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Abstract. This article describes recent developments connecting problems

of enumerative combinatorics, constrained by linear systems of Diophantine
inequalities, with number theory topics like partitions, partition congruences,
and q-series identities. Special emphasis is put on the role of computer algebra

algorithms. The presentation is intended for a broader audience; to this end,
elementary introductions to notions like modular functions and to algorithmic
aspects of algebra are given.

1. Introduction

As indicated by the title, this article has a relatively wide topical range which reaches
from enumerative combinatorics and linear systems of Diophantine inequalities to
number theoretic themes like partitions, partition congruences, and q-series identi-
ties. From the methods point of view, despite relying also on analytic concepts like
modular functions, special emphasis is put on transforming the analytic framework
into algebra, in particular, into computer algebra tools like the Ramanujan-Kolberg
package to compute q-identities as witnesses for divisibility properties of partition
numbers. The underlying mathematics of the Omega package is more on the alge-
braic side: semigroups, posets, etc. Omega is an implementation of MacMahon’s
method of partition analysis, having strong connections also to aspects of discrete
geometry. The objective of this article is to provide an introduction to several recent
developments and trends in these areas. The explanatory style of the exposition is
chosen to attract also non-expert readers.

To illustrate the possible scope of applications, we quote a problem from Polya [21,
Example 5]: “The three sides of a triangle are of lengths l, m, and n, respectively.
The numbers l, m, and n are positive integers, l ≤ m ≤ n. Find the number of
different triangles of the described kind for a given n. Find a general law governing
the dependence of the number of triangles on n.” The answer to this problem can
be easily extracted from

∑

1≤a≤b≤c
s.t. a + b > c

xaybzc =
xyz

(1− yz)(1− xyz)(1− xyz2)
,

a relation which, as explained with other examples below, can be easily computed
with the Omega package; see also [5]. Apart from elementary problems like this,
partition analysis can be used in far more challenging contexts, for instance, as we
shall see in Section 3 for the construction of combinatorial objects having modular
forms as generating functions.

The research of Radu was supported by the strategic program “Innovatives OÖ 2010 plus” by
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As a second example consider p(n), the number of partitions of n; for instance,
p(4) = 5 since 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1. In view of p(9) = 30,
p(14) = 135, p(19) = 490, etc., Ramanujan conjectured that all these numbers
are divisible by 5. Ramanujan also discovered a beautiful identity from which this
divisibility is immediate:

(1)

∞
∑

n=0

p(5n+ 4)qn = 5

∞
∏

j=1

(1− q5j)5

(1− qj)6
.

With regard to (1), Hardy [13, xxi–xxxvi] wrote, “It would be difficult to find more
beautiful formulae than the ‘Rogers-Ramanujan’ identities [...]; but here Ramanujan
must take second place to Prof. Rogers; and, if I had to select one formula from
all Ramanujan’s work, I would agree with Major MacMahon in selecting (1).” In
this article we outline the structure of Radu’s Ramanujan-Kolberg package which
computes (1) and many other identities of this kind in automatic fashion.

The rest of this article is structured as follows. In Section 2 we give a brief ac-
count of MacMahon’s partition analysis and of the “Omega project” devoted to its
algorithmic revitalization. Section 3 illustrates the usage of the Omega package as
a tool for mathematical discovery. We will see how Omega computations led to a
new class of partitions (“broken diamond partitions”) having generating functions
in the form of quotients of Dedekind eta functions. One observes that arithmetic
subsequences of coefficient sequences of such quotients satisfy various divisibility
properties. Section 4 presents q-series identities (identities of “Ramanujan-Kolberg
type”) witnessing divisibility of this kind in a direct fashion. The rest of the article
explains how such identities can be found in automatic fashion by the Ramanujan-
Kolberg package. In Section 8 the steps of Radu’s algorithm are presented. As
a preparation, basic facts from modular functions are given in Section 5 and Sec-
tion 6 (zero recognition of modular functions). Underlying algorithmics based on
elementary facts from monoid theory is discussed in Section 7.

