
Publ. Math. Debrecen

Manuscript (December 10, 2013)

Rational General Solutions of Systems of Autonomous Ordinary
Differential Equations of Algebro-Geometric Dimension One

By A. Lastra, J. R. Sendra, L. X. C. Ngô and F. Winkler

Abstract. An algebro-geometric method for determining the rational solvability

of autonomous algebraic ordinary differential equations is extended from single equations

of order 1 to systems of equations of arbitrary order but dimension 1 in the algebro-

geometric sense. We provide necessary conditions, for the existence of rational solutions,

on the degree and on the structure at infinity of the associated algebraic curve. Fur-

thermore, from a rational parametrization of a planar projection of the corresponding

space curve one deduces, either by derivation or by lifting the planar parametrization,

the existence and actual computation of all rational solutions if they exist. Moreover, if

the differential polynomials are defined over the rational numbers, we can express the

rational solutions over the same field of coefficients.
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1. Introduction

An algebraic ordinary differential equation (AODE) is a polynomial relation

among a function, (finitely many of) their derivatives, and the variable of differen-

tiation. If the variable of differentiation does not explicitly appear in this relation,

the AODE is called autonomous. In case the relation polynomial is linear, i.e.

for linear ordinary differential equations, we have well-known solution methods.

However, no general solution method is available for non-linear AODEs.

Feng and Gao [3], [4] have presented an algorithm for deciding the existence

of non-trivial rational solutions of autonomous AODEs of order 1. In a nutshell,

they take the bi-variate polynomial f defining the autonomous AODE, consider

the algebraic curve it defines, and check whether this curve admits a rational

parametrization; from such a rational parametrization they decide the existence

of rational solutions of the given AODE and, in the affirmative case, compute

a rational general solution. Their method makes critical use of degree bounds

for rational parametrizations of algebraic curves, as developed in [10]. So from

the known degree bound for the proper parametrizations of the corresponding

curve we get a degree bound for rational general solutions. In [6] and [8] Ngô and

Winkler have extended this decision and solution method to general, possibly

non-autonomous, AODEs of order 1. Under suitable conditions also AODEs of

higher order can be treated in a similar way as shown in [9]. On the other

hand, in [2], an upper bound for the degree of the rational solutions of a first-

order (non necessarily autonomous) differential equation is given. Therefore, by

introducing undetermined coefficients one derives an algebraic system of equations

whose solutions provide the rational solutions of the differential equation. Thus,

it yields an alternative algorithm to those mentioned above.

In the present paper we go a step further and we consider systems of au-

tonomous AODEs of arbitrary order n. Such a system is given by a set of (n+1)-

variate polynomials, which define an algebraic variety in (n+1)-dimensional space.

We assume that this variety to be of dimension 1, i.e., a curve. We show that Feng

and Gao’s theory for detecting the existence, and actual computation, of rational

solutions of autonomous equations of order 1 can be extended to such systems.

From a computational point of view, the problem is then solved by considering a

suitable planar projection, of the space curve, to afterwards lift the information

to the system. In fact, if the differential polynomials are defined over the rational

numbers, we can express the rational solutions over the same field of coefficients.

In addition to this, necessary conditions for the existence of rational solutions are

related to the degree and to the structure at infinity of the associated algebraic



3

curve. Alternatively, once the planar curve is computed, the bound in [2] can be

applied to provide a candidate of solution that might be lifted to a solution of the

system. In this paper, we focus on the extension of Feng and Gao’s approach.

The computations in this paper have been done with the mathematical soft-

ware Maple.

2. Notation, Basic Assumptions and First Results

Throughout this paper, we will use the following notation. Q is the field of

rational numbers and Q is its algebraic closure. Let

F = {Fj(w )}j∈J⊂N ⊂ Q[w ], (1)

where w = (w0, w1, . . . , wn), be a finite set of polynomials in Q[w ]. All the

results in this paper are also valid if we replace Q by a computable field extension

of Q as, for instance, Q( 3
√

2) or Q(
√
−1). However, for simplicity in the exposition

we develop the theory taking Q as the ground field. In addition, we assume that

(i) for all j ∈ J , there exists i ∈ {1, . . . , n} such that degwi
(Fj) > 0,

(ii) the algebraic variety defined by F in Qn+1
, the (n + 1)−dimensional space

over Q, is a rational curve. We denote this curve by C. Furthermore, we

assume that

R(t) = (r1(t), . . . , rn+1(t)) (2)

is a proper rational parametrization of C with coefficients in a field F such

that Q ⊂ F ⊂ Q. We can assume that F is optimal, and hence (see Chapter

5 in [11]) F is an algebraic field extension of Q of degree at most 2. Recall

that a proper parametrization is a birational mapping from the affine line to

the curve; or, equivalently F(R(t)) = F(t); see Section 4.2 and 6.1 in [11] for

further details. We also assume that r1(t) is not constant; see below that

this condition does not imply any loss of generality.

Rational parametrizations are assumed to be expressed in reduced formed; i.e.,

with relatively prime numerator and denominator.

Associated to F we consider the autonomous algebraic system S of ordinary

differential equations (system of AODEs)

S = {Fj(y, y
′, . . . , y(n)) = 0}j∈J (3)
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where y is an indeterminate over a differential extension field of Q(x), and ′

denotes the differentiation w.r.t. x. Such a system, associated to an F defining

a space curve, is called a system of AODEs of algebro-geometric dimension 1;

observe that this notion of dimension is not the usual concept of dimension in

differential algebra.

Note that, because of condition (i) on F , all equations in S involve at least

one derivative y(i). We recall that a function f(x), which is n times differentiable,

is a (nontrivial) solution of S if it is not constant and

Fi(f(x), f ′(x), f ′′(x), . . . , f (n)(x)) = 0, ∀ i ∈ J.

