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We present a characterization of relative Gröbner bases and
provide a result on the preservation of a relative Gröbner basis
under changes of the involved orderings. Furthermore, we show
that computing a relative Gröbner basis amounts to determining
a finite basis of an ideal in a possibly non-Noetherian ring. We
also provide an example where the method suggested by Zhou and
Winkler for computing a relative Gröbner basis does not terminate.
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1. Introduction

Dealing with polynomial rings in computer algebra is strongly connected to the concept of Gröb-
ner bases. This is due to the fact that they are understood to provide a possibility of performing
algorithms suitable for most essential computations in polynomial rings. One particular application is
the computation of Hilbert polynomials of graded and filtered modules over polynomial rings. How-
ever a big drawback is the time complexity which in the worst case can be doubly exponential in
the number of variables of the system of equations in concern. In fact, the complexity depends on
the term order used for the computations. Levin (2007) introduced the notion of Gröbner bases with
respect to several orderings as means of computing multivariate dimension polynomials associated
with filtered D-modules. Relative Gröbner bases are a generalization of Gröbner bases taking into ac-
count two admissible orders. They were introduced by Zhou and Winkler (2008) in order to compute
bivariate dimension polynomials associated with modules over rings of difference-differential opera-
tors. They also showed that the complexity for computing a relative Gröbner basis has to be at least
as high as the maximum of the complexities of computing a Gröbner basis with respect to one of the
two orders in concern but could not provide any upper bound. Nevertheless by now they are used as
the main tool for the algorithmic computation of bivariate dimension polynomials.
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Several algorithms have been developed for transforming a given Gröbner basis with respect to a
particular term order to a Gröbner basis with respect to a different term order with the motivation
that in certain cases it is faster to compute a Gröbner basis with respect to an admissible order ≺
and then converting it to a Gröbner basis with respect to some other admissible order ≺′ than to
directly compute a Gröbner basis with respect to ≺′ . Two notable approaches are the FGLM algorithm
(Faugère et al., 1993) and the Gröbner walk (Collart et al., 1997). For the Gröbner walk one uses a
result regarding the preservation of a Gröbner basis under changes of admissible orders within the
interior of one Gröbner cone (Collart et al., 1997, Lemma 2.2).

The Gröbner walk algorithm relies essentially on the following characterization of Gröbner bases:
a subset G of a polynomial ideal I is a Gröbner basis of I if and only if the ideals generated by
the leading terms of G and I , respectively, coincide (e.g. Winkler, 1996, Theorem 8.3.4). We prove a
similar result for relative Gröbner bases inspired by the definition of Gröbner bases with respect to
several orderings as provided by Levin (2007).

In this paper we present the following new results on relative Gröbner bases without which the
theory of such bases developed by Zhou and Winkler (2008) cannot be considered as a complete one:
1) Characterization of relative Gröbner bases in terms of divisibility in certain multiplicative monoids
(Theorem 12); 2) Conditions under which changes of admissible orders do not change a relative Gröb-
ner basis (Theorem 10); 3) Analysis of the problem of termination of the algorithm provided by Zhou
and Winkler for computing relative Gröbner bases and presenting an example where this algorithm
does not terminate (Example 14). We also prove the property of symmetry of relative Gröbner bases
(Lemma 8).

The paper is organized as follows. In the preliminary section we introduce basic notation and
recall the notions of relative Gröbner bases provided by Zhou and Winkler (2008) and Gröbner bases
with respect to several orderings in the sense of Levin (2007). In the next section we provide a
result on the preservation of a relative Gröbner basis under change of orders. In Section 4 we give a
characterization of relative Gröbner bases similar to a well known characterization of Gröbner bases.
From the obtained characterization it is uncertain whether a relative Gröbner basis always exists. We
provide an example for an ideal I and two admissible orders ≺,≺′ such that the algorithm provided
by Zhou and Winkler for computing a ≺-Gröbner basis of I relative to ≺′ does not terminate and
show that in fact there cannot exist any ≺-Gröbner basis of I relative to ≺′ .

2. Preliminaries

Throughout the paper N denotes the set of non-negative integers. Let K be a field of characteris-
tic 0 and let X = {x1, . . . , xn}. By [X] we denote the set of terms in the indeterminates x1, . . . , xn , i.e.,
using multi-index notation

[X] := {
xk

∣∣ x = (x1, . . . , xn), k ∈N
n}.

