with the roots of multiplicity k can be obtained by substituting z1, ..., z; into the hy(x)
computed from the above formula. This is true by Theorem 7.

4. Examples
We are now ready to describe two examples of computing the nearest singular polynomials. All experiments are run
with Digits = 10 in Maple 13 under Windows XP.
Example 1.
f=x*—1.999x> + 0.997998 x> + 0.001004 x + 0.000398.
Fork = (2),

he = x* — 1.999100023 x* 4 0.9978980072 x* + 0.9040371317¢ — 3 x + 0.2980670675¢ — 3;
z1 = 1.000299559; (double root)
N = 0.3998232663e — 7.
Fork = (3),
hy = x* — 1929265099 x> 4 1.046163212 x* + 0.9656143200e — 3x — 0.9167052023¢ — 1;
z1 = 0.7237048697; (triple root)
N = 0.1565945795e — 1.
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Fork = (2, 2),
hy = x* — 1.999000817 x* -+ 0.997997 1828 x> + 0.100338227 1e — 2 x + 0.2519456319¢ — 6;
z; = —0.50194072190e — 3,  z, = 1.000002349; (two double roots)
NI = 0.1582052317e — 6.

Suppose the given tolerance ¢ = 103, then f has two 2-cluster of zeros. If e = 1077, then f only has a 2-cluster of zeros.

Example 2.

f =2x —3.000x* 4+ 2.998997 x> — 0.997991998 x* — 0.1007004e — 2 x + 0.402002¢ — 3.

Fork = (2),
hi = x° — 3.000079054 x* + 2.998916651 x> — 0.9980736638 x> — 0.1090008152¢ — 2 x + 0.3176375994e — 3;
z1 = 0.9838765078; (double root)
N1 = 0.3338184094¢ — 7.
For k = (3),
he = x° — 2.999919943 x* 4 2.998996997 x> — 0.9980720296 x> — 0.1167031531e — 2x + 0.1620105104e — 3;
z1 = 1.000200211; (triple root)
N1 = 0.3524545527¢ — 6.
Fork = (4),
he = X° — 2.916630494 x* + 2.984063932 x> — 1.080981545 x> — 0.7456574864¢ — 1x + 0.9061192588¢ — 1;
z1 = 0.2978402953; (quadruple root)
N = 0.1525953438.
Fork = (2, 2),
he = x° — 2.999999511 x* + 2.998997489 x*> — 0.9979915087 x* — 0.1006214604e — 2 x — 0.2532432402¢ — 6;
z1 = —0.502978703700000027e — 3, Z; = 0.999683127399999982; (two double roots)
N¥ = 0.1618668066¢ — 6.
Fork = (3, 2),
hg = x> — 3.000000991 x* 4 2.998997020 x> — 0.9979909797 x*> — .1004797476e — 2x — 0.25253117e — 6;
z; = 1.00033517600000010, 2z, = —0.502270004600000042¢ — 3; (one double root and one triple root)
NI = 0.1591303726e — 4.

Suppose the given tolerance € = 1073, then f has a 3-cluster of zeros and a 2-cluster of zeros. If ¢ = 1077, then f only has
a 2-cluster of zeros.
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