If f(x) ∈ Q(x) \ Q we say that f is a (nontrivial) rational solution. Let f(x) be

a rational solution (and hence non-constant) of S, then we consider the rational

parametrization

Pf (t) = (f(t), f ′(t), . . . , f (n)(t))

that we call the integral parametrization generated by f(x). Obviously, every in-

tegral parametrization parametrizes C. Since our goal is to study the existence

of nontrivial rational solutions of S, the condition in (ii) on r1(t) is now a clear

requirement; note that if a rational parametrization of C has its first component

constant, then any other rational parametrization of C has the property.

The following lemma is a direct consequence of Theorem 2 in [3] or Theorem

3.7 in [4].

Lemma 2.1. Let f ∈ Q(t) be non-constant. Then Q(f(t), f ′(t), ..., f (n)(t)) =

Q(t).

Proof. W.l.o.g. we assume that f is in reduced form. We apply induction

on n. For n = 1 the result follows by Theorem 2 in [3]. Let the result be true up

to n− 1. Then,

Q(f(x), f ′(x), f ′′(x), . . . , f (n)(x)) = Q(f(x), f ′(x), . . . , f (n−1)(x))(f (n)(x))

= Q(x)(f (n)(x)) = Q(x, f (n)(x)) = Q(x).

Corollary 2.2. Every integral parametrization is a proper parametrization

of C.
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Our goal is to study the existence of rational solutions of S and, in the positive

case, to determine a general rational solution. We say that a rational function

R(x,C) ∈ Q(x,C) is a general rational solution of S if for every non-constant

rational solution f(x) of S there exists C0 ∈ Q such that f(x) = R(x,C0). The

next theorem shows that a general rational solution can be derived from any

particular (non-constant) rational solution.

Theorem 2.3. Let f(x) be a non-constant rational solution of S, then f(x+

C) is a general rational solution of S.

Proof. Let g(x) be a non-constant rational solution of S. Then, by Corol-

lary 2.2, Pf (t) and Pg(t) are proper parametrizations of C. Therefore, by Lüroth’s

theorem (see, e.g. Section 6.1. in [11]), there exists h(t) = at+b
ct+d ∈ Q(t), ad− bc 6=

0, such that Pg(t) = Pf (h(t)). In particular, differentiating in the first component

and taking into account the second components, g′(t) = f ′(h(t))h′(t) = f ′(h(t)).

Therefore, since f(x) is not constant, f ′(h) 6= 0 and hence h′(t) = 1. Thus,

h(t) = t+ C0, for some C0 ∈ Q.

Some of the reasonings in this paper take into account whether a solution

of a system is polynomial or not. The polynomial nature only depends on the

system. Indeed, one has the next result that follows directly from Theorem 2.3.

Corollary 2.4. The following statements are equivalent

(1) S has a non-constant polynomial solution.

(2) All non-constant rational solutions of S are polynomial.

3. Partial Degree of Space Curves

In this section we introduce the notion of partial degree of a space curve, and

we see how to compute it from a rational parametrization when the curve is ra-

tional. Let D ⊂ Qm
be an irreducible affine algebraic curve in the m-dimensional

affine space Qm
.

We recall that the degree of D is defined as the number of intersection points

of D with a generic hyperplane in Qm
(see Def. 18.1 in [5]); we denote it by

deg(D). Motivated by this notion, we introduce the notion of partial degree. For

i ∈ {1, . . . ,m}, let x̂ i = {x1, . . . , xm} \ {xi}. We define the x̂ i-partial degree of

D as the number of intersection points of D with a generic hyperplane in Qm
of
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the form xi = a; we denote it by deg x̂ i
(D). The following lemma ensures that

the partial degree notion is well defined.

Lemma 3.1. Let D be an irreducible algebraic curve in Qm
. Let i ∈

{1, . . . ,m}. For all but finitely many values a ∈ Q the intersection of D with

the hyperplane xi = a is either always empty or always finite. Moreover, in the

second case, for all but a finite number of exceptions of these hyperplanes, the

number of intersection points is invariant.

Proof. W.l.o.g. we assume that i = 1. Moreover, for a ∈ Q, we denote

by Ha the hyperplane defined by x1 = a. We observe that card(D ∩ Ha) = ∞
if and only if D ⊂ Ha. Therefore, in that case D ∩ Hb = ∅ for b 6= a. So, let

us assume that there does not exist a ∈ Q such that D ⊂ Ha. In this situation,

card(D ∩ Ha) < ∞ for all a ∈ Q. Let us see that for almost all a ∈ Q, this

cardinality is invariant.

Let I ⊂ Q[x ], with x = (x1, . . . , xm), be the ideal of D, and F(x1, . . . , xm)

a finite set of generators of I. I is 1-dimensional but, for almost all a ∈ Q, the

ideal Ia generated by F(a, x2, . . . , xm) in K[x2, . . . , xm] is 0-dimensional, since it

corresponds to D ∩ Ha. Now, let G(x ) be a reduced Gröbner basis of I w.r.t.

the lex order, with xm > · · · > x1; reduced in the sense of Def. 5 in [1], pg. 90.

On the other hand, using ex. 7, pg. 283, in [1], for all a ∈ Q, but finitely many

exceptions, it holds that G(a, x2, . . . , xm) is a Gröbner basis of Ia. Therefore,

G(x ) has to be of the form

{g1,1(x1, x2), g2,1(x1, x2, x3), . . . , g2,k2
(x1, x2, x3), . . . , gm,1(x ), . . . , gm,km

(x )}.