2. Partition Analysis

The beginning of the algorithmic revitalization of partition analysis, the “Omega
project”, is described by Andrews in [1, Sect. 2.10]: “The number of partitions of
N of the form b1 + · · ·+ bn satisfying

(2)
bn
n

≥
bn−1

n− 1
≥ · · · ≥

b2
2

≥
b1
1

≥ 0

equals the number of partitions of N into odd parts each ≤ 2n − 1. This problem
cried out for MacMahon’s Partition Analysis [. . . ] Given that Partition Analysis is
an algorithm for producing partition generating functions, I was able to convince
Peter Paule and Axel Riese to join an effort to automate this algorithm.”

Note. A video account of this project of Andrews can be found in [27, 28].

To illustrate MacMahon’s method, consider the partition problem constrained by (2)
in the special case n = 3 but in a slightly more general setting: Find a “good” closed
form of

L(x1, x2, x3) :=
∑

b1,b2,b3∈N s.t. 2b3−3b2≥0,b2−2b1≥0

xb1
1 xb2

2 xb3
3 .
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To remove the inequality constraints on the summation variables, MacMahon intro-
duced the “Omega” operator. This operator acts on additionally introduced slack
variables which in their exponents carry the inequality information.

L(x1, x2, x3) = Ω
≧

∑

b1,b2,b3≥0

λ2b3−3b2
1 λb2−2b1

2 xb1
1 xb2

2 xb3
3 = Ω

≧

1

1− x1

λ2
2

1

1− λ2x2

λ3
1

1

1− λ2
1x3

.

After geometric series summation, the original problem is transformed into the
problem of eliminating the slack variables; here λ1, λ2 and λ3. To this end, in [18]
MacMahon compiled tables of elimination rules like

Ω
≧

1

(1− λ2A)
(

1− B
λ3

) =
1 +A2B

(1−A)(1−A3B2)

or

Ω
≧

λδ

(1− λ2A)
(

1− B
λ2

) =
1

(1−A)(1−AB)
, δ = 0, 1.

With the Omega package (written in Mathematica) at hand, all these steps are
executed automatically as follows.

In[1]:= << Omega.m

Omega Package by Axel Riese (in cooperation with George E. Andrews and Peter Paule)
- c©RISC, JKU Linz - V 2.47

In[2]:= LCrude = OSum[ x1b1 x2b2 x3b3,

{2 b3 - 3 b2 ≥ 0, b2 - 2 b1 ≥ 0 , b1 ≥ 0}, λ]

Out[2]= Ω
≥

λ1, λ2

1
(

1− x1

λ2
2

)(

1−
λ2 x2

λ3
1

)

(1−λ2
1 x3)

In[3]:= L=OR[LCrude]

Out[3]= 1+x2 x32

(1−x3)(1−x22 x33)(1−x1 x22 x33)

In[4]:= L /. {x1->q, x2->q, x3->q}

Out[4]= 1+q3

(1−q)(1−q5)(1−q6)

Note. Out[4] presents the generating function for “Lecture Hall” partitions into
maximally three parts.

It might be illuminating to put partition analysis into a somewhat more general
context. To this end, consider the problem of solving linear Diophantine systems
of inequalities, resp. equations, over non-negative integers. More concretely, given
integers ai,j and ck, find b1, . . . , bn ∈ N such that

(3)











a1,1 . . . a1,n
a2,1 . . . a2,n
...

. . .
...

am,1 . . . am,n

















b1
...
bn






≥











c1
c2
...
cm











.

It is easy to see that exchanging “≥” with “=” results in an equivalent problem. In
both cases the algebraic structure of the set of solutions of the homogenous version
of the problem (i.e., where the ck are all 0) is that of an (additive) monoid. It is
a well-known fact that this submonoid of Nn is finitely generated; for instance, see
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the classical book by Grace and Young where this is proved as a consequence of a
version of the celebrated Hilbert Basis Theorem [12].