Definition 1. Let ≺ be a total order on [X] such that for all k, l,m ∈ N
n we have

(i) 1 � xk , and
(ii) xk ≺ xl ⇒ xk+m ≺ xl+m .

Then ≺ is called an admissible order.

Every nonzero element f of the free K module K [X] generated by [X] has a unique representation
of the form

f = a1λ1 + · · · + adλd (1)

for some nonzero elements a1, . . . ,ad ∈ K and some distinct elements λ1, . . . , λd ∈ [X].
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Method 1 Zhou’s and Winkler’s method for computing relative Gröbner bases
IN: G = {g1, . . . , gμ}, ≺ and ≺′
OUT: G ′′ = {g′′

1 , . . . , g′′
ν } a ≺-Gröbner basis of I relative to ≺′

1: G ′ := G
2: while there exist f , g ∈ G ′ such that S≺′ ( f , g) is ≺′-reducible to r �= 0 modulo G ′ do
3: G ′ := G ′ ∪ {r}
4: end while
5: G ′′ := G ′
6: while there exist f , g ∈ G ′′ such that S≺( f , g) is ≺-reducible to r �= 0 modulo G ′′ relative to ≺′ do
7: G ′′ := G ′′ ∪ {r}
8: end while
9: return G ′′

Fig. 1. Zhou’s and Winkler’s method for computing relative Gröbner bases.

Let ≺ be an admissible order on [X], and f ∈ K [X] \ {0} of the form (1). Then the leading term
lt≺( f ) of f with respect to ≺ is defined by

lt≺( f ) := max≺ {λ1, . . . , λd},
and its coefficient in f is called the leading coefficient lc≺( f ) of f with respect to ≺.

For the concept of relative reduction and relative Gröbner bases see also Zhou and Winkler (2008).
Levin’s notion of reduction and Gröbner bases with respect to several orderings is closely related
(Levin, 2007).

Definition 2. Let f ,h1, . . . ,hp, r ∈ K [X], g1, . . . , gp ⊆ K [X] \ {0}, and let ≺, ≺′ be two admissible or-
ders such that

(i) f = h1 g1 + · · · + hp gp + r,
(ii) hi = 0 or lt≺(hi gi) � lt≺( f ) for i = 1, . . . , p, and

(iii) r = 0 or lt≺(r) � lt≺( f ) such that

lt≺(r) /∈ {
lt≺(λgi)

∣∣ lt≺′(λgi) �′ lt≺′(r), λ ∈ [X], i = 1, . . . , p
}
.

If r �= f we say that f is ≺-reducible to r modulo {g1, . . . , gp} relative to ≺′ .

Definition 3. Let I ⊆ K [X] be an ideal, G ⊆ I \ {0} finite and let ≺,≺′ be admissible orders such that
every f ∈ I is ≺-reducible to 0 modulo G relative to ≺′ . Then G is called ≺-Gröbner basis of I relative
to ≺′ . If no confusion is possible we say that G is a relative Gröbner basis.

Definition 4. Let f , g ∈ K [X] \ {0} and let ≺ be an admissible order. The S-polynomial S≺( f , g) of f
and g with respect to f is defined as

S≺( f , g) := lcm(lt≺( f ), lt≺(g))

lt≺( f )

f

lc≺( f )
− lcm(lt≺( f ), lt≺(g))

lt≺(g)

g

lc≺(g)
,

where lcm denotes the least common multiple.

Zhou and Winkler (2008, Theorem 3.4) also provide a method which – if it terminates – computes
relative Gröbner bases given by any basis for I and two admissible orders ≺, ≺′ . A similar approach
is used by Levin (2007, Theorem 3.10) for Gröbner bases with respect to several orderings.

Theorem 5. Let I � K [X] be an ideal, ≺,≺′ two admissible orders and G a finite basis for I . If Method 1, given
in Fig. 1, terminates, it computes a ≺-Gröbner basis of I relative to ≺′ .

The proof of the following lemma is similar to the corresponding one for Gröbner bases (e.g.
Winkler, 1996, Theorem 8.3.4). Zhou and Winkler (2008, Proposition 3.1) proved (i) ⇒ (ii), (iii).
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Lemma 6. Let I � K [X] be an ideal and G ⊆ I a finite basis for I . Let ≺ and ≺′ be two admissible orders. The
following are equivalent:

(i) G is a ≺-Gröbner basis of I relative to ≺′ ,
(ii) every f ∈ I is ≺-reducible to 0 modulo G relative to ≺′ ,

(iii) every 0 �= f ∈ I is ≺-reducible modulo G relative to ≺′ .