Now, let F1 be the algebraic closure of Q(x1). We see g1,1 as polynomial in

F1[x2, . . . , xm]. Then, the number of different roots of g1,1(x2) ∈ F1[x2] is fixed;

say `1. We assume w.l.o.g. that g1,1 is irreducible over Q(x1); otherwise we pro-

ceed with each irreducible factor. Next we consider the algebraic closure F2 of the

quotient field of K(x1)[x2]/ 〈g1,1(x2)〉, and we see the polynomials in g2,j as poly-

nomials in F2[x3]. Then, since the system has solutions, gcdF2[x3](g2,1, . . . , g2,k2
)

is not constant, let `2 be the number of different roots of this gcd. Extending

this argument we get that the number of solution of the G(a, x2, . . . , xm), for a

generic in Q, is `1 · · · `m.

The following theorem generalizes Theorem 4.21 in [11].

Theorem 3.2. Let D be rational and let

P(t) =

(
p1(t)

q1(t)
, . . . ,

pm(t)

qm(t)

)
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be a proper rational parametrization of D in reduced form. For i ∈ {1, . . . ,m},
it holds that

deg x̂ i
(D) = degt

(
pi(t)

qi(t)

)
.

Proof. We assume w.l.o.g. that i = m. If pm/qm = λ ∈ Q then, D is

included in the plane xm = λ, and hence the intersection of D with a generic

plane of the form xm = a is empty, which agrees with the degree of m-component

of P(t). So, let us assume that pm/qm is not constant. We consider the subset ∆

of Q of those elements z satisfying that

(1) z is the m-coordinate of a point in D \ P(Q).

(2) z is the m-coordinate of a point in D reachable by P(t) by exactly one

parameter value.

(3) the number of intersection points of D with the hyperplane xm = z is smaller

than deg x̂m
(D)

(4) pm(t)− qm(t)z is not square-free.

(5) deg(pm(t)− qm(t)z) < max{deg(pm),deg(qm)}.
Let us assume that ∆ is either empty or finite. Indeed, by the definition of

parametrization card(D\P(Q)) <∞, by definition of properness the set of values

not satisfying (2) is also finite, for (3) one uses Lemma 3.1 , the reason for (4)

comes from Lemma 4.19 in [11], and (5) cannot happen, at most, for a value of z.

Now, let a ∈ Q \ ∆, let Ha be the hyperplane defined by xm = a, and

f(t) = pm(t) − qm(t)a. Clearly, by (3) and (4), deg(f) ≤ deg x̂m
(D). Because

of (1) and (2), all points in D ∩ Ha are reachable by P(t) exactly once. So,

by (3), deg(f) ≥ deg x̂m
(D). Therefore, deg(f) = deg x̂m

(D). Now, by (4),

deg(f) = deg(pm/qm).

4. Existence of Rational Solutions

We start this analysis with a generalization to systems of AODEs of the

necessary condition given in Theorem 3 in [3].

Theorem 4.1. Let S admit a non-constant rational solution. Then, for

i = 0, 1, 2, ..., n− 1, we have

deg{w0,w1,...,wn}\{wi}(C)−1 ≤ deg{w0,w1,...,wn}\{wi+1}(C) ≤ 2deg{w0,w1,...,wn}\{wi}(C).
(4)
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Proof. Let f(x) be a non-constant rational solution of the system S. By

Corollary 2.2, Pf (t) is a proper parametrization of C. Let i ∈ {0, 1, 2, ..., n}.
Theorem 3.2 and Lemma 7 in [3] lead us to the conclusion when considering

f (j)(t), for j = 0, 1, ..., n− 1.

The next result characterizes the existence, and actual description, of rational

solutions of S. The theorem is a generalization of Theorem 5 in [3], and the proof

essentially follows the ideas described in [3].

Theorem 4.2. Let R(t) = (r1(t), r2(t), ..., rn+1(t)) ∈ Q(t)n+1 be a proper

rational parametrization of C. The following assertions are equivalent:

(1) S admits a non-constant rational solution.

(2) There exist a, b ∈ Q, a 6= 0 such that either

(2.1) ar′j(t) = rj+1(t) for every j = 1, ..., n,

or

(2.2) a(t− b)2r′j(t) = rj+1(t) for every j = 1, ..., n.

Moreover, if one of these equivalent statements holds, then f(x) = r1(ax) (if (2.1)

holds) and f(x) = r1(abx−1
ax ) (if (2.2) holds) is a non-constant rational solution of

S.

Proof. Let us assume there exists a non-constant rational solution f(x) of

S. From Corollary 2.2, Pf (t) is a proper rational parametrization of C and by

Lüroth’s theorem, there exists h(t) = c1t+c2
c3t+c4

∈ Q(t) with c1c4 − c2c3 6= 0 such

that Pf (t) = R(h(t)). Therefore,

f (j)(t) = rj+1(h(t)), j = 0, 1, ..., n. (5)

Let j ∈ {0, 1, ..., n}. From (5) one obtains

f (j)(t) = (rj(h(t)))′ = r′j(h(t))h′(t) = rj+1(h(t)).

From here, the proof follows as in [3]. The converse implication follows directly.

The next corollaries follow from the previous theorem.

Corollary 4.3. Let S have non-constant rational solutions. It holds that

(1) Every proper rational parametrization of C provides a non-constant rational

solution of S.



9

(2) If a proper parametrization of C has its coefficients in a field extension L
of Q, then the rational solution generated by this parametrization has its

coefficients in L.

Proof. Let R(t) = (r1(t), . . . , rn+1(t)) be a proper parametrization of C.
Since, S has non-constant rational solutions, by Theorem 4.2, there exist a, b ∈ Q
such that either r1(ax) or r1(abx−1

ax ) is a non-constant rational solution of S. For

proving (2), let R(t) be over L, and let f(x) be the rational solution generated by

R(t). Thus, by Theorem 4.2, f(x) = r1(ax) or f(x) = r1(abx−1
ax ), where a, b ∈ Q.

