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Abstract—Transportation processes, which play a prominent
role in the life and social sciences, are typically described
by discrete models on lattices. For studying their dynamics a
continuous formulation of the problem via partial differential
equations (PDE) is employed. In this paper we propose a symbolic
computation approach to derive mean-field PDEs from a lattice-
based model. We start with the microscopic equations, which
state the probability to find a particle at a given lattice site.
Then the PDEs are formally derived by Taylor expansions of the
probability densities and by passing to an appropriate limit as
the time steps and the distances between lattice sites tend to zero.
We present an implementation in a computer algebra system that
performs this transition for a general class of models. In order
to rewrite the mean-field PDEs in a conservative formulation,
we adapt and implement symbolic integration methods that can
handle unspecified functions in several variables. To illustrate our
approach, we consider an application in crowd motion analysis
where the dynamics of bidirectional flows are studied. However,
the presented approach can be applied to various transportation
processes of multiple species with variable size in any dimension,
for example, to confirm several proposed mean-field models for
cell motility.

I. INTRODUCTION

Mean-field models play an important role in applied math-
ematics and have become a popular tool to describe transporta-
tion dynamics in the life and social sciences. In the derivation
of such models the effect of a large number of individuals on a
single individual is approximated by a single averaging effect,
the so called mean-field. Applications include cell migration
at high densities, cf. [1], [2], transport across cell membranes
as occurring in ion channels, cf. [3], [4], traffic flow [5] as
well as the motion of large pedestrian crowds, see e.g. [6],
[7]. Understanding the complex dynamics of large interacting
groups of particles is of high practical relevance and initiated a
lot of research in the field of physics, transportation research,
and applied mathematics.

Mathematical models on the micro- as well as the macro-
scopic level have been used successfully to describe various
aspects of these transportation processes. On the microscopic
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level the dynamics of each individual are modelled taking into
account its interactions with all others as well as interactions
with the physical surrounding. This approach results in high-
dimensional and very complex systems of equations. On the
macroscopic level the crowd is treated as a density which
evolves according to a partial differential equation (PDE) or
systems thereof. The transition from the microscopic to the
corresponding macroscopic description is an active area of
research with a lot of open analytic questions.

On the microscopic level a distinction is made between
two different models: force-based or lattice-based models. In
the former the dynamics of each individual is determined by
the forces acting upon it, i.e. exerted from the others and the
surrounding; the latter states the probability to find a particle
at a discrete position in space (the lattice point) given the
transition rates of the particle to move from one discrete lattice
point to another.

Lattice-based models, also known as cellular automata, are
a very prominent tool to describe cell motility, cf. [8], as well
as pedestrian dynamics (cf. [9], [10]), since exclusion pro-
cesses can be included naturally. In exclusion-based processes
each lattice site can be occupied by at most one individual,
giving a simple way to account for the finite particle size.
In the last years there has been an increasing interest in the
derivation of the corresponding continuum equations in both
fields, see for example [1], [2] in case of cell dynamics or [6],
[7] describing pedestrian dynamics. The general structure of
the resulting mean-field equations depends on the transition
rates, but common features include

1) their conservative nature; i.e. they are based on the
assumption that the total mass is conserved;

2) an underlying gradient flow or perturbed gradient
flow structure with respect to a certain metric; so-
lutions of the first one correspond to minimizers of
an energy functional with respect to a certain metric.

These structural features allow to write the mean-field PDEs
in terms of the diffusivity and energy functionals; quantities
which are of interest for analysists. Therefore it is desirable
to derive the mean-field equations in this conservative form,
although the general formulation is not unique.

Different strategies have been used to pass to the macro-
scopic limit, i.e. to derive the corresponding continuum equa-
tions as the number of particles tends to infinity, in either



approach. In force-based models the macroscopic limit can be
derived using the so called BBGKY hierarchies, see for exam-
ple [11], initially developed in the field of statistical physics.
In the case of stochastic underlying dynamics the derivation
of the mean-field description has been studied rigorously for
simpler models by considering the hydrodynamic limit, see
[12]. Simpler models, such as the Patlak-Keller-Segel model
for chemotaxis or reaction-diffusion equations, were rigorously
derived for a stochastic many-particle system, see [13] and [14]
respectively.
We would like to mention a related work by Penington and co-
workers [15] on a systematic construction method to determine
the continuum limit of nonlinear PDEs from discrete lattice
based models. Their approach is based on representing the
transition rates using appropriate rotation operators as well
as symmetry conditions to derive general expressions for
the transportation coefficients in the corresponding nonlin-
ear PDEs. This technique can be used for a large class of
problems (including multi-species dynamics in various space
dimension), but assumes that the transition rate of a species
depends only on the average occupancy of a site by any of the
different species and not if the site is occupied by a particular
subpopulation or not. This approach cannot be applied to the
pedestrian model presented later on, since the transition rates
depend on the affiliation to either group.

