
Complexity Analysis of the Bivariate
Buchberger Algorithm in Theorema?

Alexander Maletzky1 and Bruno Buchberger2

1 Doctoral College “Computational Mathematics” and RISC,
Johannes Kepler University, Linz, Austria
alexander.maletzky@dk-compmath.jku.at,

https://www.dk-compmath.jku.at/people/alexander-maletzky
2 RISC, Johannes Kepler University, Linz, Austria

bruno.buchberger@risc.jku.at,
http://www.risc.jku.at/home/buchberg

Abstract. In this talk we present the formalization and formal verifica-
tion of the complexity analysis of Buchberger’s algorithm in the bivariate
case in the computer system Theorema as a case study for using the sys-
tem in mathematical theory exploration.
We describe how Buchberger’s original complexity proof for Groebner
bases can be carried out within the Theorema system. As in the original
proof, the whole setting is transferred from rings of bivariate polyno-
mials over fields to the discrete space of pairs of natural numbers by
mapping each polynomial to the exponent vector of its leading mono-
mial. The complexity analysis is then carried out in the discrete space,
mostly by means of combinatorial methods that require many tedious
case distinctions, making this proof a natural candidate for automated
theorem proving. However, following our Theorema philosophy, we do
not expect general theorem provers (like resolution provers) to carry out
this task in a natural and efficient way. Rather, we designed and im-
plemented a special prover for such proofs. We show how the Theorema
philosophy of working in parallel both on the meta level (designing and
implementing special provers) and on the object level (design of the no-
tions and theorems) of a theory can lead to a new quality and style of
mathematical research.

Keywords: Groebner basis, Buchberger algorithm, mathematical the-
ory exploration, complexity analysis, Theorema

1 Introduction

The purpose of this talk is to present a major case study in how mathematical
theory exploration can be carried out in the Theorema system: Theorema [16,
10] is a system which was initiated by Bruno Buchberger and developed in his

? This research was funded by the Austrian Science Fund (FWF): grant no. W1214-
N15, project DK1

2 A. Maletzky - B. Buchberger

Theorema group at RISC since the the mid-nineties. It uses the computer al-
gebra system Mathematica [13] as software frame. Its user interface is currently
re-designed and -implemented (Theorema Version 2.0). The case study that is
presented here explores the complexity of Buchberger’s algorithm [1, 2, 7] for
computing Groebner bases of polynomial ideals over fields in the bivariate case.

It is important to note already at this point that the underlying theory (i. e.
the complexity analysis) is not “new” in the sense that it was developed only
recently with the help of the Theorema system, but in fact it was already devel-
oped more than 30 years ago by Buchberger in [3–5]. This, however, allows one
to observe one of the essential strategies of Theorema: It is easily possible to take
an existing theory produced step by step in ordinary mathematical notation, and
convert it into a completely formal version in almost exactly the same (natural
mathematical) notation in Theorema with hardly any effort. Significant portions
of the proofs can then be generated automatically by using existing Theorema
provers and designing a few others (which might be used later again in similar
but different theories).

The focus of this talk is not on Theorema itself – how it is implemented,
how it works, etc. – but mainly on how it can be used in mathematical theory
exploration, i.e. in the everyday-life of “working mathematicians”.

2 Theoretic Background

The case study in this paper is concerned with the analysis of the complexity
of Buchberger’s algorithm [1, 2, 7] in the bivariate case. Buchberger’s algorithm
computes so-called Groebner bases of polynomial sets over fields. A number of
fundamental problems for polynomial ideals can be solved once a Groebner basis
for the ideal is known.

Hence, deriving bounds on the complexity of this algorithm has been of
interest since the introduction of Groebner bases: Even the very first presentation
of the algorithm in Buchberger’s 1965 PhD thesis already contained a rough
analysis. Later [3–5] Buchberger concentrated especially on the bivariate case
and managed to derive tight bounds on the degrees of the polynomials in the
Groebner basis both in the case of using graded admissible term orderings and
pure lexical orderings. These degree-bounds are expressed in terms of the degrees
of the polynomials in the input basis.