We observe that r′1 6= 0 (see assumption (ii) in Section 2). Therefore, r2
r′1

is well-

defined and r2
r′1
∈ L(t). Now taking into account statements (2.1) and (2.2) in

Theorem 4.2, one has that either a ∈ L(t) or a(t − b)2 ∈ L(t). So, a, b ∈ L, and

hence f(x) ∈ L(x).

Corollary 4.4. Let R(t) = (r1(t), r2(t), ..., rn+1(t)) ∈ Q(t)n+1 be a proper

rational parametrization of C. If there exists j > 1 such that rj(t) has at least

two different simple poles, then S has no rational solution.

Proof. Let us assume that S has a nontrivial rational solution. Then,

by Theorem 4.2 either rj(t) or 1
(t−b)2 rj(t), for some b, has a rational integral.

However, both rational functions have at least a simple pole. Therefore, their

integrals have a logarithmic part, and hence they cannot be rational functions

(see formula (4.6.4) and Theorem 4.6.3. in [12]) which is a contradiction.

Corollary 4.5. Let C have degree higher than 1. If C has, at least, two simple

points at infinity, and their multiplicities of intersection with the hyperplane at

infinity is 1, then S has no rational solutions.

Proof. LetR(t) = (r1(t), ..., rn+1(t)) be a proper affine rational parametriza-

tion of C with common denominator and such that its projectivization reaches

the two simple points at infinity mentioned at the statement. Then, the common

denominator of R(t) has two different simple roots. Now the result follows from

Corollary 4.4.

Corollary 4.6. Let F (y, y′) = 0 be an irreducible autonomous first order

algebraic differential equation. Let F (w0, w1) be expressed as

F (w0, w1) = f`(w0, w1) + f`−1(w0, w1) + · · ·+ f0,

where fi is homogeneous of degree i, and f` 6= 0. If f` has at least two different

simple linear factors over Q, then F (y, y′) = 0 does not have rational solutions.
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Corollary 4.7. Let F (y, y′) = 0 be an (irreducible) autonomous first order

algebraic differential equation of degree 2; i.e. the curve associated to the equation

is an irreducible conic. If F (y, y′) = 0 has rational solutions, then F (w0, w1)

defines a parabola.

Proof. It follows from Corollary 4.5 and taking into account that circles,

ellipses and hyperbolas have exactly two different points at infinity, and hence

with multiplicity of intersection 1. Parabolas have one point at infinity and the

line at infinity is tangent.

We now turn our attention at the coefficients of the rational solutions of S.

We start with a technical lemma.

Lemma 4.8. Given f(t) = c1t+c2
c3t+c4

∈ Q(t), c1c4 − c2c3 6= 0,

1. There exist a, b ∈ Q such that f ′(t) = a(f(t)− b)2 if and only if c3 6= 0.

2. There exists a ∈ Q such that f ′(t) = a if and only if c3 = 0.

Proof. If f(t) = c1
c4
t+ c2, then f ′(t) = c1

c4
is not equal to a(f(t)− b) for any

a, b ∈ Q. This proves the “if case” in (1) and the “only if case” in (2) For the

converse in (1), it suffices to take a =
c23

c1c4−c2c3 and b = c1
c3

. If c3 6= 0, then f ′(t)

cannot be a constant, and the proof is complete.

Remark 4.9. It is worth remarking that (2.1) in Theorem 4.2 holds if and

only if the non-constant rational solution of S is obtained after a linear poly-

nomial reparametrization of r1, whereas (2.2) holds if and only if the linear

reparametrization is rational but not polynomial. Moreover, the constants a, b

(resp. a) appearing in (2.2) ( resp. (2.1)) in Theorem 4.2 are those provided in

the corresponding case in Lemma 4.8.

The next result is a generalization of Theorem 6 in [3] and Theorem 3.14 in

[4], and it provides information on the coefficients appearing in a rational solution

S. Its proof follows essentially the reasoning in [3]. But there, some details on

the polynomial case are left. So we give here all details.

Theorem 4.10. Let S have non-constant rational solutions. Then, there

exist non-constant rational solutions with coefficients in Q.

Proof. Let R(t) be the parametrization of C introduced in Section 2. As

mentioned there, as a consequence of Chapter 5 in [11], R(t) can be taken with

coefficients in Q(α), where α is an algebraic number over Q of degree at most
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2. Let f(x) be the nontrivial rational solution generated by R(t). By Corollary

4.3, f(x) ∈ Q(α)(x). So, we assume w.l.o.g. that [Q(α) : Q] = 2. Let α be the

conjugate of α and f(x) the conjugation of f(x).

We first assume that f(x) is a polynomial. Since F ⊂ Q[w ], f(x) is

also a rational solution of S. From Corollary 2.1, Pf (t) and Pf (t) are proper

parametrizations of C. Moreover, by Lüroth’s theorem, there exists h(t) ∈ Q(t)

with Pf (t) = Pf (h(t)). Taking derivatives in the first component of the latter

equation, and comparing it with the second, one has

f ′(t) = f
′
(h(t))h′(t) = f

′
(h(t)).

Since f(t) is not constant, h(t) = t+c for some c ∈ Q. As [Q(α) : Q] = 2, one can

write f(t) = (an +bnα)tn +αq1(t)+q2(t) and f(t) = (an +bnα)tn +αq3(t)+q4(t),

for some n ≥ 0 and some q1, q2, q3, q4 ∈ Q[t] with deg(qj) ≤ n− 1, an, bn ∈ Q. So

an +bnα = an +bnα. On one hand, if bn 6= 0, then α = α and f(t) ∈ Q[t]. On the

other hand, if bn = 0, then f(t) = ant
n +(an−1 +αbn−1)tn−1 +αq5(t)+q6(t), and

one can recursively deduce the result. If we end up with b0 = b1 = · · · = bn = 0,

then we have f(t) ∈ Q[t].

