
Adaptive CAD model (re–)construction with THB–splines

Gábor Kissa,∗, Carlotta Giannellib, Urška Zorea, Bert Jüttlera, David Großmannc, Johannes Barnerc

aInstitute of Applied Geometry, Johannes Kepler University of Linz, Austria
bINdAM c/o Dipartimento di Matematica e Informatica “U. Dini”, Università degli Studi di Firenze, Italy

cMTU Aero Engines AG, Munich, Germany

Abstract

Computer Aided Design (CAD) software libraries rely on the tensor-product NURBS model as standard spline
technology. However, in applications of industrial complexity, this mathematical model does not provide sufficient
flexibility as an effective geometric modeling option. In particular, the multivariate tensor–product construction precludes
the design of adaptive spline representations that support local refinements. Consequently, many patches and trimming
operations are needed in challenging applications. The investigation of generalizations of tensor–product splines that
support adaptive refinement has recently gained significant momentum due to the advent of Isogeometric Analysis (IgA)
[2], where adaptivity is needed for performing local refinement in numerical simulations. Moreover, traditional CAD
models containing many small (and possibly trimmed) patches are not directly usable for IgA. Truncated hierarchical
B–splines (THB–splines) provide the possibility of introducing different levels of resolution in an adaptive framework,
while simultaneously preserving the main properties of standard B–splines. We demonstrate that surface fitting schemes
based on THB–spline representations may lead to significant improvements for the geometric (re–)construction of critical
turbine blade parts. Furthermore, the local THB–spline evaluation in terms of B–spline patches can be properly combined
with commercial geometric modeling kernels in order to convert the multilevel spline representation into an equivalent
– namely, exact – CAD geometry. This software interface fully integrates the adaptive modeling tool into CAD systems
that comply with the current NURBS standard. It also paves the way for the introduction of isogeometric simulations
into complex real world applications.

Keywords: Truncated hierarchical B-splines, adaptive refinement, CAD interfaces, turbine blades.

1. Introduction

Computer Aided Design (CAD) software usually pro-
vide a graphical and interactive user interface that allows
designers and engineers to shape and manipulate industrial
models by using a set of processing operations associated
to the geometric modeling kernel. The CAD standard re-
lated to spline representations relies on the B–spline tech-
nology and its non–uniform rational extension (NURBS).
The key properties of the B–spline model meet the require-
ments of CAD applications. In particular, in virtue of the
convex hull property, the parametric spline representation
is manipulated through a simpler modeling tool (control
net), which reflects the shape of the underlying geome-
try. Unfortunately, the extension of univariate B–splines
to the multivariate setting is based on the tensor-product
approach, thus excluding adaptive mesh refinements. The
resulting uniform distribution of the degrees of freedom

∗Corresponding author
Email addresses: gabor.kiss@dk-compmath.jku.at (Gábor

Kiss), carlotta.giannelli@gmail.com (Carlotta Giannelli),
Urska.Zore@jku.at (Urška Zore), bert.juettler@jku.at (Bert
Jüttler), David.GROSSMANN@mtu.de (David Großmann),
Johannes.Barner@mtu.de (Johannes Barner)

Figure 1: Turbine blade fillet represented by truncated hierarchical
B– (THB–) splines. The different meshes represent control points at
different levels of the THB–spline hierarchy.

Preprint submitted to Elsevier February 28, 2014

Figure 2: Adaptive airfoil model based on THB–spline representa-
tions. Note the different resolution of the hierarchical meshes.

may also cause unwanted oscillations in the fitting of com-
plex non–uniform data sets.

Interpolation or approximation of measured data is re-
quired in many industrial applications, as for example,
instrument calibration, data analysis or reverse engineer-
ing. Automatic surface fitting of complex data with high
precision is a non–trivial issue that should properly ad-
dress many critical steps, see e.g., [31]. These include, for
example, a satisfactory treatment of noisy and unevenly
distributed point clouds, as well as the construction of a
suitable parametrization. In addition, when considering
a fitting algorithm based on tensor–product B–spline sur-
faces, the limit of representing solely rectangular regions
naturally appears, while measured data usually cover more
general shapes.

The integration of adaptive approximation schemes into
an industrial geometric modeling environment can provide
new and more flexible design capabilities. The same, and
in some critical cases even better, accuracy can be obtained
by significantly reducing the number of design parameters.
Figures 1 and 2 show two adaptive models related to the
reconstruction of turbine blade geometries for the model-
ing process of aero engines.

Approximation techniques based on different kinds of
adaptive spline models are currently receiving particular
attention — not only in computer aided geometric design,
but also for the solution of partial differential equations
in isogeometric analysis. To promote a deeper integration
between CAD boundary representations and isogeometric
simulations, one demanding challenge is also the automatic
construction of (adaptive) solid models that are able to ex-
actly preserve a given spline boundary representation [32].
Extensions of classical tensor–product B–splines that offer

adequate local refinement include: hierarchical B–splines
[8, 16], T–splines [23, 24], polynomial splines over hier-
archical T–meshes (PHT–splines) [3, 4] and LR–splines
[1, 5]. All of them can be applied for surface modeling
and geometry reconstruction. Hierarchical B–splines were
considered already in [9, 14], T–splines have recently been
used in [28, 29, 30], and applications of PHT–splines were
explored in [4, 27].

By exploiting an underlying tensor–product structure
at different refinement levels, hierarchical B–splines in-
herit several desirable properties (linear independence, lo-
cal support, non–negativity, completeness of the spline
space), which are fundamental to define an effective spline
representation for uniform and non–uniform refinement,
for different degrees and smoothness as well as in the mul-
tivariate setting [11, 18]. Its potential in isogeometric
analysis has recently been demonstrated [20, 26]. Addi-
tional results concerning the partition of unity property,
approximation power and strong stability have been de-
rived by considering the truncated basis for the hierarchi-
cal B–spline space (THB–splines) [12, 13, 15, 25]. Gener-
alizations of the truncated bases to wider classes of spline
spaces and an extension to cover arbitrary topologies have
also been presented [22, 33].

The remaining three adaptive spline constructions:

- allow the modeling of objects with general topology
as they support extraordinary vertices in the mesh
with geometric continuity (T–splines, special PHT–
splines [17]) and provide a powerful geometric mod-
eling tool, also supported by commercial CAD tools
(T–splines); this is currently not available for hier-
archical splines;

- do not always guarantee the linear independence and
need scaling or rational normalization to achieve the
partition of unity property of the basis functions (T–
splines, LR–splines); the importance of these fea-
tures in the context of isogeometric analysis mo-
tivated the study of restricted mesh configurations
together with more involved refinement procedures
(analysis suitable T–splines [21], Bressan’s class of
LR splines [1]);

- do not provide straightforward multivariate general-
izations (T–splines, PHT–splines) and may require
a case-by-case analysis for the construction of the
basis depending on degrees and smoothness (in par-
ticular, PHT–splines have been mainly considered in
the case of reduced smoothness, e.g., for C1 cubics).