A connection to combinatorics is made by translating things to generating functions.
Given an m × n integer matrix A = (aij), an integer vector c = (c1, . . . , cm)t,
consider the non-negative integer solutions b = (b1, . . . , bn)

t to Ab ≥ c presented in
the form of a multivariate formal power series

L(x1, . . . , xn) =
∑

b=(b1,...,bn)t∈Nn

Ab≥c

xb1
1 . . . xbn

n .

It turns out that such L(x1, . . . , xn) arising from linear Diophantine systems of
inequalities (resp. equations) always are rational functions of the form

L(x1, . . . , xn) =
p(x1, . . . , xn)

(1− xα1
1 . . . xαn

n ) . . . (1− xγ1

1 . . . xγn
n )

where p(x1, . . . , xn) is a polynomial in x1, . . . , xn.

Note. The exponent vectors (α1, . . . , αn)
t, . . . , (γ1, . . . , γn)

t consisting of non-nega-
tive integers are called the “fundamental” generators of the respective monoid of
non-negative integer solutions to the associated homogeneous problem. Other gen-
erators come from the exponent vectors of the summand monomials in p(x1, . . . , xn).

Example. The example above in matrix form reads as

(

−2 1 0
0 −3 2

)





b1
b2
b3



 ≥

(

0
0

)

;

and according to Out[3] the solution monoid is generated as follows:

α





0
0
1



+ β





0
2
3



+ γ





1
2
3



+ δ





0
1
2



 ; α, β, γ ∈ N, δ ∈ {0, 1}.

In his pioneering book [18] MacMahon describes on more than a hundred pages how
partition analysis is put into action to compute L(x1, . . . , xn) for a large variety of
problems. In particular, he points to a complete algorithmic method, Elliott’s
algorithm, for executing this task mechanically. But without having a computer
algebra system at hand, MacMahon had to use other methods - often combinations
of ingenious manipulatorics and table look-up techniques.

Note. MacMahon’s main interest in developing partition analysis was to find a
proof for his conjectured form

∏∞
n=1(1− qn)−n of the generating function for plane

partitions. Towards the end of his exposition of partition analysis in [18] MacMahon
confessed that his insight into the method was not sufficient to achieve this goal.
Finally such a proof was accomplished in the course of the Omega project; see [4, 2].
Another goal of the partition analysis project was to turn algorithms into concrete
software; for the resulting Omega package see [5, 6]. Also this algorithmic type of
research has attracted renewed interest in the field. A very recent development is
the new algorithm “Polyhedral Omega” by Breuer and Zafeirakopolous [7] which
combines strategies a la MacMahon with methods from polyhedral geometry such
as Brion decompositions and Barvinok’s short rational function representations. In
[7] one also finds careful complexity analysis and comparisons to other methods,
for instance, to the work of Xin [26]. Despite the development of computer algebra
packages like Omega, the primary goal of the Omega project by Andrews, Paule,
and Riese was not the improvement of computational complexity but the usage of
such packages in the process of mathematical discovery.
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3. Omega and Mathematical Discovery

As already mentioned, MacMahon generalized partitions of numbers arranged “on
a line” like 3 = 2 + 1 = 1 + 1 + 1, to plane partitions arranged “in the plane”, like

3, 2 + 1,
2
+
1

, 1 + 1 + 1,

1
+
1
+
1

,
1 + 1
+
1

.

Alternatively, plane partitions which, for example, are arranged in maximally two
rows can be described by posets, respectively directed graphs, as follows:

❝ ❝

❝❝

❝

❝

a11 a12 a13

a22a21 a23

. . .