For the sake of completeness it has to be mentioned that it is well-known al-
ready for a long time that Buchberger’s algorithm has double exponential time-
and space complexity in the number of indeterminates [14], and that the degrees
of the polynomials in the Groebner basis resulting from an application of Buch-
berger’s algorithm are polynomial in the maximum degree of the polynomials in
the input set, if the number of indeterminates is fixed [12, 15].

The complexity analysis in [3] and [5] proceeds in the following way: First of
all, the whole problem setting is transferred from K[x, y], the ring of bivariate
polynomials over the field K, to the discrete space N2 by mapping each non-
zero polynomial to the exponent vector of its leading monomial w. r. t. some

Complexity Analysis in Theorema 3

graded admissible ordering. The rest of the elaboration is combinatorial, mainly
distinguishing between all possible cases that might occur during the algorithm.
None of these cases requires deep mathematical thinking so that the exploration
lends itself to automated theorem proving (It should be noted, however, that
the set-up and flow of the proof - which is basically the invention of a suitable
degree invariant in the main loop of the algorithm - is non-trivial).

We followed the ideas of [3, 5] in our formalization, with some slight devia-
tions:

1. The domain of the exponents is not restricted to N, but to so-called totally-
ordered Abelian monoids D,

2. As much as possible, the number of indeterminates n is not restricted to two
since some results also hold for general n

3. In the bivariate case, a different partition of the “exponent space” D2 is
chosen which is different from the one in [3]; In fact, it is not a partition,
but only a cover.

The first two deviations were made for the purpose of making everything as gen-
eral as possible. A totally-ordered Abelian monoid is a commutative semigroup
with unit, where in addition

– The monoid operation possesses the so-called cancellation property, meaning
that x + z = y + z is always equivalent to x = y.

– A total order relation ≤ is defined, which also has the cancellation property
in the sense that x + z ≤ y + z is always equivalent to x ≤ y.

It is quite easy to see that N is such a totally-ordered Abelian monoid, as are Z,
Q, R and even C with a lexicographic ordering.

The third deviation is a simplification: It turns out that the proof of the
main theorem in [3] can be simplified a bit, and that a big part of the proof of
the main theorem in [5] becomes superfluous, if our new partition (or cover) is
used3.

3 Formalizing the Theory in Theorema

Formalizing a mathematical theory in Theorema does not require any knowl-
edge that goes beyond the mathematical knowledge and mathematical thinking
culture of a “working mathematician”. In particular, no specific programming
language needs to be known and no special syntax has to be learned. Rather,
Theorema syntax is just a “cultivated” version of ordinary (“two-dimensional”)
mathematical syntax. However, it is “formal” in the sense that it can be pro-
cessed by algorithmic inference techniques.

As an example, consider the aforementioned criterion that detects unneces-
sary steps in Buchberger’s algorithm (the chain criterion):

3 For the readers familiar with the proof strategy in [3, 5]: There, the focus is very
much on contours of sets of points in N2, and quite some effort is needed to reduce
the general case to the case of contours. This is not needed at all.

4 A. Maletzky - B. Buchberger

Definition 1. For all x, y and A:

chainCrit(x, y,A) :⇔ ¬ ∃
1≤j≤|A|

∧ Aj |z
deg(lcm(x,Aj)) < deg(z)
deg(lcm(Aj , y)) < deg(z)


where z denotes lcm(x, y).

This textbook-style definition already comes very close to the Theorema syntax:
There, one also has quantifiers, abbreviations, subscripts, and many other syn-
tactic constructs available. Hence, for reading and writing Theorema definitions
and theorems, one does not have to get acquainted to a new, unnatural notation
first.

3.1 Details of the Formalization

Formalizing a theory in Theorema is not straightforward in the sense that many
decisions have to be made regarding how the theory should be formalized and
which goals one wants to achieve. The need for making decisions is not a defi-
ciency of the Theorema formal approach to mathematics but, rather, a system
like Theorema should allow to set up a theory in many different “views” and
styles according to the tastes and exploration goals of the person working with
the system.