This paper explores the use of the THB–spline approx-
imation framework focusing on its successful integration
with current CAD systems. The remainder of the paper
consists of four main sections. The following section recalls
the definition of THB–splines. Sections 3 and 4 present the
adaptive surface fitting algorithm and related examples.
The fifth section discusses the integration of THB–splines

2

into a commercial CAD environment. Finally, Section 6
concludes the paper.

2. Truncated hierarchical B–splines

We recall the construction of a hierarchical spline space,
focusing on truncated hierarchical B–splines (THB–splines),
a recently introduced basis [12]. We present the construc-
tion in the bivariate case of bidegree (p, p) only, though we
can define THB–splines in a general multivariate setting
and consider different degrees in any dimension.

2.1. Nested spline spaces

We consider adaptive refinement of a tensor–product
B–spline surface of bidegree p = (p, p) that is defined on
the domain [0, 1]2 ⊂ R2. To allow for adaptivity, we con-
sider a nested sequence of L + 1 B–spline spaces, defined
by nested knot vectors. More precisely, the space at level
` = 0, . . . , L is defined with respect to two non–decreasing
knot vectors

0 = u`0 ≤ · · · ≤ u`m` = 1, 0 = v`0 ≤ · · · ≤ v`n` = 1,

where m` and n` denote the number of knots in the pa-
rameter directions u and v at level `. We require that the
knots at level `− 1 are also present at level ` at least with
the same multiplicity.

The boundary knots 0 and 1 have multiplicity p + 1,
but multiplicities of the inner knots do not exceed p. The
non–empty Cartesian products of the knot intervals

(u`i , u
`
i+1)× (v`j , v

`
j+1)

will be denoted as cells of level `.
We define the knot-index sets of level `,

U` = {0, . . . ,m`}, V` = {0, . . . , n`}

and K` = U` × V`.
Later, we will use the knot indices to identify the B–

splines of level `+ 1 that are obtained by refining a given
B–spline of level `. In order to do so, we define a simple
relation between the index sets that also takes into account
the multiplicity of the knots: for any two indices i ∈ U`,
j ∈ Uk (and similarly for indices from V`,Vk), we say that
i precedes j and denote this by (i, `) 4 (j, k), if u`i < ukj or

if u`i = ukj and one of the following conditions concerning
the knot multiplicities and levels is satisfied:

` < k and max{r| u`i+r = u`i} ≥ max{r| ukj+r = ukj },
or
` > k and max{r| u`i−r = u`i} ≤ max{r| ukj−r = ukj }.

This definition is extended to the knot-index sets K`. More
precisely, i = (i, i′) ∈ K` precedes j = (j, j′) ∈ Kk, denoted
by (i, `) 4 (j, k), if (i, `) 4 (j, k) and (i′, `) 4 (j′, k).

For each level ` we consider the set of (tensor-product)
B–splines of bidegree p that are defined on the given knot

vectors. The B–spline β`
i with index i = (i, i′) (that corre-

sponds to the two smallest knots in its support) is defined
by the pair

(u`i , . . . , u
`
i+p+1), (v`i′ , . . . , v

`
i′+p+1) (1)

of local knot vectors. The indices of all B–splines of level
` form the set

N ` = {0, . . . ,m` − p− 1} × {0, . . . , n` − p− 1}.

Due to the assumption concerning nested knot sequences,
any B–spline of level ` admits a representation as a unique
linear combination of B–splines of any higher level k, the
coefficients of which can be computed with the knot in-
sertion algorithm. We define the refinement relation <−
between indices i ∈ N ` and j ∈ N k that identifies the non-
zero (and even positive) coefficients in this representation.

More precisely, (i, `) <− (j, k) if and only if the repre-
sentation of β`

i with respect to B–splines of level k > ` has
a positive coefficient for βk

j . We then say that the B–spline

β`
i refines to the B–spline βk

j .
This relation can be characterized with the help of 4,

(i, `) <− (j, k) ⇔

(i, `) 4 (j, k) and (j + p + 1, k) 4 (i + p + 1, `),

where 1 = (1, 1). Clearly, (i, `) <− (j, k) implies supp β`
i ⊇

supp βk
j but not vice versa, if multiple knots are present.

2.2. Hierarchical splines

The construction of hierarchical splines goes back to
Forsey and Bartels [8]. They proposed to perform local
modifications of a B–spline surface by adding contribu-
tions of functions from the B–spline spaces of higher levels.
Formally, the extension of the B–spline space is achieved
by splitting each index set N ` of level ` into

N ` = P` ∪̇ S`, (2)

where ∪̇ denotes the disjoint union, i.e., the two sets on ei-
ther side of the symbol have no members in common. The
B–splines with indices from P` are said to be passive, since
we do not include them into our space, and the B–splines
with indices from S` have been selected. All functions of
the coarsest level have been selected, S0 = N 0 and P0 = ∅.

The hierarchical spline space is defined by

H =

{ L∑
`=0

∑
i∈S`

c`i β
`
i | c`i ∈ R3

}
.

Based on the index sets S` we identify the subdomains
Ω` ⊆ [0, 1]2 of the parameter domain that correspond to
the various levels of refinement,

Ω` =
⋃
i∈S`

supp β`
i .

The choice of S` is subject to the first two index set con-
straints:

3

(i) among all index sets S` defining the same subdomain
Ω`, we always use the largest one:

∀i ∈ N ` : supp β`
i ⊆ Ω` ⇒ i ∈ S`;

(ii) the subdomains are nested, Ω` ⊇ Ω`+1:

∀i ∈ N ` ∀j ∈ S`+1 : (i, `) <− (j, `+ 1) ⇒ i ∈ S`.

The set of B–splines with indices from
⋃L

`=0 S` may be
linearly dependent.

2.3. Bases of hierarchical splines

A basis for the hierarchical space H has been con-
structed by Kraft [16] (and reconsidered under weaker as-
sumptions in [26]) by eliminating those B–splines that can
be represented as linear combinations of selected B–splines
of higher levels. More precisely, the index set S` is split
into two disjoint subsets,

S` = A` ∪̇R`.

The functions with indices from A` are called active, since
we will keep them in the basis. The remaining functions
are called refined, since they have been replaced by lin-
ear combinations of selected functions from higher levels.
The subsets A` and R` are defined by the third index set
constraint:

(iii) the set R` contains exactly the indices of those func-
tions that can be represented by the selected func-
tions of the next higher level,

∀i ∈ S` : i ∈ R` ⇔⋃{
j ∈ N `+1| (i, `) <− (j, `+ 1)

}
⊆ S`+1.

Kraft’s basis of H is obtained by collecting the active B–
splines (i.e., with indices in A`) from all levels.

The truncated hierarchical B–splines (THB–splines) form
another basis of the same hierarchical spline space but with
improved properties, see [12]. The idea is to modify Kraft’s
basis functions in order to obtain a basis that forms a par-
tition of unity. Based on the nested nature of the spaces
and the refinement properties of the B-spline basis, this
is achieved by truncation of the active functions from a
coarser level with respect to the selected functions from
the finer levels. More precisely, in their representations
with respect to higher levels, we remove the contributions
of the selected functions. As a consequence, the functions
in the resulting hierarchical basis have reduced supports,
thereby also forming a basis with better sparsity proper-
ties.

We define the THB-basis and compare it with the ear-
lier approaches by presenting and analyzing the evaluation
algorithm.