If f(t) is not a polynomial, the proof goes as in the proof of Theorem 6 in

[3] or Theorem 3.14 in [4].

The following corollary follows from the reasoning in the proof of the previous

theorem.

Corollary 4.11. Let f(x) ∈ Q(α)(x), with [Q(α) : Q] ≤ 2, be a rational

solution of S. It holds that

1. If f(t) ∈ Q(α)[t], then f(t) ∈ Q[t].

2. If

f(t) =
αp1(t) + p2(t)

tm + am−1tm−1 + · · ·+ a0
∈ Q(α)(t) \Q(α)[t],

where p1, p2 ∈ Q[t] and ai ∈ Q(α), then

f
(
t− am−1

m

)
∈ Q(t).

5. Algorithms and Examples

In this section, we outline two different algorithms derived from the previous

ideas and we illustrate them by some examples. Finally, we compare them. The
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first algorithm assumes that a rational proper parametrization of the initial alge-

braic system of AODEs is known while the second either computes a parametriza-

tion or proposes a candidate of parametrization that has to be checked. Any of

these approaches provide all the rational solutions (if they exist) of the system;

note that, a parametrization, being solution of the differential system, exists if

and only if the candidate parametrization turns out to be a solution.

We start with the general algorithm, where the main steps are modularized

in sub-algorithms.

Algorithm 1

Input: an algebraic system of AODEs S, associated to the set of polynomials

F describing a curve C; S is assumed to satisfy the hypotheses described in

Section 2. A rational proper parametrization R(t) = (r1(t), r2(t), ..., rn+1(t))

of C with coefficients in a finite field extension Q(α) of Q of degree at most

2.

Output: Decision on the existence of a nontrivial rational solution of S, and,

in the positive case, a rational general solution of S expressed over Q.

1. [Degree conditions]

1.1. Apply Theorem 3.2 to compute deg{w0,w1,...,wn}\{wi}(C) for i = 0, 1, . . . , n.

1.2. Check whether the inequalities, i = 0, 1, . . . , n− 1,

deg{w0,w1,...,wn}\{wi}(C)−1 ≤ deg{w0,w1,...,wn}\{wi+1}(C) ≤ 2deg{w0,w1,...,wn}\{wi}(C).

hold. If not Return � S does not have nontrivial rational solutions �.

2. [Check of solutions]

2.1. Let A := r2(t)
r′1(t)

. If A is neither a constant nor a quadratic polynomial

with a double root, then Return � S does not have nontrivial rational

solutions �.

2.2. If for some {2, . . . , n+1}, A(t)r′j(t) 6= rj+1(t) Return� S does not have

nontrivial rational solutions �.

2.3. If A is constant then compute f(x) := r1(Ax) else if A = a(t− b)2 then

compute f(x) = r1(abx−1
ax ).

2.4. If f(x) is a polynomial,

Return � a rational general solution of S is f(x+ C) �
else

express f(x) as

αp1(x) + p2(x)

xm + am−1xm−1 + · · ·+ a0
∈ Q(α)(x) \Q(α)[x],
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where p1, p2 ∈ Q[x] and ai ∈ Q(α).

Return� a rational general solution of S is f
(
x− am−1

m + C
)
∈ Q(x)�

.

We illustrate Algorithm 1 by some examples.

Example 5.1. We consider the system of ODEs given by

S =

{
(y′(x))2 − y′′(x) = 0

y′(x)− y(x) = 0

}
.

It is clear that deg{w1,w2}(C) = 1, deg{w0,w2}(C) = 1 and deg{w0,w1}(C) = 3.

The degree conditions are not satisfied. One can conclude that S does not have

nontrivial rational solutions.

Example 5.2. Let a, b, c, d ∈ C such that ad− cb 6= 0. We consider the family

of systems of ODEs given by

S =



4 c2y(x)y′(x)
3 − ady(x)y′′(x)

2
+ bcy(x)y′′(x)

2
+ cy′′(x)y(x)− 2 cy′(x)

2 − ay′′(x) = 0

cy′′(x)y(x)− 2 cy′(x)
2 − ay′′(x) = 0

2 c2y(x)y′(x)− 2 cay′(x)− ady′′(x) + bcy′′(x) = 0

4 c2y(x)y′(x)
3
y′′(x)− ady(x)y′′(x)

3
+ bcy(x)y′′(x)

3
+ c2y(x)

2
+ cy(x)y′′(x)

2

−2 cy′(x)
2
y′′(x)− 2 cay(x)− ady′(x)− ay′′(x)

2
+ bcy′(x) + a2 = 0


.

The corresponding associated algebraic system is given by

F =



4 c2w0w1
3 − adw0w2

2 + bcw0w2
2 + cw2w0 − 2 cw1

2 − aw2,

cw2w0 − 2 cw1
2 − aw2,

2 c2w0w1 − 2 caw1 − adw2 + bcw2,

4 c2w0w1
3w2 − adw0w2

3 + bcw0w2
3 + c2w0

2 + cw0w2
2

−2 cw1
2w2 − 2 caw0 − adw1 − aw2

2 + bcw1 + a2


.

The variety defined by F over Q has dimension 1, and it is a rational curve, say

C. Indeed a rational proper parametrization R(t) := (r1(t), r2(t), r3(t), r4(t)) of

C is

R(t) =

(
1

2

2ac+ (ad− cb)t
c2

,
1

4

t2(ad− cb)
c2

,
1

4

t3(ad− cb)
c2

)
.

Applying Theorem 3.2, one gets that deg{w1,w2}(C) = 1, deg{w0,w2}(C) = 2

and deg{w0,w1}(C) = 3. So, the degree conditions do not exclude the existence of

nontrivial solutions. Moreover, one has

r2(t)

r′1(t)
=
r3(t)

r′2(t)
=
t2

2
.
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So S has rational solutions, and a rational general solution of S is

f(x) := r1

(
−2

x+ C

)
=

(cb− ad) + ac(x+ C)

c2(x+ C)
,

for C ∈ C. One can easily check y(x) satisfies the equations in S by substitution.