✲

✲

❄ ❄

✲

✲

❄

Here the aij represent non-negative integers following order conditions prescribed
by the arrows. For instance, the arrow from a11 to a21 means a11 ≥ a21. Using the
Omega package it is easy to compute corresponding partition generating functions.
For example, consider the following poset:

❝

❝

❝

❝

❝

❝

❝

❝

❝

❝�
�
� ❅

❅
❅
�

�
�❅

❅
❅

�
�
� ❅

❅
❅
�

�
�❅

❅
❅

�
�
� ❅

❅
❅
�

�
�❅

❅
❅

P = a1

a2 a5 a8

a3 a6 a9

a4 a7 a10

✒ ❘

✒❘

✒ ❘

✒❘

✒ ❘

✒❘

and
L(q) :=

∑

a1,...,a10≥0 s.t. P

qa1+···+a10 .

One computes the rational function presentation of L(q) just as in the Omega
example above, and obtains

L(q) =
1 + q8

(1− q)(1− q2)2(1− q3)(1− q5)2(1− q6)(1− q7)(1− q8)(1− q9)
.

Computational experiments with the Omega package led to replacing the poset P
by a k-elongated diamond of length 1:

❝a1
✁
✁✁

❆
❆❆

✕

❯
❝

a2

✁
✁
✁
✁
✁✁

✲
✕

❝

a3

❆
❆
❆
❆
❆❆

✲

❯

❝

a4

✁
✁
✁
✁
✁✁

✲
✕

❝

a5

❆
❆
❆
❆
❆❆

✲

❯

❝

a6
. . . . . . . . . .

❝

a7
. . . . . . . . . . ❝

a2k−1

❆
❆
❆
❆
❆❆

✲

❯

❝

a2k−2

✁
✁
✁
✁
✁✁

✲
✕

❝

a2k+1

❆
❆❆
❯

❝

a2k

✁
✁✁✕

❝ a2k+2

More generally, one can glue n such diamonds together to obtain a k-elongated
partition diamond of length n:
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❝a1
✁
✁✁

❆
❆❆

✕

❯
❝

a2

. . . . . . . .❝

a3

. . . . . . . . ❝
a2k

❆
❆❆

✕

❝

a2k+1

✁
✁✁

❯
❝a2k+2 ❝✁
✁✁

❆
❆❆

✕

❯
❝

a2k+3

. . . . . . . .❝

a2k+4

. . . . . . . . ❝
a4k+1

❆
❆❆

✕

❝

a4k+2

✁
✁✁

❯
❝a4k+3 . . . . . . ❝✁

✁✁

❆
❆❆

✕

❯
❝

. . . . . . . .❝

. . . . . . . . ❝
a(2k+1)n−1

❆
❆❆

✕

❝

a(2k+1)n

✁
✁✁

❯
❝a(2k+1)n+1

In [3] it is shown that the generating function for k-elongated diamonds of length
n is

hn,k(q) =

∏n−1
j=0 (1 + q(2k+1)j+2)(1 + q(2k+1)j+4) . . . (1 + q(2k+1)j+2k)

∏(2k+1)n+1
j=1 (1− qj)

.

But one does not need to stop here. Andrews ingeniously suggested to “delete the
source”; this means, to remove the a1-vertex together with its outgoing edges. The
result is a surprise; namely, for the generating function h∗

n,k(q) over the resulting
poset one obtains

h∗
n,k(q) =

∏n−1
j=0 (1 + q(2k+1)j+1)(1 + q(2k+1)j+3) . . . (1 + q(2k+1)j+2k−1)

∏(2k+1)n
j=1 (1− qj)

.

This leads us to consider the poset which results after gluing these diamonds to-
gether:

❝b(2k+1)n+1
✁
✁✁

❆
❆❆❝

b(2k+1)n−1

. . . . . . . .❝

b(2k+1)n

. . . . . . . . ❝

❆
❆❆

❝

✁
✁✁
❝

☛

❑

❑

☛

. . . ❝✁
✁✁

❆
❆❆

❝. . . . . . . .