The algorithm evaluates the value f(u, v) of a function
f ∈ H. Proceeding from coarse to fine levels it constructs

the B–spline representation of f at level ` from the previ-
ous one via knot insertion (except for ` = 0) and modifies
it according to the chosen representation. Finally, f(u, v)
is found with the help of standard B–spline evaluation at
level L. In each step, it considers only the (p+ 1)2 coeffi-
cients of those splines that take non-zero values at (u, v).

By choosing one of the two lines marked with †, and
similarly for ‡, the algorithm performs the evaluation of
the representation of f

• with respect to the full system of selected B–splines
(which was used in the definition of H),

• with respect to the Kraft’s basis, and

• with respect to the THB–splines:

algorithm EVALUATE {T}HB SURFACE(*coeffs c[], int

L, float u, float v, *indexset S, *indexset A)

\\ c[] are the coefficients, L is L, (u,v) specifies the
\\ evaluation point, S[l] and A[l] are S` and A`.
for l from 0 to L do {

Identify the set I[l] of the (p+ 1)2 indices of level l
B–splines with supports containing (u,v) and create
temporary variables d[l] for their coefficients.
for all i in I[l] do {
if l == 0 then { d[l][i] = 0 }
else { compute d[l] by applying knot insertion

to d[l-1] }
†if i in S[l] then { \\ full
†if i in A[l] then { \\ Kraft/THB
‡d[l][i] = d[l][i] + c[l][i] \\ full/Kraft
‡d[l][i] = c[l][i] \\ THB

} } }
Use standard B–spline evaluation to compute x(u,v)

from the coefficients d[L] and return(x).
end

2.4. Properties of THB–splines

The evaluation algorithm for Kraft’s basis requires to
modify the coefficients of level ` by adding the coefficients
of the active basis functions to them. In contrast, the THB
evaluation proceeds by simply replacing them with the co-
efficients of the active basis functions. This is equivalent
to the construction of the basis in [12].

A detailed analysis of algorithms for THB–splines has
been presented in [15]. Figure 3 shows an example of
THB–splines defined on a hierarchical mesh consisting of
three levels of detail.

Compared to earlier approaches, THB–splines possess
the following advantageous properties.

• THB–splines form a non-negative partition of unity.
This property makes them attractive for geometric
modeling applications. The examples in Figures 1
and 2 show the control meshes (which consist of
all control points that are associated with active B–
splines) of the various levels.

4

Figure 3: Truncated hierarchical B–splines of bidegree (2, 2) with
three refinement levels (left). The hierarchical mesh in the parame-
ter domain is also shown (right), where the colors indicate the con-
tributions of the different levels.

• Compared to Kraft’s basis, THB–splines have the
same or a smaller support. Thus, they improve the
sparsity properties of the Kraft’s basis.

• Under reasonable assumptions on the given knot con-
figuration, THB–splines are strongly stable with re-
spect to the maximum norm, where the constants
appearing in the stability inequalities are indepen-
dent of the selection of the subdomains and of the
number of levels [13].

• THB–splines span the full space of piecewise poly-
nomial functions with the smoothness specified by
given knot configuration on the considered polyno-
mial grid, provided that the subdomains satisfy cer-
tain geometric conditions. See [11] for the case of
single knots and [18] for the general setting.

3. Adaptive THB–spline approximation

Surface fitting algorithms based on hierarchical B–spline
methods were previously considered in [9, 10, 14]. More
recently, a basic framework for approximation with THB–
splines was also presented [12]. We extend the basic frame-
work by integrating a smoothing term, which is essential
for successful applications in problems of industrial com-
plexity, and by considering different refinement strategies.
The examples presented in Section 4 and 5 will show how
the proposed hierarchical fitting scheme outperforms stan-
dard B–spline approximations, not only with respect to a
reduced number of degrees of freedom, but also concerning
the quality of the computed solution.

3.1. Least-squares approximation

We consider a surface reconstruction method from mea-
sured data by computing a least-squares approximation

s(u, v) =

L∑
`=0

∑
i∈A`

c`i τ
`
i (u, v), (u, v) ∈ [0, 1]2, (3)

where the basis functions τ `i are THB–splines. We consider
given data

x = (x(1),x(2),x(3)) = (x1, . . . ,xm)T ∈ Rm×3,

where xi = (xi1, xi2, xi3) are the Cartesian coordinates of
the measured (or sampled) points with associated param-
eter values

(u1, v1), . . . , (um, vm) ∈ [0, 1]2.

Figure 4 shows a typical data set, which contains points
on a fillet of a turbine blade. In all our examples we used
standard parameterization methods to generate the asso-
ciated parameter values, see [6, 7]. Due to the shape of the
fillet and the fact that our parameter domain is simply the
unit square, we obtain a highly non-uniform distribution of
the parameter values, see Figure 4. As we shall see later,
this fact makes it difficult to deal with these data when
using standard tensor-product spline representations.

Figure 4: A turbine blade with highlighted area of the fillet (left).
The measurement of the fillets often produce non–uniformly sampled
data sets where the upper part has significantly less measured data
points as the bottom (bottom–right). The corresponding distribu-
tion of parameter values is also shown (top–right).

We seek the vector of coefficients (control points)

c = (. . . , c`i , . . .)
T ∈ Rn×3,

where n =
∑L

`=0 |A`| is the number of THB–splines from
all levels, for the THB–spline representation (3) that min-
imizes the objective function

F (c) =

m∑
k=1

||s(uk, vk)− xk||2 + λJ(c),

5

where J(c) is the smoothing (or regularization) term and
λ is a positive weight that controls the influence of the
smoothness (regularization) term. Enlarging the value of λ
increases the fairness of the approximating surface, while
simultaneously increasing the approximation error.

Without regularization, the linear system obtained from
the objective function would easily become singular, e.g.,
if the number of local degrees of freedom in a certain re-
gion of the surface exceeds the number of available data
points in that region. In particular, we use the thin plate
spline energy

J(c) =

∫ ∫
[0,1]2

s2uu + 2 s2uv + s2vvdudv (4)

as regularization term.
The objective function F is quadratic with respect to

the unknown coefficients. The solution of the optimization
problem is computed by solving the sparse linear system

(ATA+ λE)c(i) = ATx(i) (i = 1, 2, 3)

for each of the three columns c(i) of the vector of coeffi-
cients, where the k-th row of A = (τ `i (uk, vk))k,(i,`) con-
tains the values of the THB–splines at (uk, vk) and the
matrix E is contributed by the regularization term.

3.2. Assembling the system

The matrix ATA has the elements

a(i,`),(i′,`′) =

m∑
k=1

τ `i (uk, vk) τ `
′

i′ (uk, vk),

(`, `′ = 0, . . . , L; i ∈ A`; i′ ∈ A`′).