In the case of a lattice-based model we

1) replace the probability to find a particle at a lattice
site by a formal Taylor expansion (up to a certain
order) of the corresponding density,

2) pass to an appropriate limit as the lattice size and
time tends to zero (dropping higher-order terms).

In this paper we present an algorithmic approach to
derive the corresponding continuum equations from a
lattice-based model using tools from symbolic computation.
While it is relatively straightforward to perform the formal
Taylor expansions and the corresponding limit, it is a more
challenging task to rewrite the PDEs obtained this way in
a conservative form. For this purpose, we employ symbolic
integration methods that can deal with unspecified functions
in several variables. Our approach allows us to deduce the
mean-field equations for a general class of transportation
processes in multiple space dimension, including the
dynamics of multiple species that may have different size or
shape. We illustrate our approach for a minimal model of
pedestrian dynamics, which includes cohesion and aversion
in bidirectional pedestrian flows.

We have produced a prototype implementation in Math-
ematica of the methods described in this paper, which is
available at http://www.koutschan.de/data/meanfield/ together
with a demo notebook.

II. FORMAL DERIVATION OF A MEAN-FIELD PDE MODEL
FOR BIDIRECTIONAL PEDESTRIAN DYNAMICS

We start with a specific example to illustrate the derivation
of a mean-field model from a discrete lattice-based approach
in the case of bidirectional pedestrian flows. We consider two
groups of individuals — one moving to the right, the other to
the left. The dynamics of each individual are determined by

cohesion and aversion — this means they try to follow and
stay close to individuals moving in the same direction and to
step aside when being approached by an individual moving in
the opposite direction. We expect that these minimal dynamics
will lead to the formation of directional lanes, a phenomenon
that has been observed in crowded corridors, pedestrian walks
or experiments.

A. The microscopic model

We start with the underlying microscopic model, i.e. a
lattice-based approach in which we consider, for the sake of
simplicity, a rectangle Ω ⊆ R2 such as a corridor, partitioned
into a square lattice of grid size h. This can be generalized
to higher dimensions. Each lattice site (xi, yj) = (ih, jh),
i = 0, . . . , N and j = 0, . . . ,M can be occupied by
an individual. We consider two groups moving in opposite
direction — one to the right (called the reds) and one to the
left (called the blues). The probability to find a red individual
at time t at location (xi, yj) is given by:

ri,j(t) = P (red individual is at position (xi, yj) at time t),

where P denotes the probability. The probability for the blue
individuals is defined analogously. We denote by T {i,j}→{k,l}c

the rate at which an individual of color c moves from (xi, yj)
to (xk, yl). The transition rates for the red and blue individuals
respectively are given by:

T {i,j}→{i+1,j}
r = (1− ρi+1,j)(1 + α ri+2,j),

T {i,j}→{i,j−1}r = (1− ρi,j−1)(γ0 + γ1 bi+1,j),

T {i,j}→{i,j+1}
r = (1− ρi,j+1)(γ0 + γ2 bi+1,j),

(1a)

T {i,j}→{i−1,j}b = (1− ρi−1,j)(1 + α bi−2,j),

T {i,j}→{i,j+1}
b = (1− ρi,j+1)(γ0 + γ1 ri−1,j),

T {i,j}→{i,j−1}b = (1− ρi,j−1)(γ0 + γ2 ri−1,j),

(1b)

where we write ρi,j = ri,j + bi,j , and with 0 ≤ γ0, γ1, γ2 ≤ 1,
0 ≤ α ≤ 1

2 . The prefactor (1 − ρ) in all terms of (1) corre-
sponds to the so-called size exclusion, i.e. an individual cannot
jump into the neighboring cell if it is occupied. We assume
that the transition rates only depend on lattice sites in direction
of movement, a reasonable assumption when modeling the
movement of pedestrians. The second factors in (1) correspond
to cohesion and aversion. Cohesion is modelled in the first line
in each case, by introducing a factor α > 0 which increases the
probability to move in the walking direction if the individual in
front, i.e. in (1a) at position (xi+2, yj), is moving in the same
direction. The second and third line in each case account for
aversion via sidestepping. If an individual, i.e. in (1a) a blue
particle located at (xi+1, yj), is approaching, the red particle
jumps up or down (with rates γ1 resp. γ2). If γ1 > γ2, the
preference is to jump to the right with respect to the direction
of movement, if γ1 < γ2, to the left. The parameter γ0 > 0
corresponds to diffusion in the y-direction.