Let X1, . . . , X p be a partition of {x1, . . . , xn} in p disjoint subsets. For reasons of convenience we
assume that there exist n1, . . . ,np ∈ N such that n1 + · · · + np = n and Xi = {x1+∑i−1

j=1 n j
, . . . , x∑i

j=1 n j
}.

For λ = xk1
1 · · · xkn

n ∈ [X] and 1 � i � p define ordi(λ) := ∑
x j∈Xi

k j and call it the i-order of λ. The

total order of λ is given by ord(λ) := ∑n
j=1 k j .

Define p orderings ≺1, . . . ,≺p on [X] by

λ = xk1
1 · · · xkn

n ≺i xl1
1 · · · xln

n = μ

:⇔ (
ordi(λ),ord(λ),ord1(λ), . . . ,ordi−1(λ),ordi+1(λ), . . . ,ordp(λ),

kn1+···+ni−1+1, . . . ,kn1+···+ni ,k1, . . . ,kn1+···+ni−1 ,kn1+···+ni+1, . . . ,kn
)

<lex
(
ordi(μ),ord(μ),ord1(μ), . . . ,ordi−1(μ),ordi+1(μ), . . . ,ordp(μ),

ln1+···+ni−1+1, . . . , ln1+···+ni , l1, . . . , ln1+···+ni−1 , ln1+···+ni+1, . . . , ln
)
.

Let us consider p − 1 new symbols z2, . . . , zp and let Γ be the free commutative semigroup given
by

Γ := {
xk1

1 · · · xkn
n zl2

2 · · · z
lp
p

∣∣ k1, . . . ,kn, l2, . . . , lp ∈N
}
.

For 0 �= f ∈ K [X] and i ∈ {2, . . . , p} let di( f ) := ordi(lt≺i ( f )) − ordi(lt≺1 ( f )) and define ρ̃ : K [X] → Γ

by

ρ̃( f ) := zd2( f )
2 · · · z

dp( f )
p lt≺1( f ).

Definition 7. (See Levin, 2007.) Let I be an ideal in K [X] and let G ⊆ I be finite. Then G is called a
Gröbner basis of I with respect to ≺1, . . . ,≺p if for any 0 �= f ∈ I there exists g ∈ G such that ρ̃(g)|ρ̃( f ).

3. Change of orders

A crucial point in the theory of Gröbner bases is the computational complexity. A lot of effort
has been put into the development of algorithms allowing for faster Gröbner basis computations and
in algorithms for converting a given Gröbner basis with respect to some admissible order ≺ into a
Gröbner basis with respect to a different order ≺′ . In fact, such a conversion is not a continuous
process because Gröbner bases are preserved under a moderate change of order. Our first goal in this
section is to provide a similar result for relative Gröbner bases. To this end we need the following
lemma.

Lemma 8. Let I � K [X] be an ideal and let G = {g1, . . . , gr} ⊆ I be finite. Let ≺ and ≺′ be two admissible
orders. Then G is a ≺-Gröbner basis of I relative to ≺′ if and only if G is a ≺′-Gröbner basis of I relative to ≺.

Proof. Suppose G is a ≺-Gröbner basis of I relative to ≺′ and let f0 ∈ I . Then by Lemma 6 f0 is
≺-reducible to 0 modulo G relative to ≺′ , i.e., there exist s ∈N and f1, . . . , f s ∈ K [X] such that for all
i = 1, . . . , s the polynomial f i−1 is ≺-reducible to f i modulo G relative to ≺′ in one step and there
exist at least one i0 ∈ {1, . . . , s} and j ∈ {1, . . . , r} with

(i) lt≺′ ( f0) = lt≺′ ( f i0) = lt≺′(
lt≺( f i0 )

lt≺(g j)
g j), and

(ii) lt≺(
lt≺( f i0 )

lt (g )
g j) = lt≺( f i0 ) � lt≺( f0).
≺ j
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Hence, f0 is ≺′-reducible modulo G relative to ≺ and we conclude that G is a ≺′-Gröbner basis of I
relative to ≺. The opposite implication follows similarly and the lemma is proved. �

A crucial point in the Gröbner walk is a result on the preservation of an autoreduced Gröbner
basis under changes of admissible orders within the interior of one Gröbner cone (Collart et al., 1997,
Lemma 2.2). The following example illustrates the use of this result for the computation of relative
Gröbner bases.