This matrix is similar to a mass matrix in numerical sim-
ulation. In that case, the evaluation points are the Gauss
nodes of the elements. In our case, the evaluation points
are the parameter values of the given data. In order to effi-
ciently assemble the matrix ATA (and similarly the right-
hand side of the system) we proceed as follows. First, for
each index k, we identify all THB–splines that contribute
a non-zero value at (uk, vk),

L⋃
`=0

{(i, `) | i ∈ A` and τ `i (uk, vk) 6= 0}. (5)

When computing this index set, we start with level 0 and
increase the level until the indices of all (p+ 1)2 B–splines
of level ` + 1 that do not vanish at this point belong to
P`+1, i.e., this set of indices correspond to B–splines at
level `+ 1 which are all passive.

We simplify the computation of this index set by con-
sidering the supports1 of the original B–splines β`

i , which

1The support of a (tensor-product) B–spline is an axis–aligned
box in the parameter domain, while the support of a THB–splines
can have a more complicated shape.

bound the supports of the THB–splines τ `i . The obtained
set (5) is then a superset of the relevant indices.

Second, we evaluate all THB–splines with indices in
this set at (uk, vk), and third, we create and add the con-
tributions to the matrix elements a(i,`),(i′,`′) for all relevant
index pairs.

The regularization term generates the matrix E with
the elements

e(i,`),(i′,`′) =

∫ ∫
[0,1]2

∂uuτ
`
i ∂uuτ

`′

i′ + 2 ∂uvτ
`
i ∂uvτ

`′

i′

+ ∂vvτ
`
i ∂vvτ

`′

i′ dudv

which is similar to a stiffness matrix. It is assembled by
using Gaussian quadrature on the polynomial pieces of the
hierarchical spline functions.

We consider all cells (i.e., the Cartesian products of
the knot spans) of level 0 and split them by repeatedly
inserting the knots of the higher levels. The refinement
stops when we arrive at a cell of level ` such that the in-
dices of all B–splines of the next level ` + 1 that do not
vanish on this cell belong to P`+1. This cell then defines
a polynomial piece of the hierarchical spline function. Si-
multaneously we collect the indices of the THB–splines
that do not vanish on this cell in a list, similar to the as-
sembly of the matrix A. We evaluate all THB–splines and
their derivatives at the Gauss nodes of the cell and add
the contributions to the matrix elements e(i,`),(i′,`′) for all
relevant index pairs.

3.3. Refinement strategies

The regularized least-squares approximation is repeated
until the error

max
i=1,...,m

||s(ui, vi)− xi||2

is below a fixed tolerance or a prescribed number of itera-
tions is reached. After each step, the accuracy of the ap-
proximation result is improved by performing refinement
in the critical regions of the surface, thus providing addi-
tional degrees of freedom and a higher resolution. A typi-
cal requirement in high-end applications — such as turbine
blades — is that 90−95% of data points are approximated
with an error below σ = 10−6.

The procedure is initialized by choosing A0 = N 0 and
P` = N ` for ` = 1, . . . , L, where L is the number of levels
in the spline hierarchy.

We investigated two different refinement strategies.

• The absolute threshold (AT) approach: the points
where the error exceeds a fixed threshold σ are marked
for refinement.

• The relative threshold (RT) approach: a certain per-
centage of points with the largest errors is marked
for refinement.

6

Both approaches select a set of indices that identify the
points xk with associated parameter values (uk, vk) where
the THB–spline surface needs to be refined. For each index
we first compute the current level of the associated point,

max{` | (uk, vk) ∈ Ω`},

and we identify the cell of level ` that contains (uk, vk).
This cell and a certain number of neighboring cells (deter-
mined by the value of an extension parameter, see Fig. 5) is
then added to the subdomain Ω`+1, provided that `+ 1 ≤
L. This is done by adding the indices of all B–splines of
level `+ 1 whose support is contained in this region to the
index set A`+1 that identifies the active functions.

Figure 5: Extension of a selected cell (green) for extension parame-
ters 1 (cyan) and 2 (red).

After modifying the index sets (A`)`=0,...,L, however,
the index set constraints (i-iii) need not be satisfied. The
next section describes three algorithms that allow to re-
store the validity of the three constraints.

3.4. Implementation aspects

In order to implement the hierarchy of truncated B–
splines, we use characteristic matrices already discussed
in [15]. In contrast to the approach in [15], we omit the
data structure describing the domain hierarchy. In fact,
this data structure is redundant as the matrices implicitly
contain the needed information. However, one needs to
perform certain operations to maintain the validity of the
hierarchy of the subdomains.

For each level ` = 0, . . . , L we define a characteristic
matrix M ` to identify the B–spline basis, defined with re-
spect to the two knot vectors (1) at level `. More precisely,
an entry of a matrix M ` with an index i corresponds to
the function with the same index i ∈ N `.

In order to store the implicit information about the
hierarchy, we describe the partition of N ` by choosing dif-
ferent entries M `

i of the matrix M `:

M `
i =


0, i ∈ P`,

1, i ∈ A`,

2, i ∈ R`.

The characteristic matrix is stored using a sparse data
structure, since the number of non-zero entries is generally
small.

The matrices M ` represent a valid hierarchy of spaces
and domains, provided that the partitions ofN ` satisfy the

index set constraints (i–iii) described in Section 2. Conse-
quently, the basis for THB–spline space can easily be iden-
tified by only considering functions with indices i ∈ A` for
each level `, i.e., with entry 1 in the characteristic matrix.

During the refinement procedure, the characteristic ma-
trices are updated by changing the values of certain entries
from 0 (passive) to 1 (active), wherever the enlargement
of a subdomain involves adding the support of the cor-
responding non-active B–spline. Proceeding from fine to
coarse level we then perform the three maintenance oper-
ations: closing, nesting and cleaning, in order to obtain
index sets that again satisfy the constraints (i–iii):
algorithm MAINTAIN(*mat M, int L)

\\ M is the list of characteristic matrices
\\ L is the finest level
CLOSE(M, L) \\ closing
for l from L-1 to 0 do {
NEST(M, l) \\ nesting
CLOSE(M, l) \\ closing
CLEAN(M, l) \\ cleaning
}

end

The closing operation – which is needed to satisfy the
first index set constraint (i) – is performed by the algo-
rithm CLOSE. For each passive function at level `, we check
whether every cell of its support is covered by selected
functions of the same level. If this is the case, then the
status of that function is changed to active.
algorithm CLOSE(*mat M, int l)

\\ M is the list of characteristic matrices, l is the level
for all i with M[l][i] = 0 do {
M[l][i] = 1

for all cells c⊂ supp β`
i do {

covered = 0

for all j with supp β`
j ⊃ c do {

if M[l][j] >= 1 then {
covered = 1

break \\ for all j
} }
if covered == 0 then {
M[l][i] = 0

break \\ for all cells
} } }

end

Since the bidegree of the basis is p, the support of the
function contains at most (p + 1)2 cells of level `. The
algorithm can be accelerated by considering only passive
functions in the vicinity of functions that changed their
status from passive to active since the last call of CLOSE

for this level. In order to keep the presentation simple, we
do not give further details.

The algorithm NEST maintains the second index set
constraint (ii), i.e., the domain hierarchy. Any passive
function of level ` that refines only to selected functions
of level ` + 1 (according to the relation <−) changes its
status to refined.

7

The cleaning is performed by the third algorithm CLEAN.
Dealing with the proper selection of refined functions (iii),
it is quite similar to NEST. Any active function of level `
that refines only to selected functions of level `+1 changes
its status to refined.