One decision we had to make, for instance, was about using functors [6, 17, 8]
for building up towers of domains in a structured way; In particular, as already
indicated above, we did (and do) not want to restrict ourselves to the case of
pairs of exponents over N. Hence, the first idea at hand is to use a functor that
maps domains D and natural numbers n to the domain of exponent vectors of
length n over domain D and defines all the necessary operations on them (like
chainCrit). However, later it turned out that in each part of the theory always
one particular domain D and dimension n are fixed anyway, meaning that even
in proofs one does not have to fall back to other choices of D or n. Thus, a
functor is not needed, and so we dropped it and introduced “global constants”
for D and n instead.

3.2 Computations

If one wants to actually carry out computations involving notions such as chain-
Crit in Theorema, there is no need to do anything further than entering the
definition into the system, in a form which is very close to usual textbook no-
tation (c. f. definition 1). As soon as this is done, one can immediately compute
with the notion, which is because the equational part of higher-order predicate
logic (the rewrite mechanism that successively replaces equals by equals (in a
directed way) until no more replacements are possible) can be considered as the
interpreter of a universal programming language. In other words, part of the
(Theorema version of) predicate logic is a programming language.

Complexity Analysis in Theorema 5

For instance, if one wants to check whether the chain criterion holds for ex-
ponent vectors 〈10, 0〉 and 〈0, 12〉 and tuple 〈〈10, 0〉, 〈11, 10〉, 〈0, 12〉〉 of exponent
vectors, one basically just has to type in

chainCrit[〈10, 0〉, 〈0, 12〉, 〈〈10, 0〉, 〈11, 10〉, 〈0, 12〉〉]

and hit shift+enter - Voilà! The result will be True, meaning that the chain
criterion indeed holds.

Note that Theorema provides built-in support for tuples: Tuples are simply
represented as sequences of expressions enclosed in angle brackets. Either the
individual elements are given explicitly, or a quantifier may be used to construct
the elements of the tuple. For the sake of convenience we decided to represent
exponent vectors as tuples, too.

4 Designing a New Prover in Theorema

One of the main ideas behind Theorema is the the philosophy that automated
reasoning can practically only be carried out if an entire hierarchy of special
provers is at the disposal of the user, each designed for proving theorems in a
certain theory. This is in contrast to having only one single proving technique
(e. g. resolution) available, which, theoretically, would be sufficient but does not
generate short and structured proofs. The key strategy for this approach is “prov-
ing by intermediate principles”, introduced in [9].

Therefore, we also decided to create a new prover for our own purpose, which
should be capable of proving theorems in the present theory of complexity anal-
ysis. This prover is, in particular, able to handle tuples, total order relations,
associative-commutative operations, and functions related to minimum and max-
imum in a way which is both correct and concise.

Creating a new prover in Theorema is a bit more involved than formalizing
a theory: Since it operates on objects of the object level (formulas), the prover
itself is an object of the meta level. We chose Mathematica as the meta-language
for Theorema, which means that new provers have to be implemented directly in
Mathematica. Thus, users who want to add new provers to Theorema, must know
how to program in Mathematica. If one knows (basic) Mathematica, writing a
prover is again easy: It only consists of two parts: The first part is designing a
collection of inference rules, each transforming one proof situation (given by a list
of formulas constituting the current knowledge and a single formula constituting
the current proof goal) into new proof situations in a style which very much
resembles sequent calculus proving. The second part consists of finding a good
strategy that guides the proof search, i. e. decides in which order the rules are
tried, whether all applicable rules or only the first one are applied, etc. The
two parts are independent of each other in the sense that one can combine
the inference rules and strategies in any way; In particular, when creating a new
prover it is possible to only specify the inference rules but use an already existing
strategy, or the other way round.