☛

❝. . . . . . . .
❑

❝

b7

❆
❆
❆
❆
❆❆

✛

☛

❝

b6

✁
✁
✁
✁
✁✁

✛
❑

❝

b5

✁
✁
✁
✁
✁✁

✛
❑

❝

b4

❆
❆
❆
❆
❆❆

✛

☛

❝

b3

❝

b2

b2k+2

b2k+1

b2k

❝a1
✁
✁✁

❆
❆❆

✕

❯
❝

a2

. . . . . . . .❝

a3

. . . . . . . . ❝
a2k

❆
❆❆

✕

❝

a2k+1

✁
✁✁

❯
❝a2k+2 . . . ❝✁

✁✁

❆
❆❆

✕

❯
❝

. . . . . . . .❝

. . . . . . . . ❝
a(2k+1)n−1

❆
❆❆

✕

❝

a(2k+1)n

✁
✁✁

❯
❝a(2k+1)n+1

Why considering this? In the limit n → ∞ the corresponding generating function
becomes:

∞
∑

m=0

∆k(m)qm := lim
n→∞

hn,k(q)h
∗
n,k(q)

=

∏∞
j=1(1 + qj)

∏∞
j=1(1− qj)2

∏∞
j=1(1 + q(2k+1)j)

=

∏∞
j=1(1 + qj)(1− qj)

∏∞
j=1(1− qj)3

∏∞
j=1(1 + q(2k+1)j)

=
∞
∏

j=1

(1− q2j)(1− q(2k+1)j)

(1− qj)3(1− q(4k+2)j)
.

Consequently, we have constructed combinatorial objects whose generating function
is a non-trivial eta-quotient:

∞
∑

m=0

∆k(m)qm = q
k+1
12

η(2τ)η((2k + 1)τ)

η(τ)3η((4k + 2)τ)

with η the Dedekind eta function defined as usual as

(4) η(τ) := q
1
24

∞
∏

n=1

(1− qn)
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where q = e2πiτ for τ ∈ H, H := {τ ∈ C : Im > 0} the upper half complex plane.

Most relevant for our context, q-series defined by quotients of η-functions often
posess remarkable number theoretic properties. Such properties can be studied
most comfortably with the help of computer algebra systems.

For example, let us input a truncated product version of the generating function
for k-elongated diamonds:

In[5]:= bd[N , k ] :=
∏N

j=1
(1−q2j)(1−q(2k+1)j)
(1−qj)3(1−q(4k+2)j)

Already the case k = 1 will turn out to be interesting. We will inspect the coefficients
of the Taylor series expansion up to that of q30.

In[6]:= bd1 = Normal[Series[bd[30,1], {q,0,30}]]

Out[6]=1 + 3q + 8q2 + 18q3 + 38q4 + 75q5 + 142q6 + 258q7 + 455q8 + 780q9 + 1308q10

+ 2148q11 + 3467q12 + 5505q13 + 8168q14 + 13314q15 + 20327q16 + 30693q17

+ 45882q18 + 67944q19 + 99745q20 + 145239q21 + 209882q22 + 301128q23

+ 429148q24 + 607710q25 + 855414q26 + 1197228q27 + 1666585q28

+ 2308014q29 + 3180668q30

First we take all the coefficients modulo 2.

In[7]:= Mod[CoefficientList[bd1, q], 2]

Out[7]= {1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0,

0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0}

Next we take the coefficients modulo 3 and 4.

In[8]:= Mod[CoefficientList[bd1, q], 3]

Out[8]= {1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0,

0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2}

In[9]:= Mod[CoefficientList[bd1, q], 4]

Out[9]= {1, 3, 0, 2, 2, 3, 2, 2, 3, 0, 0, 0, 3, 1, 2, 2, 3, 1, 2,

0, 1, 3, 2, 0, 0, 2, 2, 0, 1, 2, 0}

In contrast to the cases k = 2 and k = 4, a quick inspection suggests a clear pattern
for k = 3:

(5) ∆1(2n+ 1) ≡ 0 (mod 3), n ∈ N.

Proof. We proceed as in [3] by recalling the freshman’s dream relation

(1− qj)3 ≡ 1− q3j (mod 3), j ∈ N.