Example 9. Let ≺0,≺1,≺2, and ≺3 be admissible orders on [X] and I � K [X] an ideal such that
there exists a finite ≺0-Gröbner basis ∅ �= G ⊆ K [X] of I relative to ≺1 satisfying for every g ∈ G the
conditions

(i) lt≺0(g) = lt≺2 (g), and
(ii) lt≺1 (g) = lt≺3 (g).

By Zhou and Winkler (2008, Proposition 3.1) G is a Gröbner basis of I with respect to ≺0 and ≺1.
By Collart et al. (1997, Lemma 2.2) it follows that G is a Gröbner basis of I with respect to ≺2
and ≺3. Zhou and Winkler state that from this it cannot be concluded that G is a ≺2-Gröbner ba-
sis of I relative to ≺3. However, in order to compute a ≺2-Gröbner basis of I relative to ≺3 we
can skip the first while-loop of Method 1 and in line 5 set G ′′ = G . From conditions (i) and (ii)
it follows that for any gi, g j ∈ G we have S≺0(gi, g j) = S≺2 (gi, g j) but it is not always true that
lt≺0(S≺0 (gi, g j)) = lt≺2(S≺2 (gi, g j)) and lt≺1 (S≺2 (gi, g j)) = lt≺3 (S≺2 (gi, g j)). Therefore we still have
to execute the second while-loop of Method 1. �

The following theorem addresses the situation of Example 9 and shows that in fact we can also
skip the second while-loop of Method 1 under the given conditions.

Theorem 10. Let ≺0,≺1,≺2,≺3 be admissible orders on [X] and let G = {g1, . . . , gr} ⊆ K [X] be a ≺0-
Gröbner basis relative to ≺1 such that for all i ∈ {1, . . . , r} we have

lt≺0(gi) = lt≺2(gi),

lt≺1(gi) = lt≺3(gi).

Then G is a ≺2-Gröbner basis relative to ≺3 .

Proof. Suppose G is a ≺0-Gröbner basis relative to ≺1 and let f0 ∈ 〈G〉. Hence, f0 is ≺0-reducible to
some f1 ∈ 〈G〉 modulo G relative to ≺1, i.e., there exist λ0 ∈ [X], i0 ∈ {1, . . . , r} such that

lt≺0(λ0 gi0) = lt≺0( f0),

lt≺1(λ0 gi0) �0 lt≺1( f0).

We have to distinguish the following two cases:

lt≺0( f0) = lt≺2 ( f0): Because of lt≺0(λ0 gi0) = lt≺2(λ0 gi0) we get that f0 is ≺2-reducible modulo G
relative to ≺1.

lt≺0( f0) ≺2 lt≺2 ( f0): We obtain f1 ∈ 〈G〉 by removing lt≺0( f0) from f0 and inserting finitely many
terms which are strictly smaller than lt≺0( f0) with respect to ≺0 and ≺2 and which are not
bigger than lt≺1 ( f0) with respect to ≺1. Since G is a ≺0-Gröbner basis relative to ≺1 after
finitely many steps – say s – we obtain f s ∈ 〈G〉 such that lt≺0( f s) = lt≺2 ( f s) and there exist
λs ∈ [X], is ∈ {1, . . . , r} such that

lt≺2(λs gis ) = lt≺0(λs gis ) = lt≺0( f s) = lt≺2( f s),

lt≺1(λs gis ) �0 lt≺1( fs) �0 lt≺1( f0).

So f0 is ≺2-reducible modulo gis relative to ≺1.
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Since in any case f0 is ≺2-reducible modulo G relative to ≺1 it follows that G is a ≺2-Gröbner
basis relative to ≺1. Then by Lemma 8 G is a ≺1-Gröbner basis relative to ≺2. Applying a similar
argument as before we obtain that G is a ≺3-Gröbner basis relative to ≺2 and again by Lemma 8 we
conclude that G is a ≺2-Gröbner basis relative to ≺3. �
Example 9 (Continued). By Theorem 10 the set G is a ≺2-Gröbner basis of I relative to ≺3. �
4. Gröbner bases, Levin’s Gröbner bases with respect to several orderings and relative Gröbner bases

The following well-known theorem (e.g. Winkler, 1996, Theorem 8.3.4) characterizing Gröbner
bases has several applications. For us it is interesting because it is used for proving the correctness of
the Gröbner walk.