6 A. Maletzky - B. Buchberger

Here, a subtle problem of automated proving has to be mentioned: Before
one can really trust the output produced by an automated prover, one first has
to verify the prover itself, i. e. prove it correct. Otherwise, there will always be
a logical gap in the computer-supported treatment of formalized mathematics.
Now, since provers in Theorema have to be implemented in Mathematica (on the
meta level) and can thus not be the subject of computations of whatever kind
on the object level in Theorema, this implies that Theorema cannot be used for
verifying its own provers. Although some research has already been and is still
being conducted to overcome this issue in Theorema (c. f. [11]), at the present
stage one still has to live with it. And, of course, mathematical proving without
a proving system has to “trust” that the human prover is correct in each and
any individual proof step.

5 Verifying the Theory in Theorema

As soon as both the formalization has been done and a suitable prover has
either been implemented or chosen from a list of already existing ones, one can
immediately start proving. For this, one just has to set up the proof task, i. e.
select the formula one wants to prove (the proof goal), the formulas one wants
to use (the knowledge base), and some other options depending on the prover
and proof strategy selected (e. g. which of the inference rules one really wants
to make use of, parameters concerning search time and -depth, or the degree of
user interaction). Finally, one clicks a button and waits until a result is obtained
- unless some of the inference rules require user interaction, such as finding
witnesses for existentially quantified proof goals or selecting the proof branch
that looks most promising.

Indeed, the prover we created in the frame of our complexity analysis relies
on such user interaction to some extent: Apart from the usual tasks that might
come to one’s mind and that have been pointed out above, like instantiating
quantifiers in a clever way, we also allow the user to

– select an implication in the knowledge base, first prove its premise in a sub-
proof, and then continue with the original goal, having the consequence of
the implication among the assumptions, and to

– “exchange” the current goal and a formula in the knowledge base by putting
their negations “on the other side”, i. e. from goal to knowledge and from
knowledge to goal, respectively.

Both of these strategies proved to be quite convenient on several occasions.

Another feature of our prover is that it heavily makes use of (conditional)
rewriting of terms and formulas by rewrite rules originating from formulas in the
knowledge base. For instance, if

∀
x,y,A

chainCrit(x, y,A x x)⇔ chainCrit(x, y,A)

Complexity Analysis in Theorema 7

is known4, then every (sub-)formula of the form

chainCrit(x, y,A x x)

in the proof situation (with x, y and A arbitrary terms) can actually be replaced
by

chainCrit(x, y,A)

All this is not something we invented only for our own purpose, but rather it is
once again a fundamental concept in the philosophy of Theorema.

6 Conclusion

We want to demonstrate that the Theorema system, whose user-interface is
currently redesigned, provides a good approach for doing computer-supported
mathematics in a formal and formally verified way. Not only does computer-
supported theory exploration have all the advantages it is expected to have
(automatically finding proofs, performing computations, having well-structured
theories), but it also helps in improving the mathematical contents: We could
easily generalize the domain of exponents from N to totally-ordered Abelian
monoids, and we also realized that big parts of Buchberger’s original elaboration
are in fact superfluous, meaning that some of the proofs could drastically be
shortened. From a methodological point of view, this is interesting because - as
expected in our philosophy - formal treatment of mathematics will often lead
also to improvements and purification of the mathematical ideas themselves.

References

1. Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Find-
ing the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Poly-
nomial Ideal). PhD thesis, Mathematical Institute, University of Innsbruck, Austria,
1965. English translation in J. of Symbolic Computation, Special Issue on Logic,
Mathematics, and Computer Science: Interactions. Vol. 41, Number 3-4, Pages 475-
511, 2006.

2. Bruno Buchberger. A Criterion for Detecting Unnecessary Reductions in the Con-
struction of Groebner Bases. In E. W. Ng, editor, Proceedings of the EUROSAM 79
Symposium on Symbolic and Algebraic Manipulation, Marseille, June 26-28, 1979,
volume 79 of Lecture Notes in Computer Science, pages 3-21. Springer-Verlag Berlin
- Heidelberg - New York, 1979.