In the particular case of ad = cb, if c = 0, from the equations in S one has

a = 0 and the system disappears. On the other hand, if c 6= 0, the system S is

easily solved. Its solution is the trivial one given by f(x) = −a2

c2−2ca in the case

that c 6= 2a; and the problem does not admit a solution if c = 2a. •

Example 5.3. Let a, b, c, d ∈ Q such that ad− cb 6= 0 and c 6= 0. We consider

the following family of systems of algebraic ODEs

S =



27y(x)y′′(x)
4
c2 − 2ady(x)y′′′(x)

3
+ 2bcy(x)y′′′(x)

3
+ 2y′(x)y′′′(x)

−3y′′(x)
2

= 0

2y′(x)y′′′(x)− 3y′′(x)
2

= 0

9y(x)y′(x)y′′(x)
2
c2 − ady(x)y′′′(x)

2
+ bcy(x)y′′′(x)

2
+ 2y′(x)y′′′(x)

−3y′′(x)
2

= 0

27c2y′′(x)
5 − 2ady′′(x)y′′′(x)

3
+ 2bcy′′(x)y′′′(x)

3
+ 6c2y′(x)

2 − ady′′′(x)

+bcy′′′(x) = 0

cy′′′(x)y(x)− 3cy′(x)y′′(x)− ay′′′(x) = 0

3y(x)c2y′′(x)− 3acy′′(x)− ady′′′(x)

+bcy′′′(x) = 0

2c2y(x)y′(x)− 2acy′(x)− ady′′(x) + bcy′′(x) = 0

c2y(x)
2 − 2cay(x)− ady′(x) + bcy′(x) + a2 + 2y′(x)y′′′(x)− 3y′′(x)

2
= 0



.

The corresponding associated algebraic system is given by the polynomials

F =



27w0w2
4c2 − 2 adw0w3

3 + 2 bcw0w3
3 + 2w1w3 − 3w2

2,

2w1w3 − 3w2
2, 9w0w1w2

2c2 − adw0w3
2 + bcw0w3

2 + 2w1w3 − 3w2
2,

27 c2w2
5 − 2 adw2w3

3 + 2 bcw2w3
3 + 6 c2w1

2 − adw3 + bcw3

cw3w0 − 3 cw1w2 − aw3,

3w0c
2w2 − 3 acw2 − adw3 + bcw3,

2 c2w0w1 − 2 acw1 − adw2 + bcw2,

c2w0
2 − 2 caw0 − adw1 + bcw1 + a2 + 2w1w3 − 3w2

2


.

The variety defined by F over Q has dimension 1, and it is a rational curve, say

C. Indeed, a rational proper parametrization R(t) := (r1(t), r2(t), r3(t), r4(t)) of

C, is

R(t) =

(
act+ cb− ad

c2t
,
ad− cb
c2t2

,
2(cb− ad)

c2t3
,

6(ad− cb)
c2t4

)
.
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Applying Theorem 3.2, one gets that deg{w1,w2,w3}(C) = 1, deg{w0,w2,w3}(C) =

2, deg{w0,w1,w3}(C) = 3 and deg{w0,w1,w2}(C) = 4. So, again, the degree condi-

tions do not exclude the existence of nontrivial solutions. Moreover

r4(t)

r′3(t)
=
r3(t)

r′2(t)
=
r2(t)

r′1(t)
= 1.

So S has rational solutions, and a rational general solution of S is

f(x) := r1(x+ C) =
ac(x+ C) + cb− ad

c2(x+ C)
,

for C ∈ C. It is easily checked that, if cb = ad, then the system is reduced to

the equation 2y′(x)y′′′(x)− 3y′′(x)2 = 0 in the case that c = 0, so it does not fit

into the systems under study in this work. On the other hand, if c 6= 0 the only

solution of S is the trivial solution f(x) = a
c . •

Example 5.4. We consider the system

S =

{
y(x)2 − y′(x) = 0

y(x)3 − y′′(x) = 0

}

The associated curve C can be properly parametrized asR(t) := (t, t2, t3). deg{w0,w1}(C) =

3,deg{w0,w2}(C) = 2,deg{w1,w2}(C) = 1. So the degree conditions are satisfied.

It is immediate to check that r3(t)
r′2(t)

6= r2(t)
r′1(t)

, so that there does not exist a non-

constant rational solution of S. Indeed, the general solution of S is y(x) = 0:

differentiating the first equation one arrives at

2y(x)y′(x)− y′′(x) = 0. (6)

In addition, from the second equation, we have y′′(x) = y3(x), and by substitution

in (6), we get 2y(x)y′(x) − y3(x) = 0. This yields y(x) = 0 or 2y′(x) = y2(x).

The first equation in S and 2y′(x) = y2(x) yield y(x) = 0. •

Our second algorithm reduces the study of the initial system S to the study

of a system S ′,which shares the same behavior with respect to the existence of

rational solutions. Moreover, one can find an equation in S ′, say F = 0, only

depending on y and y′ so that one can apply the results in [3] to that equation,

and complete this information with the other equations involved in S ′.
Algorithm 2.
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Input: an algebraic system of AODEs S, associated to the set of polynomials

F describing a curve C; S is assumed to satisfy the hypotheses described in

Section 2.

Output: Decision on the existence of a nontrivial rational solution of S, and,

in the positive case, a rational general solution of S expressed over Q.

1. Apply Step 1 (Degree conditions) of Algorithm 1. For computing deg{w0,w1,...,wn}\{wi}(C)
for i = 0, 1, . . . , n, one can take a random hyperplane H in Qn+1, of the form

wi = λ, and compute the number of intersections of H with C. This prob-

abilistic method could be made deterministic by the computation of a com-

prehensive Gröbner basis for F ∪ {wi = λ}, from which the general number

of intersections with such hyperplanes can be determined.