Theorem 11. Let ≺ be an admissible order on [X], I � K [X] an ideal and G ⊆ I finite. Then G is a Gröbner
basis for I if and only if 〈lt≺(I)〉 = 〈lt≺(G)〉.

Something similar appears in the notion of Gröbner bases with respect to several orderings as
provided by Levin (2007).

Relative Gröbner bases are more general regarding the possible term orders but more restrictive in
the sense that they only take into account two of them. The characterization we suggest shows that
from a structural point of view they are slightly more complicated than Levin’s Gröbner bases with
respect to several term orderings.

Let ≺, ≺′ be two admissible orders on [X]. Due to a result by Robbiano (1985) there exist m ∈
{1, . . . ,n} and U ∈R

n×m such that

α : ([X],≺′) → (
R

s,<lex
)
,

xk �→ kU

is an injective homomorphism. Note that for λ,μ ∈ [X] we have

α(λμ) = α(λ) + α(μ).

Let us consider a new symbol z and let

[X, z]U := {
xkzkU

∣∣ k ∈N
n},

[X, z]U := {
xkzl

∣∣ k ∈ N
n, l ∈ Z

nU , 0 �lex l − kU
}
.

For l1, l2 ∈ Z
nU define zl1 zl2 = zl1+l2 and zl1 xk = xk zl1 . Then [X, z]U and [X, z]U can be considered as

multiplicative monoids.
Define ρ : K [X] → [X, z]U by

ρ( f ) := lt≺( f )zα(lt≺′ ( f )).

Theorem 12. Let G = {g1, . . . , gr} ⊆ K [X] be finite, I := K [X]〈G〉 and let ≺, ≺′ be two admissible orders
on [X]. The following are equivalent:

(i) G is a ≺-Gröbner basis of I relative to ≺′ ,
(ii) ρ(I) ⊆ [X, z]U ρ(G),
(iii) [X, z]U ρ(I) = [X, z]U ρ(G),
(iv) K [X,z]U

〈ρ(I)〉 = K [X,z]U
〈ρ(G)〉.

Proof. “(i) ⇒ (ii)”: Let G be a ≺-Gröbner basis of I relative to ≺′ . Then every 0 �= f ∈ I is ≺-reducible
relative to ≺′ , i.e., there exist λ ∈ [X], g ∈ G such that
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(i) lt≺(λg) = lt≺( f ), and
(ii) lt≺′(λg) �′ lt≺′( f ).

Hence, α(λ) + α(lt≺′ (g)) �lex α(lt≺′( f )) and we obtain

λzα(lt≺′ ( f ))−α(lt≺′ (g)) ∈ [X, z]U .

On the other hand

λzα(lt≺′ ( f ))−α(lt≺′ (g))ρ(g) = λzα(lt≺′ ( f ))−α(lt≺′ (g)) lt≺(g)zα(lt≺′ (g))

= lt≺( f )zα(lt≺′ ( f ))

= ρ( f )

and we conclude ρ(I) ⊆ [X, z]U ρ(G).
“(ii) ⇒ (iii)”: From ρ(I) ⊆ [X, z]U ρ(G) we get [X, z]U ρ(I) ⊆ [X, z]U ρ(G). Conversely from I ⊇ G

we obtain [X, z]U ρ(I) ⊇ [X, z]U ρ(G) and conclude [X, z]U ρ(I) = [X, z]U ρ(G).
“(iii) ⇒ (iv)”: From [X, z]U ρ(I) = [X, z]U ρ(G) we obtain

K [X,z]U

〈
ρ(I)

〉 = K [X,z]U

〈[X, z]U ρ(I)
〉

= K [X,z]U

〈[X, z]U ρ(G)
〉

= K [X,z]U

〈
ρ(G)

〉
.

“(iv) ⇒ (i)”: Suppose K [X,z]U
〈ρ(I)〉 = K [X,z]U

〈ρ(G)〉 and let 0 �= f ∈ I . Then ρ( f ) ∈ ρ(I) and there exist

h1, . . . ,hr ∈ K [X, z]U such that

ρ( f ) =
r∑

i=1

hiρ(gi).