These two algorithms are obtained by choosing either
the three lines marked by † or by ‡ below:
†algorithm NEST(*mat M, int l)
‡algorithm CLEAN(*mat M, int l)

\\ M is the list of characteristic matrices, l is the level
†for all i with M[l][i] == 0 do {
‡for all i with M[l][i] == 1 do {
M[l][i] = 2

for all j with (i,l) <− (j,l+1) do {
if M[l+1][j] == 0 then {
†M[l][i] = 0
‡M[l][i] = 1

break \\ for all j
} } }

end

The number of B–splines of level `+ 1 that a function
refines to (according to the relation <−) depends on the
knot configuration. For instance, in the case of single knots
and dyadic refinement of the two knot vectors, we have to
consider (p + 1)2 B–splines of level ` + 1. Again, both
algorithms can be significantly accelerated by considering
only functions in the vicinity of B–splines of level ` + 1
that changed their status from passive to selected after
their last call for this level.

4. Numerical examples

Our tests were performed on several synthetic data sets
— created by uniform sampling of analytical functions —
and on more challenging industrial data sets related to
turbine blade parts (see Figure 1-2 and Section 5). All
tests were initialized with a THB–spline basis of size 8 ×
8 and bi-degree (3,3), resulting in curvature continuous
surfaces as the standard case in demanding engineering
applications.

The THB–splines and the adaptive fitting algorithm
were implemented in C++. The presented tests were exe-
cuted on PC running SUSE Linux Enterprise Desktop 11
(Intel XEON E31240 3.30 GHz, 16 GB RAM, 64 bit).

4.1. Comparison of the refinement strategies

The convergence speed and the resulting domain struc-
ture of the THB–spline fitting procedure strongly depends
on the refinement strategy considered in the hierarchical
approximation framework. In Section 3 we proposed two
different approaches to identify the regions with higher er-
rors: the absolute (AT) and the relative threshold (RT).

In Table 1 we compare the number of iterations and
degrees of freedom of the absolute (AT) and the rela-
tive threshold (RT) refinement strategies for the 3 peak

data set2 which was already considered in [12], see Fig-
ure 6). The data are contained in an axis–aligned box of
size 2× 2× 0.65. We terminate the refinement procedure
when at least 99% of the errors were below the thresh-
old σ = 10−6 — thereby even exceeding the standard in-
dustrial precision requirements mentioned in the previous
section — or when the number N of iterations reached 10.
By setting the regularization parameter to λ = 10−9, we
obtain the number of iterations and degrees of freedom re-
ported in Table 1. We may observe that, in general, even
if both refinement strategies can achieve the same level of
accuracy, the AT strategy requires less iterations. Further-
more, the choice of the optimal refinement percentage in
case of the RT strategy is not easy and may depend both
on the shape and the distribution of the data set.

strategy # iterations degrees of percentage maximum

freedom error

AT 5 5,637 99.94 2.55e-06

RT (1 %) 10 1,981 32.16 5.15e-05

RT (5 %) 8 6,434 99.94 2.24e-06

RT (10 %) 6 5,053 99.94 2.25e-06

RT (20 %) 5 5,569 99.94 2.55e-06

Table 1: Number of iterations and degrees of freedom associated
to the absolute (AT) and relative (RT) threshold strategies for the
3 peak data set. The last column specifies the percentage of the
number of points that satisfy the error threshold σ = 10−6.

In addition, as shown in Figure 6, the RT strategy
tends to create a more fractal–like domain structure. This
fact has negative influence on the complexity of the fi-
nal surface and the required number of tensor product
B–spline patches needed to perform an exact export of
THB–splines into a standard CAD format, as described
later in Section 5.2. Also, the RT strategy does not lead
to a substantially smaller number of control points.

The RT strategy has some advantages if one tries to
find the optimal THB–spline surface for a given number of
levels. In this situation, one would use a rather small toler-
ance, and the RT strategy concentrates on the refinement
in the regions where the largest errors occur. In contrast,
the AT refinement would quickly produce a large number
of control points.

However, in all practical test cases with a given er-
ror threshold, AT performed better than the RT strategy.
Consequently, we will only consider the absolute threshold
refinement strategy in the remaining examples.

4.2. Influence of the regularization term

The regularization parameter assures that the solved
system of equations is not singular even for high refine-

2The data is computed by uniform sampling points of
the function f(x, y) = 1.5(

√
(10x− 3)2 + (10y − 3)2)−1 +

1.5(
√

(10x+ 3)2 + (10y + 3)2)−1 + 1.5(
√

(10x)2 + (10y)2)−1 for
(x, y) ∈ [−1, 1]2.

8

(a) absolute threshold (b) relative threshold

Figure 6: THB–spline approximation with corresponding control mesh for the 3 peak data set. The absolute threshold approach (a) generates
a less fractal–like domain structures in comparison to the relative threshold strategy (RT 10%) (b). The top views of the control grids are
also shown.

ment levels. At the same time it smooths the resulting
surface in case of noisy input data. Naturally, in case of
data sets with sharp features, the smoothing effect is in
contradiction to the required accuracy of the approxima-
tion. For these reasons, the choice of λ is essential for
generating accurate results and at the same time minimiz-
ing the number of required iterations.

The dependency of the approximation error and the
condition number of the matrix on the regularization pa-
rameter λ is discussed in Table 2. Our tests show that
in the two analyzed3 cases the regularization parameter
should be smaller then 10−8 to reach the required accu-
racy (more than %99 data points with an error below the
threshold σ = 10−6). For larger values of λ the smoothing
effect prevents the solution from capturing the fine details
of the original surface even for high refinement levels. In
general, the choice of λ = 10−9 provided a satisfactory be-
havior for all tested data sets. These include the industrial
examples shown in Section 5.

4.3. Impact of the extension parameter

The choice of the extension parameter (used in the re-
finement) may influence the accuracy of the approxima-
tion as well as the size of the corresponding THB–spline

3In addition to the 3 peak data set, previously introduced, we
consider the Rvachev data set, computed by uniform sampling of the

function f(x, y) =
(x+y)

2
+

√(
x−y
2

)2
for [x, y] ∈ [0, 1]2.

(a) 3 peak data set

λ degrees of % condition objective maximum

freedom number function error

10−7 7,077 98.80 2.70e+09 2.70e-03 2.22e-04

10−8 5,587 99.58 7.48e+10 3.90e-04 2.54e-05

10−9 5,629 99.94 7.20e+11 1.26e-04 2.55e-06

10−10 5,629 100 6.27e+12 9.93e-05 2.55e-07

(b) Rvachev data set

λ degrees of % condition objective maximum

freedom number function error

10−7 8,501 95.00 2.41e+09 2.39e-02 1.17e-04

10−8 8,959 97.02 8.97e+09 2.57e-03 1.24e-05

10−9 8,833 99.02 2.07e+10 2.59e-04 1.25e-06

10−10 8,759 100 1.94e+11 2.59e-05 1.25e-07

Table 2: The number of degrees of freedom, the condition num-
ber and the value of the objective function obtained with different
values of the regularization parameters λ for the 3 peak (a) and the
Rvachev (b) data set shown in Figure 7. The third column specifies
the percentage of points that satisfy the error threshold σ = 10−6.

representation. By enlarging this parameter, the number
of newly introduced degrees of freedom increases, thereby
providing more flexibility in the neighborhood of the area
with high error.