Then the evolution of the red particles is given by the so-
called master equation

ri,j(tk+1) = ri,j(tk) + T {i−1,j}→{i,j}r ri−1,j

+ T {i,j+1}→{i,j}
r ri,j+1 + T {i,j−1}→{i,j}r ri,j−1 (2a)

−
(
T {i,j}→{i+1,j}
r + T {i,j}→{i,j−1}r + T {i,j}→{i,j+1}

r

)
ri,j .



Hence the probability to find a red particle at location
(xi, yj) corresponds to the probability that a particle located at
(xi−1, yj) jumps forwards (first term), particles located above
or below, i.e. at (xi, yj±1) jump up or down (second line),
minus the probability that a particle located at (xi, yj) moves
forward or steps aside (third line). The evolution of the blue
particles can be formulated analogously:

bi,j(tk+1) = bi,j(tk) + T {i+1,j}→{i,j}
b bi+1,j

+ T {i,j−1}→{i,j}b bi,j−1 + T {i,j+1}→{i,j}
b bi,j+1 (2b)

−
(
T {i,j}→{i−1,j}b + T {i,j}→{i,j+1}

b + T {i,j}→{i,j−1}b

)
bi,j .

B. Derivation of the macroscopic model

In the next step we formally derive the limiting mean-field
equations as the grid size h and the time steps ∆t tend to
zero. Hence we consider the formal hyperbolic limit as h =
∆t = ∆x = ∆y → 0 in Equations (2). We first substitute the
transition rates (1) in Equation (2a) and obtain

ri,j(tk+1)−ri,j(tk) = (1− bi,j − ri,j)(1 + αri+1,j)ri−1,j
+(γ0 + γ1bi+1,j+1)(1− bi,j − ri,j)ri,j+1

+(γ0 + γ2bi+1,j−1)(1− bi,j − ri,j)ri,j−1
−
(
(1− bi+1,j − ri+1,j)(1 + αri+2,j) (3)

+(γ0 + γ1bi+1,j)(1− bi,j−1 − ri,j−1)

+(γ0 + γ2bi+1,j)(1− bi,j+1 − ri,j+1)
)
ri,j ,

and a similar equation for the evolution of the blue particles.
Next we employ Taylor expansions up to second order of all
the occurring probabilities. For example, the probability to find
a red particle at location (xi+1, yj) can be expanded as

ri+1,j = ri,j + h∂xri,j + 1
2h

2∂2xri,j +O(h3). (4)

After expanding all probability densities we keep the terms up
to second order and consider the formal limit as ∆t = ∆x =
∆y → 0. This leads to the following system of PDEs for the
densities of the red and blue particles, which can be either
obtained by tedious hand calculations, or by the computer-
algebra methods described in Section III:

∂tr = −∂x ((1− ρ)(1 + αr)r) + (γ1 − γ2)∂y ((1− ρ)br)

− h

2

[
∂2x(r(1− ρ)(1 + αr))− 2∂x((1− ρ)∂xr)

]
+
h

2
[(γ1 + γ2)∂y ((1− ρ)∂y(rb) + br∂yρ) (5a)

+ 2γ0∂y ((1− ρ)∂yr + r∂yρ)

+ 2(γ1 − γ2)∂y ((1− ρ)r∂xb)] ,

∂tb = ∂x ((1− ρ)(1 + αb)b)− (γ1 − γ2)∂y ((1− ρ)br)

− h

2

[
∂2x(b(1− ρ)(1 + αb))− 2∂x((1− ρ)∂xb)

]
+
h

2
[(γ1 + γ2)∂y ((1− ρ)∂y(rb) + br∂yρ) (5b)

+ 2γ0∂y ((1− ρ)∂yb+ b∂yρ)

+2(γ1 − γ2)∂y ((1− ρ)b∂xr)] .