2. [Projected curve computation]

2.1. Compute a Gröbner basis for F w.r.t. the lex order, with wn > wn−1 >

... > w1 > w0, say FG; reduced in the sense of Def. 5 in [1], pg. 90. For

j = 0, ..., n, let Fj be the elements in the previous Gröbner basis which

depend on {w0, w1, ..., wj} and wj appears. If F0 6= ∅ then Return � S
does not have nontrivial rational solutions �.

2.2. Compute a proper rational parametrization R(t) = (r1(t), r2(t)) of C
(i.e. the curve defined by F1; that is by the gcd of all polynomials in

F1) with coefficients in a finite field extension of Q of degree at most 2.

For this, apply the algorithms in [11]. If there exists rj(t), for j = 1, 2,

with at least two different simple poles, one can apply Corollary 4.4,

then Return � S does not have nontrivial rational solutions �.

3. [Curve lift and check of solutions]

3.1. LetA := r2(t)
r′1(t)

. IfA is neither a constant nor a quadratic polynomial with

a double root, Return � S does not have nontrivial rational solutions

�.

3.2. If A is constant then compute f(x) := r1(Ax) else if A = a(t− b)2 then

compute f(x) = r1(abx−1
ax ).

If A is constant set ri(t) = f (i−1)(t) for i = 3, . . . , n+ 1 and go to Step

3.3.3. of Option-2.

Option 1: Checking the candidate for solution by derivation

3.3. Compute f ′(x). For i = 2, . . . , n do

3.3.1. Compute f (i).

3.3.2. If F (f(x), f ′(x), f ′′(x), ..., f (i)(x)) 6= 0 for some F ∈ Fi, then

Return � S does not have nontrivial rational solutions �.
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3.4. Apply Step 2.4. of Algorithm 1.

Option 2: Checking the candidate for solution by lifting R(t)

3.3. For i = 3, . . . , n do

3.3.1. ComputeM(t, wi−1) := gcdQ(t)[wi−1]
(F (r1(t), . . . , ri−1(t), wi−1) |F ∈

Fi−1}.
3.3.2. Let ri(t) be the only root of M(t, wi−1) in Q(t).

3.3.3. If A(t)r′i−1(t) 6= ri(t) Return� S does not have nontrivial rational

solutions �.

3.4. There exist rational solutions and for finding them apply Step 2.4. of

Algorithm 1.

Remark 5.5. In Step 2.1, if F0 is not empty, we return that there does not

exist a nontrivial rational solution. The reason is the following. If F0 6= ∅ then

the first component of the parametrization R(t) is a constant λ, and therefore

any rational solution would be (λ, 0, . . . , 0) and hence constant.

We illustrate Algorithm 2 by some examples.

Example 5.6. We consider the system provided in Example 5.2. We directly

go to Step 2 of Algorithm 2, since we already know from Example 5.2 that the

degree conditions are satisfied. In Step 2 we get

FG = {−c2w0
2 + 2 caw0 + (ad− bc)w1 − a2,

−2 c4w0
3 + 6 ac3w0

2 − 6 a2c2w0 +
(
a2d2 − 2 abcd+ b2c2

)
w2 + 2 a3c}

So

F1 = {−c2w0
2 + 2 caw0 + (ad− bc)w1 − a2}

F2 = {−2 c4w0
3 + 6 ac3w0

2 − 6 a2c2w0 +
(
a2d2 − 2 abcd+ b2c2

)
w2 + 2 a3c}

We get

R(t) = (r1(t), r2(t)) =

(
1

2

2ac+ (ad− cb)t
c2

,
1

4

t2(ad− cb)
c2

)
as a proper parametrization of the curve C defined by−c2w2

0+2 caw0+(ad− bc)w1−
a2 = 0. In Step 3.1. we get that A(t) = 1

2 t
2, and in Step 3.2.

f(x) = r1

(
2

x

)
=
cax+ ad− bc

xc2
.
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1. Option-1. We compute f ′(x) = (ad− bc)/(x2c2), f ′′(x) = −2(ad− bc)/(x3c2)

and we check that for all F ∈ F2 we have F (f, f ′, f ′′) = 0.

2. Option-2. Since F2 contains only one polynomial, say F (w0, w1, w2), we

compute the root of F (r1(t), r2(t), w2) w.r.t. w2, namely

r3(t) =
(ad− bc)t3

4c2
.

We check that A(t)r′2(t) = r3(t).

Applying Step 2.4. of Algorithm 1 we get that the rational solutions are f(x+C).

•

Example 5.7. We consider the system provided in Example 5.3. We directly

go to Step 2 of Algorithm 1, since we already know from Example 5.3 that the

degree conditions are satisfied. In Step 2 we get the Gröbner basis given by

FG = {−c2w0
2 + 2 caw0 + adw1 − bcw1 − a2,

−2 c4w0
3 + 6 ac3w0

2 − 6 a2w0c
2 + a2d2w2 − 2 abcdw2 + b2c2w2 + 2 a3c,

−6 c6w0
4 + 24 c5w0

3a− 36 a2c4w0
2 + 24 a3w0c

3 + w3a
3d3 − 3w3a

2d2bc+ 3 c2w3adb
2

−w3b
3c3 − 6 a4c2}

So

F1 = {−c2w0
2 + 2 caw0 + adw1 − bcw1 − a2}

F2 = {−2 c4w0
3 + 6 ac3w0

2 − 6 a2w0c
2 + a2d2w2 − 2 abcdw2 + b2c2w2 + 2 a3c}

F3 = {−6 c6w0
4 + 24 c5w0

3a− 36 a2c4w0
2 + 24 a3w0c

3 + w3a
3d3 − 3w3a

2d2bc+ 3 c2w3adb
2

−w3b
3c3 − 6 a4c2}

We get

R(t) = (r1(t), r2(t)) =

(
act+ cb− ad

c2t
,
ad− cb
c2t2

)
as a proper parametrization of the curve C defined by −c2w2

0 + 2 caw0 + adw1 −
bcw1 − a2 = 0. In Step 3.1. we get that

1. Option-1. We compute f ′(x) = (ad−bc)/(c2x2), f ′′(x) = −2(ad−bc)/(c2x3),

and we check that for all F ∈ F2 we get that F (f, f ′, f ′′) = 0. Afterwards,

we compute f ′′′(x) = 6(ad− bc)/(c2x4) and we check that for all F ∈ F3 we

have F (f, f ′, f ′′, f ′′′) = 0.