Table 3 compares the number of degrees of freedom and

9

Figure 7: Approximation of the Rvachev function with THB–splines
(left) with regularization parameter λ = 10−10. The top view of the
corresponding control mesh is also shown (right).

the approximation errors for different values of the exten-
sion parameter, again for the 3 peak data set. As expected,
the optimal value of this parameter is dp2e. This corre-
sponds to the smallest possible extension that is required
to add at least one new basis function to the THB–spline
basis at the next refinement level. For larger values of the
extension parameter, we may observe that an increase of
the number of coefficients does not always corresponds to
significant improvements with respect to the accuracy of
the approximation.

extension # degrees of % objective maximum

iterations freedom function error

2 5 5,629 99.94 1.26e-04 2.55e-06

3 5 6,170 99.94 9.96e-05 2.55e-06

4 5 6,841 99.94 7.08e-05 2.55e-06

5 5 7,396 99.94 5.93e-05 2.55e-06

Table 3: Number of iterations, degrees of freedom and related value
for the objective function with respect to different extension param-
eters obtained by sampling 104 data points from the 3 peak data set.
The regularization parameter is set to λ = 10−9 and the required
error threshold to σ = 10−6.

4.4. Global vs. local refinement

The accurate modeling and reconstruction of surfaces
with sharp features and small details cause many difficul-
ties for current CAD software. Furthermore, the enormous
size of the resulting geometries has a negative influence on
all post–processing steps. On the other hand the local
refinement of THB–splines provides an effective tool for
constructing the detailed structures, while simultaneously
minimizing the size of the resulting geometry.

Table 4 and Figure 8 compare the number of degrees
of freedom for different number of iterations of the fitting
procedure for the Rvachev data set. The growth of the size
of the standard B–spline basis is exponential. Thus, the
global refinement method reaches its limits after several
refinement steps and the solving of the underlying system

of equations becomes too expensive in terms of computa-
tional time and memory. In contrast to this, the growth
of the THB–spline basis remains fairly moderate.

degrees of objective maximum

freedom function error

local global local global local global

1 169 169 8.69e+00 8.69e+00 1.28e-02 1.28e-02

2 529 529 2.53e+00 2.53+00 6.36e-03 6.36e-03

3 1,729 1,849 7.97e-01 7.97e-01 2.97e-03 2.97e-03

4 4,147 6,889 2.42e-01 2.42e-01 1.02e-03 1.02e-03

5 8,841 26,569 2.59e-04 2.59e-04 1.26e-06 1.26e-06

6 9,233 104,329 2.51e-04 2.36e-04 1.19e-06 1.15e-06

7 9,625 413,449 2.44e-04 2.25e-04 1.16e-06 1.10e-06

8 10,017 n/a 2.43e-04 n/a 1.15e-06 n/a

Table 4: The size of the THB–spline basis remains moderate even
for high refinement levels (first column), while it grows much faster
for tensor-product B–splines (Rvachev data set).

4.5. Computing times

Each iteration of the presented adaptive fitting proce-
dure consists of three steps:

1. the refinement of the THB–spline basis, i.e., adapta-
tion and maintenance of the sets of active functions;

2. the assembly of the linear system;

3. the solution of the linear system4.

In our current experimental implementation, the total com-
puting time is dominated by the first two steps. To give an
idea, in order to generate the THB–spline approximation
of the fillet data set with 38,260 points (Figure 1), where
the number of degrees of freedom varies between 169 for
1 level and 20,553 for 7 levels after several iterations, the
first two steps need a few seconds up to a few minutes,
while the solver time is always less than a second.

We are currently exploring various possibilities to speed
up these computations. For example, the B–spline rep-
resentations of THB–splines is precomputed in order to
speed up their evaluation. More precisely, each THB–
spline is then represented by its B–spline coefficients at
the coarsest possible level. This precomputation is per-
formed by slightly modifying the THB–spline evaluation
algorithm. Obviously, a natural way to further optimize
the performance for data sets of high complexity relies on
parallel computing techniques.

5. CAD integration of THB–splines

The process of converting a measured data set into a
CAD object — often referred to as geometry acquisition

4We used the biconjugate gradient stabilized method solver
(BiCGSTAB) from the Eigen library, eigen.tuxfamily.org

10

Figure 8: While the size of the globally refined tensor–product basis grows exponentially and the growth of the size of the locally refined basis
decreases (left), the difference between the resulting values of the objective function is not significant (right).

and reconstruction — is a crucial part in certain industrial
applications, for example, in analyzing manufacturing tol-
erances with respect to their aerodynamic and structural
mechanical impact. The introduced adaptive fitting frame-
work with THB–splines improves the required number of
degrees of freedom and the overall stability of the recon-
struction process while maintaining the accuracy of the
standard fitting technique.

This leads to a dramatic performance enhancement in
related industrial applications. This is illustrated in Sec-
tion 5.1 where the reconstruction process related to a cru-
cial part of an aircraft turbine blade is illustrated. Sub-
sequently, Section 5.2 presents the export of THB–spline
geometries into standard tensor–product B–splines, which
provides a useful tool for integrating hierarchical spline
representations into standard CAD software.

5.1. Adaptive geometry reconstruction

Industrial data sets are often generated by an optical
measurement system producing a large amount of non–
uniformly distributed points describing the shape of the
object. A non–uniform sampling and a strongly varying
shape of the data causes several problems during the fitting
procedure with standard techniques. This limitation of the
tensor–product structure can be eliminated by using the
adaptive THB–splines fitting framework.

Therefore, we investigated the reconstruction of the fil-
let part of a turbine blade as one of the challenging geo-
metrical parts of an aero engine. Figure 4 shows the used
point cloud which was parametrized by the technique de-
scribed in [7]. The fully automatically reconstructed fillet
geometry by using B–splines and THB–splines is shown in
Figure 9. As the noisy reflection lines show, the tensor–
product spline surface suffers from strong oscillations on
its upper part, whereas the same region on the hierarchi-
cal spline surface is perfectly smooth. This results from
the fact that, within the standard technique, no optimal
number of degrees of freedom exists to avoid oscillations
in the upper fillet part while generating an accurate fitting
geometry on the lower fillet part. Note that the problem of

oscillations may not be solved with standard B–spline sur-
faces. Higher values of the regularization parameter does
not lead to an effective solution: even if the amplitude and
frequence of the oscillations may decrease, the unwanted
oscillations will be present until the surface becomes pla-
nar, without obtaining the desired smooth curved surface.
For this reason, an adaptive scheme is needed to compute
a flexible and accurate fitting by exploiting the possibility
of identifying different levels of resolution. This demon-
strates the superior behavior of the adaptive fitting frame-
work with truncated hierarchical geometries in comparison
with the use of standard tensor–product geometries.

5.2. Conversion to tensor–product patches

Despite the advantages of THB–splines, the current
CAD standard relies on tensor–product B–splines or, more
generally, on tensor-product NURBS. Therefore, a proce-
dure for exporting THB–spline geometries into the stan-
dard format is needed.