The first terms on the right-hand side of (5a) and (5b) result
from the first-order terms in the Taylor expansion. They
correspond to the movement of the reds and blues to the right
and left respectively as well as the preference of either stepping

to the right or left (depending on the difference γ1 − γ2).
The second line corresponds to the second-order terms in x-
direction, the last three lines to the second-order terms due to
side-stepping. Note that Equations (5a) and (5b) can be written
in a conservative form, i.e. ∂tr = −∇ ·Fr and ∂tb = −∇ ·Fb

for some matrices Fr and Fb. These so-called continuity
equations are always useful as they describe the transport of a
conserved quantity, in our case mass conservation.

III. ALGORITHMIC DERIVATION OF THE
MEAN-FIELD PDES

Symbolic computation, the field of mathematics that is
concerned with computer-implemented exact manipulation
of mathematical expressions involving variables/symbols, is
meanwhile a well-established area of research and has nu-
merous applications. Unfortunately, it is not as widely known
as it should be. One reason may be that some applications
are not straightforward and require at least some insight or
programming skills. But to those who get moderately familiar
with symbolic computation software, it becomes an indis-
pensable tool. There are plenty of general-purpose computer
algebra systems available, the most well-known being probably
Mathematica, Maple, and Sage. For our implementation we
have chosen Mathematica.

In this section we demonstrate how the transition from
the discrete lattice-based model to a macroscopic PDE-based
formulation is achieved using techniques from symbolic com-
putation.

A. Expansion

Recall that the lattice sites are given by (xi, yj) = (ih, jh)
for i, j ∈ Z; in the limit h → 0 one obtains the problem
formulation for the macroscopic model. Let r = r(x, y) and
b = b(x, y) denote the densities of red and blue particles in
the macroscopic model. In order to perform the transition from
partial difference equations for ri,j and bi,j to partial differen-
tial equations for r(x, y) and b(x, y), we employ formal Taylor
expansions of the probabilities appearing in (3), as discussed
in Section II, for example:

ri+1,j = r + h∂xr + 1
2h

2∂2xr + · · · =
∞∑
k=0

hk

k!
∂kxr, (6a)

bi,j+1 = b+ h∂yb+ 1
2h

2∂2yb+ · · · =
∞∑
k=0

hk

k!
∂ky b. (6b)

Note that these calculations are done on a completely formal
level.

Although the expansions (6) are not available as a built-
in command in Mathematica, it is a relatively simple task to
implement them. We have made some effort to design our
implementation as general as possible. This means that we do
not fix the number of expansion variables (this corresponds
to the dimension of the domain Ω). Moreover, we allow for
discrete steps of any size, i.e, terms of the form ri+a,j+b with
a, b ∈ Z can be handled as well.

For our purposes it suffices to perform the Taylor expan-
sions (6) on the master equation (3) up to second order. While
this is a tedious calculation when done by hand, it is a trivial



task for a computer algebra system. Still, when writing the
result in expanded form, we obtain a huge expression for the
right-hand side of (3):

r∂xb+ αr2∂xb− ∂xr + b∂xr + 2r∂xr +

+ 〈167 terms〉 − 1
8γ2h

5r(∂2yr)(∂
2
x∂

2
yb).

(7)

Since h is considered to be very small, all terms involving
h2 or higher powers of h will be omitted (this corresponds
to the polynomial reduction modulo h2). In our example
Mathematica returns the following expression:

r∂xb+ αr2∂xb− ∂xr + b∂xr + 2r∂xr +

+
〈
56 terms

〉
− 1

2γ2hb
2∂2yr.

(8)

Analogously, the master equation for the blue individuals
yields a similar expression. These two PDEs in their expanded
form cover approximately one page when printed. While this
is still a bit unhandy for a human being, it is not at all a
challenge for a computer. However, when we turn to more
involved examples, it is worthwhile to spend a few thoughts
on the implementation. As demonstrated above, expanding the
equation after having inserted the Taylor series, results in the
large expression (7), but most of its terms are deleted by
the polynomial reduction, giving (8). In the present example
this is not a big deal, but in other cases this large interme-
diate expression turns out to be the bottleneck. It is then
advantageous to systematically perform expansion–reduction
steps on subexpressions; more precisely, to follow a bottom-
up approach, starting at the leaves of the expression tree.