2. Option-2. Since F2 has only one polynomial, say F (v, w1, w2), we compute

the root of F (r1(t), r2(t), w2) w.r.t. w2, namely r3(t) = −2(ad − bc)/(c2t3).

We check that A(t)r′2(t) = r3(t). Similarly for F3 we get r4(t) = 6(ad −
bc)/(c2t4) and that A(t)r′3(t) = r4(t).
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Applying Step 2.4. of Algorithm 1 we get that the rational solutions are f(x+C).

•

Example 5.8. In Example 5.4, one can check that F1 = {w2
0 − w1}. A

parametrization for the curve w2
0−w1 = 0 is given byR(t) = (r1(t), r2(t)) = (t, t2)

which verifies that r2(t)/r1(t) = t2. Following Algorithm 2, one is tempted to

choose f(x) = r1(−1/x) = −1/x as a solution of the system. However, it does

not provide a solution for F2 = {w3
0 − w2}, so there does not exist a rational

solution of S. •

Example 5.9. Let m ∈ N, m ≥ 2. We consider the system of ODEs given by

S =



y(x)2 − y′(x) = 0

2y(x)3 − y′′(x) = 0

6y(x)3 − y′′(x) = 0
...

m!y(x)m+1 − y(m)(x) = 0

y(x)m+2 − y(m+1)(x) = 0


.

The corresponding associated algebraic system is given by

F =



w2
0 − w1 = 0

2w3
0 − w2 = 0

6w3
0 − w3 = 0

...

m!wm+1
0 − wm+1 = 0

wm+2
0 − wm+2 = 0


.

It is clear that deg{w0,w1,...,wm+2}\{wj}(C) = j+ 1 for every j = 0, 1, ...,m+ 1

and hence the degree conditions are satisfied. One has R(t) = (r1(t), ..., rm+2(t))

is a rational parametrization given by r1(t) = t, rj(t) = (j−1)!tj for j = 1, ...,m+

1, and rm+2(t) = tm+2. It is clear that

r2(t)

r′1(t)
= t2 6= t2

(m+ 1)!
=
rm+2(t)

r′m+1(t)
.

At Step 2.2., Algorithm 1 concludes the nonexistence of a nontrivial rational so-

lution of S. On the other hand, Algorithm 2, either through Option 1 or 2, will

need to execute all iterations of the loop till the last one (i.e. O(m)). •
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We finish this section with a comparison of the two algorithms.

• The main advantage of Algorithm 1 is that the parametrization is provided

and hence one does not have to go through the Gröbner basis computation,

and lifting process. This enables the algorithm to directly check the existence

conditions of rational solutions stated in Theorem 4.2. This can be clearly

seen in Example 5.9. The main disadvantage is that the method is only appli-

cable when a parametrization is easily deduced or when the parametrization

is provided by the problem itself.

• In the general case, Algorithm 2 is more feasible than Algorithm 1. Within

Algorithm 2 two options are considered. The first option computes, from the

plane parametrization (r1(t), r2(t)), the function f(x) = r1(ψ(x)) where ψ is

a linear rational function. From there a candidate of parametrization is pro-

posed, namely T (x) = (f(x), f ′(x), . . . , f (n)(x)). This candidate is checked

iteratively using the different elimination ideals provided by the Gröbner

basis. The second option lifts the planar parametrization (r1(t), r2(t)) to

a parametrization (r1(t), . . . , rn+1(t)), iteratively and using also the elimi-

nation ideals. At each level, the process checks the existence of rational

solution by comparing the corresponding parametrization component with

the previous one. Observe that at each level (r1(t), . . . , ri+1(t)) ◦ ψ(x) =

(f(x), f ′(x), . . . , f (i)(x)). So, the difference is in terms of complexity, de-

pending on how dense f(x) is, which is connected to the form of r1(t) and

ψ(x), and/or how dense the polynomials in the Gröbner basis are; recall that

one has to substitute the candidate in the polynomials to check whether they

vanish. In case of density, it will be better to work with (r1, . . . , rn+1), i.e.

option 2, and perform the substitution by ψ(x) at the end of the process,

otherwise option 1 will be more efficient.

• As a final remark, we observe that if the initial system F has a polynomial

depending only on two consecutive variable, say wi and wi+1, then one does

not need to compute the Gröbner basis. Indeed, from wi and wi+1 one gets A.

If A is not of the required form then there is no rational solution. Otherwise,

we compute f and from f , taking derivatives and, if necessary (i.e if the

variables are not w0, w1), integrals, one gets a candidate of solution that it

checked by substituting in the system. Observe that if any of the integrals is

not a rational function then one deduces that no rational solution exists.
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6. Conclusion

We have shown that the solution method of Feng and Gao for autonomous

AODEs of order 1 can be generalized to systems of autonomous AODEs of ar-

bitrary order but algebro-geometric dimension 1. It remains to be investigated

whether an analogous generalization is also possible for non-autonomous AODEs

as considered by Ngô and Winkler [6].
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