In fact, since ρ( f ) and all the ρ(g) are monomials there exists a particular g ∈ G such that ρ( f ) =
hgρ(g) for some monomial hg ∈ [X, z]U . Then hg = λzl for some λ = xk zkU ∈ [X, z]U and 0 �lex l ∈
Z

nU . Hence, lt≺( f ) = xk lt≺(g) and

zα(lt≺′ ( f )) = zl zkU zα(lt≺′ (g))

= zl zα(xk)+α(lt≺′ (g))

= zl zα(lt≺′ (xk g)),

i.e., α(lt≺′(xk g)) �lex α(lt≺′ ( f )) which implies lt≺′ (xk g) �′ lt≺′ ( f ). We conclude that f is ≺-reducible
modulo G relative to ≺′ which is equivalent to G being a ≺-Gröbner basis relative to ≺′ . �
Remark 13. Zhou and Winkler (2008) proved the correctness of Method 1 but did not discuss its
computational cost. On one hand, looking at the method it is obvious that computing a relative Gröb-
ner basis is at least as expensive as computing a Gröbner basis. On the other hand, it seems as if
a relative Gröbner basis is some sort of ‘extended’ Gröbner basis and its computation should not be
much more costly than that of a Gröbner basis. In fact, Theorem 12 provides a better understanding
of the computational cost of Method 1 by showing that computing a relative Gröbner basis for the
ideal I in K [X] also means computing a basis for the ideal K [X,z]U

〈ρ(I)〉 in K [X, z]U . Since K [X, z]U

is not necessarily Noetherian it is by no means obvious that for every ideal I ⊆ K [X] there exists a
finite basis of K [X,z]U

〈ρ(I)〉. Hence, Theorem 12 explains why for certain examples Method 1 does not
terminate.
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Example 14. Consider the two admissible orders ≺= lex(x3 > x1 > x2) and ≺′= grevlex(x3, x2, x1) on
[x1, x2, x3], i.e., they are given by

xa1
1 xa2

2 xa3
3 ≺ xb1

1 xb2
2 xb3

3 :⇔ (a3,a1,a2) <lex (b3,b1,b2),

and

xa1
1 xa2

2 xa3
3 ≺′ xb1

1 xb2
2 xb3

3 :⇔ (a1 + a2 + a3,−a1,−a2) <lex (b1 + b2 + b3,−b1,−b2).

The leading terms with respect to ≺ and ≺′ will be underlined and dotted underlined, respectively.
For i ∈N let

Gi = {
f0 := x3

1x2
2. . . . . + x4

1x2, f1 := x3
2x2

3. . . . . + x1x2
2x2

3

}
∪ {

g j := x3+4 j
1 x2x3. . . . . . . . . . . . + x2+4 j

2 x2
3

∣∣ j = 0, . . . , i
}
.

The remainder of this example consists of three parts:

(i) we show that Method 1 does not terminate if we try to compute a ≺-Gröbner basis of I :=
〈 f0, g0〉 relative to ≺′ ,

(ii) we show that there cannot exist any ≺-Gröbner basis of I relative to ≺′ – making termination of
Method 1 impossible, and

(iii) we use Theorem 12 in oder to understand why there cannot exist any ≺-Gröbner basis of I
relative to ≺′ .

(i) We start by showing the non-termination of Method 1 for the given situation. It can be easily
verified (e.g. using Maple) that G0 is a Gröbner basis of I with respect to ≺′ . We use the method
provided by Zhou and Winkler (2008) (see Theorem 5) for computing a ≺-Gröbner basis of I relative
to ≺′ . For every i ∈ N the S-polynomial of f0 and gi with respect to ≺ is given by

S( f0, gi) = x1+4i
2 x2

3 f0 − x4
1 gi = x3

1x3+4i
2 x2

3 − x7+4i
1 x2x3. . . . . . . . . . . .

Then for every 0 � j � i we have

(a) lt≺(x3
1x1+4(i− j)

2 g j) = lt≺(x6+4 j
1 x2+4(i− j)

2 x3. . . . . . . . . . . . . . . . . . . . + x3
1x3+4i

2 x2
3) = lt≺(S( f0, gi)), and

(b) lt≺′ (S≺( f0, gi)) = x7+4i
1 x2x3 ≺′ x6+4 j

1 x2+4(i− j)
2 x3 = lt≺′(x3

1x1+4(i− j)
2 g j).