B. Integration

A common problem in symbolic computation is to bring the
output of a computation into a form that is useful for a human
being. The computing power that nowadays computers have
allows to produce gigantic symbolic expressions without much
effort. It can be much more difficult to extract the relevant
information from such an output. In this spirit, we want to
process the Taylor-expanded expressions such as (8) further,
and rewrite them in a conservative, more compact form.

One of the classical problems in symbolic computation
is to determine the antiderivative of a given function. The
first complete algorithm for the class of elementary functions
was given by Risch [16], which was later extended to more
general classes of functions, see for example [17]. Most of
these algorithmic ideas found their ways into current computer
algebra systems.

In contrast to the classical integration problem, we shall
consider cases that are more general, namely in the following
three aspects. First, the given function a(x) may not have an
antiderivative in the prescribed class; in this case, it is desirable
to decompose a(x) into an integrable part and remainder, i.e.,

a = ∂xI +R, (9)

where the remainder R is “as small as possible”. Second,
the expressions we are dealing with involve unspecified func-
tions, so that the input can be interpreted as a differential
polynomial [18], [19]; for example, we would like to write
the expression f · ∂xf as ∂x

(
1
2f

2
)
. Third, our setting is

multivariate, in the sense that we have several unspecified

functions and several variables with respect to which we
differentiate.

The first algorithmic approach to the problem of inte-
grating expressions with unspecified functions was proposed
in [20], and independently for differential polynomials in [21].
This was generalized recently to integro-differential polynomi-
als [22], [23], to differential fields [24], [25], and to fractions
of differential polynomials [26], [27].

While current computer algebra systems are very good in
computing the antiderivative of an expression involving un-
specified functions (provided that it exists), the decomposition
into an integrable part and remainder is a more delicate task.
For example, both Mathematica and Maple correctly compute∫ (

f2(∂2xg)− 2(∂xf)2g − 2f(∂2xf)g
)

dx =

f2(∂xg)− 2f(∂xf)g.

In contrast, if a given expression cannot be written as the
derivative of some other expression, then it is not at all straight-
forward to obtain a decomposition of the form (9), using
the standard integration commands provided by the computer
algebra system. As an example, consider the decomposition

f · ∂xf + f = ∂x
(
1
2f

2
)

+ f.

We are now going to recall the main algorithmic ideas
how to compute a decomposition of the form (9). Let us first
consider a polynomial expression E in a single unspecified
function f and its derivatives ∂xf, ∂2xf, . . . ; let n denote the
order of the highest derivative of f that appears in E. If E
has an antiderivative, i.e., E = ∂xI for some polynomial
expression I , then it is easy to see that ∂nxf occurs linearly
in E, i.e., E is quasi-linear. Hence, if ∂nxf does not occur
linearly, then the corresponding monomials are put into the
remainder, as they cannot be integrated. Now assume that E
is linear in ∂nxf . Let m be the highest power of ∂n−1x f and
denote by u the coefficient of (∂n−1x f)m(∂nxf) in E, which is
itself a polynomial in f, ∂xf, . . . , ∂n−2x f . Then integration by
parts yields

u ·
(
∂n−1x f

)
m(∂nxf) =

∂x

( u

m+ 1

(
∂n−1x f

)
m+1

)
− ∂xu

m+ 1

(
∂n−1x f

)
m+1.

(10)

Hence the first term on the right-hand side of (10) goes into
the integrable part, while the second term is used to replace
u·
(
∂n−1x f

)
m(∂nxf) in E. After performing this step repeatedly

(at most m times), E involves only derivatives of f up to
order n− 1. This shows that the algorithm terminates.

We have seen that in the case of a single unspecified
function, there is a canonical choice which term to integrate in
each step of the algorithm. In contrast when several unspecified
functions are involved, the situation is less clear, as the
following example shows:

(∂xf)(∂xg) = ∂x
(
f(∂xg)

)
− f(∂2xg)

= ∂x
(
(∂xf)g

)
− (∂2xf)g.

(11)

Hence one has to specify an order in which the terms are
processed, and which at the same time doesn’t lead to infinite



loops. The same kinds of problems are faced when the un-
specified functions depend on several variables. The following
example demonstrates the ambiguity of the decomposition in
the case of a single unspecified function f(x, y):

(∂xf)(∂yf) + ∂xf + ∂yf

= ∂x
(
f · ∂yf + f

)
+ ∂y

(
f
)
− f · ∂x∂yf

= ∂x
(
f
)

+ ∂y
(
f · ∂xf + f

)
− f · ∂x∂yf.