3. Bruno Buchberger and Franz Winkler. Miscellaneous Results on the Construction of
Groebner-Bases for Polynomial Ideals. Technical Report 137, Johannes Kepler Uni-
versity Linz, Technisch-Naturwissenschaftliche Fakultaet, Insitut fuer Mathematik,
June 1979.

4 “A x x” denotes appending object x to tuple A

8 A. Maletzky - B. Buchberger

4. Bruno Buchberger. A Note on the Complexity of Constructing Groebner-Bases. In J.
A. van Hulzen, editor, Computer Algebra (Proceedings of EUROCAL 83, European
Computer Algebra Conference, London, March 28-30, 1983), volume 162 of Lecture
Notes in Computer Science, pages 137-145. Springer-Verlag Berlin - Heidelberg -
New York - Tokyo, 1983.

5. Bruno Buchberger. Miscellaneous Results on Groebner-Bases for Polynomial Ide-
als II. Technical Report 83-1, Department of Computer And Information Sciences,
University of Delaware, 1983.

6. Bruno Buchberger. Mathematica as a Rewrite Language. In T. Ida and A Ohori and
M. Takeichi, editors, Functional and Logic Programming (Proceedings of the 2nd
Fuji International Workshop on Functional and Logic Programming, November 1-4,
1996, Shonan Village Center), pages 1-13. Copyright: World Scientific, Singapore -
New Jersey - London - Hong Kong, 1996.

7. Bruno Buchberger. Introduction to Groebner Bases. London Mathematical Society
Lecture Notes Series 251. Cambridge University Press, April 1998.

8. Bruno Buchberger. Groebner Rings in Theorema: A Case Study in Functors and
Categories. Technical Report 2003-49, Johannes Kepler University Linz, Spezial-
forschungsbereich F013, November 2003.

9. Bruno Buchberger. Proving by First and Intermediate Principles, November 1-2
2004. Invited Talk at Workshop on Types for “Mathematics / Libraries of Formal
Mathematics”, University of Nijmegen, The Netherlands.

10. Bruno Buchberger, Adrian Crǎciun, Tudor Jebelean, Laura Kovcs, Temur Kutsia,
Koji Nakagawa, Florina Piroi, Nikolaj Popov, Judit Robu, Markus Rosenkranz and
Wolfgang Windsteiger. Theorema: Towards Computer-Aided Mathematical Theory
Exploration. Journal of Applied Logic, 4(4):470-504, 2006.

11. Martin Giese and Bruno Buchberger. Towards Practical Reflection for Formal
Mathematics. RISC Report Series 07-05, Research Institute for Symbolic Compu-
tation (RISC), University of Linz, Schloss Hagenberg, 4232 Hagenberg, Austria,
2007.

12. Marc Giusti. Some effectivity problems in polynomial ideal theory. In J. Fitch, edi-
tor, International Symposium on Symbolic and Algebraic Computation (EUROSAM
84), volume 174 of Lecture Notes in Computer Science, pages 159-171. Springer-
Verlag Berlin - Heidelberg, 1984.

13. Wolfram Mathematica (http://www.wolfram.com/mathematica/)
14. Ernst W. Mayr and Albert R. Meyer. The complexity of the word problems for com-

mutative semigroups and polynomial ideals. Advances in Mathematics, 46(3):305-
329, December 1982.

15. H. Michael Moeller and Ferdinando Mora. Upper and lower bounds for the degree
of Groebner bases. In J. Fitch, editor, International Symposium on Symbolic and
Algebraic Computation (EUROSAM 84), volume 174 of Lecture Notes in Computer
Science, pages 172-183. Springer-Verlag Berlin - Heidelberg, 1984.

16. The Theorema system (http://www.risc.jku.at/research/theorema/description/)
17. Wolfgang Windsteiger. Building Up Hierarchical Mathematical Domains Using

Functors in THEOREMA. In A. Armando and T. Jebelean, editors, Electronic Notes
in Theoretical Computer Science, volume 23 of ENTCS, pages 401-419. Elsevier,
1999.