The hierarchical construction of THB–splines offers a
natural way to perform this operation by computing the
coefficients of the tensor–product representation directly
from the control points of the original surface. To execute
this conversion efficiently, we need to split the original ge-
ometry into several B–spline patches according to the dif-
ferent refinement levels of the THB–spline representation.

The algorithm EXPORT performs the conversion of a
THB–spline geometry into several B–spline patches us-
ing certain splitting techniques, which are described later.
The evaluation function EVALUATE THB SURFACE described
in Section 2 can be modified to suit this operation by ter-
minating the iteration at the level of interest. This modi-
fied evaluation is indicated as EVALUATE THB SURFACE* in
the algorithm below, where we assume ΩL+1 = ∅.
algorithm EXPORT(mat c, int L)

\\ c are the THB–spline coefficients
\\ L is the number of levels
for l from 0 to L do {

create the ring r = Ω` \ Ω`+1

create the list R of connected components of r
for i from 1 to |R| do {

11

(a) global refinement using B–splines and 1849 degrees of freedom

(b) local refinement using THB–splines and 475 degrees of freedom

Figure 9: Reconstruction of the fillet part with globally refined B–splines (top row) / locally refined THB–splines (bottom row) using 1849 /
475 degrees of freedom. In both cases the regularization parameter and the error threshold are set to λ = 10−9 and σ = 10−6, respectively.
The quality of the surfaces (leftmost plots) is visualized using reflection lines. The two rightmost plots in both rows show an enlarged view
of the upper part of the fillet. Note that the small distortion of these lines in the central part of the fillet is caused by a measurement error
in the provided data.

boxes = SPLIT TO BOXES(R[i])

for j from 1 to |boxes| do {
Compute the coefficients of the restriction of the
THB–spline surface to the box boxes[j] using
EVALUATE {T}HB SURFACE* and export the obtained
tensor–product B–spline surface.

} } }
end

This algorithm relies on the SPLIT TO BOXES procedure
that splits a connected component of one refinement level
according to one of the following methodologies.

1. Smallest bounding box : by using the B–spline repre-
sentation of the smallest axis aligned bounding box
covering the connected component R[i]. Its bound-
ary curve is defined in the parameter domain of R[i]
and used for trimming the tensor–product surface
later.

2. Rectangular partition: by using the B–spline repre-
sentation of rectangular boxes completing the con-
nected components R[i].

The first method leads to a small number of patches but
increases the required memory storage, since one needs to
store additional “phantom” control points in the trimmed
areas and the trimming curves themselves. The second ap-
proach leads to an increased number of patches depending
on the shape of the hierarchical domains. However, in this
case the number of degrees of freedom is only increased by
storing multiple copies of common control points between
adjacent patches.

The domain structure of the THB–splines can be rep-
resented by a quadtree data structure which provides us
naturally with the collection of boxes, necessary for the
rectangular partition procedure, in its leaves. See [15] for
a detailed information on this concept. To optimize the
number of patches, we applied an additional step where
adjacent areas of the same refinement level are joined to-
gether creating larger rectangular boxes. The list of boxes
stored by the quadtree allows also to compute the small-
est rectangular box that covers the connected components
of Ω` \ Ω`+1, for ` = 0, . . . , L, required for the smallest
bounding box procedure.

Finally, we use the capabilities of a CAD system, i.e.,
Parasolid™ by SIEMENS PLM Software [19], to bridge the
gap between THB–splines and standard (commercial) ap-
plications. The geometric modeling kernel combines the
geometric representations with a topological structure to
handle trimmed entities and to build up large complex
models based on several (connected) geometries. There-
fore, Parasolid combines the generated B–spline patches
into a single topological object referred to as a sheet with-
out using any approximation, see Figure 10. This provides
a straight–forward and geometrically exact integration of
THB–splines into standard industrial processes and appli-
cations.

Figure 10 presents an example. The THB–spline sur-
face representing the fillet (a) with 475 control points can
be split either into 36 patches with 1788 control points (b)
or into 4 trimmed patches with 1021 control points (c,d).

12

(a) THB–spline representation (b) rectangular partition representation

(c) smallest bounding box representation (d) bounding boxes and trimming curves for (c)

Figure 10: Reconstructed fillet part geometry: the approximated THB–spline surface is defined by three refinement levels with a corresponding
control grid of 475 control points (a). An optimal rectangular partition split into standard B–splines surfaces requires 36 patches with 1788
control points in total (b). The smallest bounding box split generates four B–spline patches with 1021 control points in total (c) and the
corresponding patch layout is shown in (d). The coloring of patches corresponds to different refinement levels.

6. Conclusion

In this paper we explored the potential benefits of using
the recently introduced truncated hierarchical B–splines
(THB–splines) in a least–squares approximation frame-
work, focusing on their successful integration with the cur-
rent mathematical technology of Computer Aided Design.
After recalling the definition, the related algorithms and
the properties of THB–splines, we presented an adaptive
surface fitting framework and we identified two possible
strategies for performing the refinement. The presentation
also covered implementation aspects and a simple regular-
ization technique.

Based on this approximation framework, we showed
how to use THB–splines for demanding real–world appli-
cations, in particular, for reconstructing the geometry of
core components of aero engines. When compared to the
existing tensor–product spline technology, the use of THB–
splines significantly improves the quality of the resulting
geometric shapes. Moreover, based on standard features of

the geometric kernels of CAD systems, such as Parasolid™,
we identified two possibilities that allow to export the re-
sulting surfaces as standard CAD geometries/models.

In order to further exploit the successful CAD interface
of the THB–spline framework here presented, future work
will be devoted to algorithm and efficiency optimization of
the related interconnected procedures. This will pave the
way for using this new spline technology in further appli-
cations, e.g., for performing numerical simulations using
the approach of isogeometric analysis. In particular, the
use of adaptive generalizations of tensor–product splines
(such as THB–splines) becomes mandatory when address-
ing three–dimensional problems, since the “curse of dimen-
sion” makes global refinement even more prohibitive. The
truncation mechanism may also provide the possibility —
non-trivial in an adaptive/hierarchical spline context —
of developing refinement procedures that, by preserving
suitable hierarchical domain configurations, may allow to
consider explicit bounds for the number of basis functions
acting on a single mesh element.

13

Additionally we have started to explore generalizations
of the THB–spline framework to more general spaces of
functions, which include box splines and spaces related
to subdivision surfaces [33]. Also, recent results regard-
ing the completeness of hierarchical spline spaces allow to
generate simple B–spline bases for large classes of spline
spaces over box partitions in any dimensions [18]. By re-
lying on sparse representations of geometric objects and
of functions defined on them, these spaces have the great
potential of providing a viable multivariate approach for
demanding applications.

Acknowledgments

The authors were supported by the projects EXAM-
PLE and INSIST (EC GA nos. 324340, 289361), “Ge-
ometry + Simulation” (FWF NFN S117) and DREAMS
(MIUR “Futuro in Ricerca” RBFR13FBI3).

References

[1] A. Bressan. Some properties of LR-splines. Comput. Aided
Geom. Design, 30:778–794, 2013.