In our application we have to deal with several unspecified
functions f1, . . . , fk in several variables, say x, y, . . . , z. So
the question is in which order we should treat the terms of
the input expression to obtain the desired result. One natural
choice is to consider the variables in a fixed order as the main
loop of the algorithm. This means that we first decompose the
input with respect to the first variable, say ∂xI +R; then the
remainder R is decomposed with respect to the next variable,
and so on, yielding a result of the form

∂xIx + ∂yIy + · · ·+ ∂zIz +R.

Additionally, one can also decompose I further, yielding a
nested decomposition of the following form (we show only
the case of a single variable):

∂x(∂x(· · · (∂x(I) +Rd) + · · ·+R2) +R1) +R0.

In our description of the algorithm we use the parameter d
to specify the desired maximal integration depth of the output
expression.

For each integration variable, say x, we proceed as follows:
we determine the highest derivative with respect to x that
occurs in the input, no matter which function is involved. We
say that the highest x-derivative is of order n if ∂nxfi occurs
for some 1 ≤ i ≤ k, but there is no index i such that ∂n+m

x fi
for some m ≥ 1 occurs. Then for each fi, 1 ≤ i ≤ k, (in
the order as specified by the user) the terms involving ∂nxfi
are treated. Note that in this step derivatives with order n+ 1
can be produced, as can be seen in (11). In order to avoid that
the algorithm runs into an infinite loop, we keep these terms,
and continue by considering derivatives of order n − 1. This
algorithm is described in detail in the following pseudo-code:

Algorithm PartialIntegrate
Input: E: differential polynomial expression

f1, . . . , fk: unspecified functions
x, y, . . . , z: integration variables
d: depth

1: if E = 0 or {x, . . . , z} = ∅ or d = 0 then
2: return E

3: end if
4: R← 0

5: I ← 0

6: n← highest x-derivative that appears in E for some fi
7: if n = 0 then
8: return PartialIntegrate

(
E, (f1, . . . , fk), (y, . . . , z), d

)
9: end if

10: for i = n, n− 1, . . . , 1 do
11: for j = 1, . . . , k do
12: m← HighestExponent

(
E, ∂ixfj

)
13: while m ≥ 2 do
14: g ← Coefficient

(
E,
(
∂ixfj

)
m
)

15: R← R+ g ·
(
∂ixfj

)
m

16: E ← E − g ·
(
∂ixfj

)
m

17: m← HighestExponent
(
E, ∂ixfj

)
18: end while
19: g ← Coefficient

(
E, ∂ixfj

)
20: while g 6= 0 do
21: m← HighestExponent

(
g, ∂i−1x fj

)
22: I ← I + 1

m+1 (∂i−1x fj)g

23: E ← E − 1
m+1

(
(∂ixfj)g + (∂i−1x fj)(∂xg)

)
24: g ← Coefficient

(
E, ∂ixfj

)
25: end while
26: end for
27: end for
28: R← R+ E

29: I ← PartialIntegrate
(
I, (f1, . . . , fk), (x, . . . , z), d− 1

)
30: R← PartialIntegrate

(
R, (f1, . . . , fk), (y, . . . , z), d

)
31: return ∂x(I) +R

When we apply our Mathematica implementation of algo-
rithm PartialIntegrate to the large expression (8) we obtain

∂t(r) = ∂x
(
r(b+ r − 1)(αr + 1)

)
− (γ1 − γ2)∂y

(
br(b+ r − 1)

)
+ h
(

1
2∂x
(
∂x
(
r(αbr − b+ αr2 − αr + 1)

)
+ 2r∂xb

)
− (γ1 − γ2)∂y

(
r(b+ r − 1)∂xb

)
+ γ0∂y

(
2r∂yb− ∂y((b− 1)r)

)
+ 1

2 (γ1 + γ2)∂y
(
r(2b− r)∂yb− ∂y((b− 1)br)

))
which basically agrees with the manually derived Equa-
tion (5a); recall that ρ = b+r. Comparing the two expressions
reveals that in (5a) some remainders are not minimal according
to algorithm PartialIntegrate, but the overall expression is
a bit more compact as it involves only factored polynomials
inside the derivatives.