Hence, S( f0, gi) is not ≺-reducible modulo {g0, . . . , gi} relative to ≺′ . Furthermore it is not ≺-
reducible modulo f0. Nevertheless we have

(a) lt≺(x2
1x1+4i

2 f1) = lt≺(x2
1x4+4i

2 x2
3. . . . . . . . . . . + x3

1x3+4i
2 x2

3) = lt≺(S( f0, gi)), and

(b) lt≺′ (x2
1x1+4i

2 f1) = x2
1x4+4i

2 x2
3 ≺′ x7+4i

1 x2x3 = lt≺′ (S( f0, gi)).

Hence, S( f0, gi) is ≺-reducible modulo f1 relative to ≺′ to

S( f0, gi) − x2
1x1+4i

2 f1 = −x7+4i
1 x2x3. . . . . . . . . . . − x2

1x4+4i
2 x2

3 =: h1.

It is immediate that h1 is not ≺-reducible modulo f0. Furthermore for every 0 � j � i we have

(a) lt≺(x2
1x2+4(i− j)

2 g j) = x2
1x4+4i

2 x2
3 = lt≺(h1), and

(b) lt≺′ (h1) = x7+4i
1 x2x3 ≺′ x5+4 j

1 x3+4(i− j)
2 x3 = lt≺′ (x2

1x2+4(i− j)
2 g j).
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So h1 is not ≺-reducible modulo {g0, . . . , gi} relative to ≺′ . Nevertheless we have

(a) lt≺(x1x2+4i
2 f1) = lt≺(x1x5+4i

2 x2
3. . . . . . . . . . . + x2

1x4+4i
2 x2

3) = lt≺(h1), and

(b) lt≺′(x1x2+4i
2 f1) = x1x5+4i

2 x2
3 ≺′ x7+4i

1 x2x3 = lt≺′(h1).

Hence, h1 is ≺-reducible modulo f1 relative to ≺′ to

h1 + x1x2+4i
2 f1 = −x7+4i

1 x2x3. . . . . . . . . . . + x1x5+4i
2 x2

3 =: h2.

It is immediate that h2 is not ≺-reducible modulo f0. Furthermore for every 0 � j � i we have

(a) lt≺(x1x3+4(i− j)
2 g j) = x1x5+4i

2 x2
3 = lt≺(h2), and

(b) lt≺′(h2) = x7+4i
1 x2x3 ≺′ x4+4 j

1 x4+4(i− j)
2 x3 = lt≺′(x1x3+4(i− j)

2 g j).

So h2 is not ≺-reducible modulo {g0, . . . , gi} relative to ≺′ . Nevertheless we have

(a) lt≺(x3+4i
2 f1) = lt≺(x6+4i

2 x2
3. . . . . . . . + x1x5+4i

2 x2
3) = lt≺(h2), and

(b) lt≺′(x3+4i
2 f1) = x6+4i

2 x2
3 ≺′ x7+4i

1 x2x3 = lt≺′(h2).

Hence, h2 is ≺-reducible modulo f1 relative to ≺′ to

h2 − x3+4i
2 f1 = −x7+4i

1 x2x3. . . . . . . . . . . − x6+4i
2 x2

3 = −gi+1.

It is immediate that gi+1 is not ≺-reducible modulo { f0, f1}. Furthermore for every 0 � j � i we have

(a) lt≺(x4+4(i− j)
2 g j) = x6+4i

2 x2
3 = lt≺(gi+1), and

(b) lt≺′(gi+1) = x7+4i
1 x2x3 ≺′ x3+4 j

1 x5+4(i− j)
2 x3 = lt≺′ (x4+4(i− j)

2 g j).

So gi+1 is not ≺-reducible modulo {g0, . . . , gi} relative to ≺′ .
Hence, the method provided by Zhou and Winkler (2008) will not terminate on this example.

Nevertheless it could still be the case that there exists a ≺-Gröbner basis of I relative to ≺′ but the
provided method cannot compute it.

(ii) In the following we show that no ≺-Gröbner basis of I relative to ≺′ exists. Suppose there
exists an element 0 �= h ∈ I such that infinitely many gi are ≺-reducible modulo h relative to ≺′ .
Then lt≺(h) = xa1

2 xa2
3 and lt≺′ (h) = xb1

1 xb2
2 xb3

3 , i.e.,

(a1 + a2
0
1

)
�lex

(b1 + b2 + b3
−b1
−b2

)
and

(b3
b1
b2

)
�lex

(a2
0
a1

)
.