[2] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric
Analysis: Toward Integration of CAD and FEA. John Wiley &
Sons, 2009.

[3] J. Deng, F. Chen, and Y. Feng. Dimensions of spline spaces
over T–meshes. J. Comput. Appl. Math., 194:267–283, 2006.

[4] J. Deng, F. Chen, X. Li, C. Hu, W. Tong, Z. Yang, and Y. Feng.
Polynomial splines over hierarchical T-meshes. Graphical Mod-
els, pages 76–86, 2008.

[5] T. Dokken, T. Lyche, and K. F. Pettersen. Polynomial splines
over locally refined box–partitions. Comput. Aided Geom. De-
sign, 30:331–356, 2013.

[6] M. Floater and K. Hormann. Surface parameterization: a tu-
torial and survey. In N. A. Dodgson, M. S. Floater, and M. A.
Sabin, editors, Advances in Multiresolution for Geometric Mod-
elling, Mathematics and Visualization, pages 157–186. Springer,
Berlin, Heidelberg, 2005.

[7] M. S. Floater. Parametrization and smooth approximation
of surface triangulations. Computer Aided Geometric Design,
14(3):231–250, 1997.

[8] D. R. Forsey and R. H. Bartels. Hierarchical B-spline refine-
ment. Comput. Graphics, 22:205–212, 1988.

[9] D. R. Forsey and R. H. Bartels. Surface fitting with hierarchical
splines. ACM Trans. Graphics, 14:134–161, 1995.

[10] D. R. Forsey and D. Wong. Multiresolution surface reconstruc-
tion for hierarchical B-splines. In W. A. Davis, K. S. Booth, and
A. Fournier, editors, Graphics Interface, pages 57–64. Canadian
Human-Computer Communications Society, 1998.

[11] C. Giannelli and B. Jüttler. Bases and dimensions of bivariate
hierarchical tensor–product splines. J. Comput. Appl. Math.,
239:162–178, 2013.

[12] C. Giannelli, B. Jüttler, and H. Speleers. THB–splines: the
truncated basis for hierarchical splines. Comput. Aided Geom.
Design, 29:485–498, 2012.

[13] C. Giannelli, B. Jüttler, and H. Speleers. Strongly stable bases
for adaptively refined multilevel spline spaces, preprint. Adv.
Comput. Math., 2013. DOI 10.1007/s10444-013-9315-2.

[14] G. Greiner and K. Hormann. Interpolating and approximating
scattered 3D-data with hierarchical tensor product B-splines. In
A. L. Méhauté, C. Rabut, and L. L. Schumaker, editors, Surface
Fitting and Multiresolution Methods, pages 163–172. Vanderbilt
University Press, Nashville, TN, 1997.

[15] G. Kiss, C. Giannelli, and B. Jüttler. Algorithms and data
structures for truncated hierarchical B-splines. In M. Floater
et al., editors, Mathematical Methods for Curves and Surfaces,

volume 8177 of Lecture Notes in Computer Science, pages 304–
323. Springer, 2014.

[16] R. Kraft. Adaptive and linearly independent multilevel B–
splines. In A. Le Méhauté, C. Rabut, and L. L. Schumaker, ed-
itors, Surface Fitting and Multiresolution Methods, pages 209–
218. Vanderbilt University Press, Nashville, 1997.

[17] X. Li, J. Deng, and F. Chen. Polynomial splines over general
T-meshes. Visual Comput., 26(4):277–286, 2010.

[18] D. Mokrǐs, B. Jüttler, and C. Giannelli. On the completeness of
hierarchical tensor-product B-splines. Technical Report 8, NFN
Geometry + Simulation, 2013. Available at www.gs.jku.at.

[19] Parasolid 3D geometric modeling engine. Siemens PLM
Software Inc., 2013. www.plm.automation.siemens.com/
en us/products/open/parasolid.

[20] D. Schillinger, L. Dedé, M. A. Scott, J. A. Evans, M. J. Borden,
E. Rank, and T. J. R. Hughes. An isogeometric design-through-
analysis methodology based on adaptive hierarchical refinement
of NURBS, immersed boundary methods, and T-spline CAD
surfaces. Comput. Methods Appl. Mech. Engrg., 249:116 – 150,
2012.

[21] M. A. Scott, X. Li, T. W. Sederberg, and T. J. R. Hughes. Local
refinement of analysis-suitable T-splines. Computer Methods in
Applied Mechanics and Engineering, 213–216:206–222, 2012.

[22] M. A. Scott, D. C. Thomas, and E. J. Evans. Isogeometric
spline forests. Comput. Methods Appl. Mech. Engrg., 269:222–
264, 2014.

[23] T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North,
J. Zheng, and T. Lyche. T-spline simplification and local refine-
ment. ACM Trans. Graphics, 23:276 – 283, 2004.

[24] T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines
and T-NURCCS. ACM Trans. Graphics, 22:477–484, 2003.

[25] H. Speleers and C. Manni. Effortless quasi-interpolation in hi-
erarchical spaces. Preprint, 2013.

[26] A.-V. Vuong, C. Giannelli, B. Jüttler, and B. Simeon. A hier-
archical approach to adaptive local refinement in isogeometric
analysis. Comput. Methods Appl. Mech. Engrg., 200:3554–3567,
2011.

[27] J. Wang, Z. Yang, L. Jin, J. Deng, and F. Chen. Parallel and
adaptive surface reconstruction based on implicit PHT-splines.
Comput. Aided Geom. Design, 28:463–474, 2011.

[28] W. Wang, Y. Zhang, M. Scott, and T. Hughes. Converting an
unstructured quadrilateral mesh to a standard T-spline surface.
Computational Mechanics, 48:477–498, 2011.

[29] W. Wang, Y. Zhang, G. Xu, and T. Hughes. Converting an
unstructured quadrilateral/hexahedral mesh to a rational T-
spline. Computational Mechanics, 50:65–84, 2012.

[30] Y. Wang and J. Zheng. Curvature-guided adaptive T-spline
surface fitting. Comput. Aided Design, pages 1095–1107, 2013.

[31] V. Weiss, L. Andor, G. Renner, and T. Varády. Advanced sur-
face fitting techniques. Comput. Aided Geom. Design, 19:19–42,
2002.

[32] Y. Zhang, W. Wang, and T. Hughes. Conformal solid T-spline
construction from boundary T-spline representations. Comput.
Mech., 51:1051–1059, 2013.

[33] U. Zore and B. Jüttler. Generalized hierarchical spline spaces.
Technical Report 9, NFN Geometry + Simulation, 2013. Avail-
able at www.gs.jku.at.

14

	Introduction
	Truncated hierarchical B–splines
	Nested spline spaces
	Hierarchical splines
	Bases of hierarchical splines
	Properties of THB–splines

	Adaptive THB–spline approximation
	Least-squares approximation
	Assembling the system
	Refinement strategies
	Implementation aspects

	Numerical examples
	Comparison of the refinement strategies
	Influence of the regularization term
	Impact of the extension parameter
	Global vs. local refinement
	Computing times

	CAD integration of THB–splines
	Adaptive geometry reconstruction
	Conversion to tensor–product patches

	Conclusion