IV. NUMERICAL ILLUSTRATION FOR THE MEAN-FIELD
MODEL

Finally we would like to illustrate the behavior of so-
lutions to (5) with numerical simulations. We consider the
system (5) on Ω×(0, T ), where in our computational examples
Ω = [−Lx, Lx]× [−Ly, Ly] ⊆ R2 with Ly � Lx corresponds
to a corridor. As individuals cannot penetrate the walls, we
set no flux boundary conditions on the top and bottom. At the
entrance and exit of the corridor, i.e at x = ±Lx, we assume
periodic boundary conditions. For all numerical simulations
we used the COMSOL Multiphysics Package with quadratic
finite elements. We set Ω = [0, 1] × [0, 0.1], choose a mesh
of 608 triangular elements and a BDF method with maximum
time step 0.1 to solve the discretized system. The first example
models system (5) in the case where we have no cohesion
and no preference for stepping to one side, i.e. α = 0 and



γ := γ1 = γ2. In the second example we consider system (5)
with the special scaling γ1−γ2 = O(h) including cohesion and
aversion. For this particular scaling the first-order hyperbolic
terms in y-direction are of the same order as the diffusion in
this direction while the mixed derivative terms, i.e. the terms
which involve derivatives with respect to x and y, are of order
O(h2) and can be neglected. In both simulations we start
with a perturbed configuration of the steady state, i.e. constant
densities for r and b, and study if the densities return to the
constant steady state or to another more complex stationary
configuration.

1) Example 1: Let γ0 = 0.1, γ = 0.2 and h = 0.3. As
initial values we choose small perturbations of an equilibrium
state, i.e.

r0(x, y) = 0.4 + 0.02 sin(πx) cos
( πy

0.1

)
b0(x, y) = 0.4− 0.02 sin(πx) cos

( πy
0.1

)
.

(12)

The initial value r0 and the solution rT to the system (5)
at time T = 5 is visualized in Figure 1. The corresponding
density of blue individuals show the same behavior, i.e. the
densities return to the constant equilibrium solution. In this

(a) Initial distribution of reds

(b) Distribution of reds at time T = 5

Fig. 1. Solution to system (5) with no cohesion and aversion.

example we do not observe the formation of directional lanes
as the solutions return to the equilibrium state quickly.

2) Example 2: Let γ0 = 0.001, γ1 = 0.5, γ2 = 0.4,
α = 0.2 and h = 0.1, i.e. γ1−γ2 = O(h). As initial values we
choose again (12), i.e. small perturbations of an equilibrium
state. Figure 2 shows the solution rT and bT to system (5)
at time T = 5. In this example we observe lane formation.

(a) Density of reds at time T = 5

(b) Density of blues at time T = 5

Fig. 2. Solution to system (5) with cohesion and aversion.

Since γ1 > γ2 individuals have a tendency to step to the
right. This tendency can also be observed in the formation
of the directional lanes. The red individuals concentrate on
the bottom of the corridor, whereas the blue individuals move
to the top.

V. CONCLUSION AND OUTLOOK TO FURTHER
APPLICATIONS

In this paper, we have presented a symbolic approach
to derive the mean-field PDEs from lattice-based models.
We demonstrated the methods in terms of one example in
pedestrian dynamics, but the algorithm may also be applied to
other examples. In [1] different motility mechanisms on regular
lattices are introduced, which result in nonlinear diffusion
equations with different diffusivities. The authors considered
various motilities based on attraction or repulsion, i.e. the
transition rate to move away from a neighbouring individual
increases or decreases respectively. For example, in a minimal
model the transition rate is given by

T i→i+1 = (1− ci+1)(1− αci−1),

where ci again denotes the probability that the lattice site xi
is occupied. Hence the transition to move from xi to xi+1

is reduced if the neighbouring site xi−1 is occupied. This
phenomenon is known as adhesion and results in a nonlinear
diffusion model for the cell density c = c(x, t) of the form

∂tc = ∂x(D(c)∂xc),

with a diffusivity of the form D(c) = 3α(c − 2
3 )2 + 1 − 4

3α,
see [28]. Again in [1] several other transition rates were



proposed, which lead to different nonlinear diffusitivies, see
Table 1 there. Using our implementation, the entries in that
table can be generated automatically. For example, we have
tried one of their most complicated models [1, Equation (13)],
which combines contact-forming or contact-breaking interac-
tions with contact-maintaining interactions. Our implementa-
tion correctly derives the diffusivity given in [1, Equation (14)],
where we have chosen the two-dimensional square lattice with
Moore interacting neighborhoods.
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