Since infinitely many gi are ≺-reducible modulo h relative to ≺′ we also have(b1 + b2 + 2 + 4i − a1 + b3 + 2 − a2
−b1

−b2 − 2 − 4i + a1

)
�lex

( 5 + 4i
−3 − 4i

−1

)

for infinitely many i ∈N. We have to distinguish several cases:

a1 + a2 < b1 + b2 + b3: Then 4 + 4i < b1 + b2 + b3 − a1 − a2 + 4 + 4i � 5 + 4i, i.e., b1 + b2 + b3 − a1 −
a2 = 1. Then we have −b1 � −3 − 4i , i.e., b1 � 3 + 4i. This can obviously not happen for
infinitely many i ∈ N.
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a1 + a2 = b1 + b2 + b3: We distinguish further
0 < −b1: Then b1 < 0 which is not possible.
0 = −b1: Then −1 � −b2, i.e., b2 � 1.

b2 = 0: Then b3 = a1 + a2 and b3 � a2.
b3 < a2: Then a1 < 0 which is not possible.
b3 = a2: Then a1 = 0, i.e., h = cxa2

3 + lower terms with respect to ≺ and ≺′ for some
0 �= c ∈ K . Since G0 is a ≺′-Gröbner basis of I we see that h is not ≺′-reducible, i.e.,
h /∈ I .

b2 = 1: Then b3 = a1 + a2 − 1 and b3 � a2.
b3 < a2: Then b3 = a2 − 1 and a1 = 0, i.e., h = c1xb3+1

3 +c2x2xb3
3 + lower terms with

respect to ≺ and ≺′ for some 0 �= c1, c2 ∈ K . Again since G0 is a ≺′-Gröbner basis of
I we see that h is not ≺′-reducible, i.e., h /∈ I .

b3 = a2: Then 1 = b2 � a1 = 1, i.e., h = cx2xb3
3 + lower terms with respect to ≺ and ≺′

for some 0 �= c ∈ K . Again since G0 is a ≺′-Gröbner basis of I we see that h is not
≺′-reducible, i.e., h /∈ I.

Hence, there cannot exist any ≺-Gröbner basis of I relative to ≺′ .
Zhou and Winkler (2008) proved the correctness of Method 1 showing that if it terminates it

returns a relative Gröbner basis. Since for the given example no ≺-Gröbner basis relative to ≺′ exists
Method 1 cannot terminate.

(iii) We conclude this example by applying Theorem 12 in order to understand why there cannot
exist any ≺-Gröbner basis of I relative to ≺′ . From part (i) we know that {g j | j = 0, . . . ,∞} ⊆ I .
Hence,{

ρ(g j) = x2+4 j
2 x2

3z(5+4 j,−3−4 j,−1)
∣∣ j = 0, . . . ,∞} ⊆ ρ(I) ⊆K [X,z]U

〈
ρ(I)

〉
.

From part (ii) we know that there does not exist any 0 �= h ∈ I such that infinitely many gi are ≺-
reducible modulo h relative to ≺′ . In other words: there does not exist any λ ∈ ρ(I) dividing infinitely
many ρ(gi). Since ρ(I) contains only monomials the ideal K [X,z]U

〈ρ(I)〉 is a monomial ideal. We
conclude that there does not exist any μ ∈ K [X,z]U

〈ρ(I)〉 such that any term of μ divides infinitely
many ρ(gi). Hence, the ideal K [X,z]U

〈ρ(I)〉 cannot possess a finite basis. In particular, K [X,z]U
〈ρ(I)〉

cannot possess a finite basis which is a subset of [X, z]U . By Theorem 12 this is the reason why there
cannot exist any ≺-Gröbner basis of I relative to ≺′ . �
5. Conclusion

We have shown that relative Gröbner bases are symmetric with respect to the given term or-
ders. We have used this property in order to obtain a result concerning the preservation of a relative
Gröbner basis under changes of admissible orders which leave the leading terms of the elements of
the relative Gröbner basis in concern unaltered. Furthermore we have presented a characterization of
relative Gröbner bases resembling a well known characterization of Gröbner bases. From this char-
acterization it has turned out to be questionable whether a relative Gröbner basis always exists. We
have presented a counterexample. Despite the fact that currently relative Gröbner bases are the most
used tool for the algorithmic computation of bivariate dimension polynomials in contrast to Levin’s
Gröbner bases with respect to several orderings the worst-case complexity of relative Gröbner bases
is not bounded.
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