Here “≡” is considered coefficient-wise with respect to powers of q. Then
∞
∑

m=0

∆1(m)qm =

∞
∏

j=1

(1− q2j)(1− q3j)

(1− qj)3(1− q6j)

≡

∞
∏

j=1

(1− q2j)(1− q3j)

(1− q3j)(1− q6j)
(mod 3).

Hence the coefficients of odd powers of q have to be zero. �
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Hirschhorn and Sellers [14] found a proof of (5) which reveals the divisibility by 3
in beautifully direct fashion. Namely, they established the identity

(6)

∞
∑

n=0

∆1(2n+ 1)qn = 3

∞
∏

j=1

(1− q2j)2(1− q6j)2

(1− qj)6
.

With Radu’s algoithmic method [23] such identities, including (6), can be estab-
lished automatically. We will discuss its underlying mathematics in the following
sections.

Before doing so, we want to point out that broken diamond partition numbers satisfy
a whole variety of identities similar to (5). For example, in [3] it was conjectured
that for all n ∈ N,

(7) ∆2(10n+ 2) ≡ 0 (mod 2)

and

(8) ∆2(25n+ 14) ≡ 0 (mod 5).

Chan [8] proved this and also

(9) ∆2(10n+ 6) ≡ 0 (mod 2)

and

(10) ∆2(25n+ 24) ≡ 0 (mod 5).

It should be noted that the cases 10n+2 and 10n+6 were first proved by Hirschhorn
and Sellers [14]. Pointers to further congruences, variants and generalizations can
be found in [9].

Summarizing, in this section we have seen that partition analysis can be used to
construct combinatorial objects (“partition diamonds”) with generating functions
being eta-quotients of number theoretic interest. More precisely, subsequences of
the coefficients of Taylor series expansions of such eta quotients satisfy a variety of
divisibility properties. In Section 4 we shall see how such divisibilities can be ex-
plained by establishing so-called “Ramanujan-Kolberg identities” which by Radu’s
package can be derived automatically. In Section 5 and 6 the necessary modular
function background is provided. In Section 7 we shall see that a fundamental task
in Radu’s algorithmic approach is to find generators of a monoid, a theme strongly
related to linear Diophantine systems like (3).

4. Ramanujan-Kolberg Identities

In this section we will exemplify how proofs of congruences like (5), (7), (8), (9)
and (10) can be derived automatically by using Radu’s package. The main task for
the package is to establish an underlying Ramanujan-Kolberg identity. Historically,
this idea traces back to Ramanujan’s “most beautiful” identity. More precisely,
Ramanujan [24] stated without proof that for the partition numbers p(n), defined
by

∞
∑

n=0

p(n)qn :=

∞
∏

j=1

1

1− qj
,

one has (1) and

(11)
∞
∑

n=0

p(7n+ 5)qn = 7
∞
∏

j=1

(1− q7j)3

(1− qj)4
+ 49 q

∞
∑

j=1

(1− q7j)7

(1− qj)8
.
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Like (6) above, these identities give a direct explanation for the first two of Ra-
manujan’s classical congruences

(12) p(5n+ 4) ≡ 0 (mod 5), p(7n+ 5) ≡ 0 (mod 7)

and

(13) p(11n+ 6) ≡ 0 (mod 11).

For the third one, Ramanujan gave no such identity, and we will come back to this
issue in Section 8.

Radu’s package computes identities like (5), (1), and (11) automatically. The input-
output specification of his algorithm is as follows.

INPUT: integers ℓ,m,M,N ∈ N with 0 ≤ ℓ < m, and a sequence (ar(n))n≥0 defined
with respect to a given integer tuple r = (rδ)δ|M by

∞
∑

n=0

ar(n)q
n :=

∏

δ|M

∞
∏

n=1

(1− qδn)rδ .

Note. In view of eta-quotients we have for τ ∈ H and q = e2πiτ that

∞
∑

n=0

ar(n)q
n = q−

∑

δ|M δrδ
24

∏

δ|M

η(δτ)rδ .

OUTPUT: a rational number σ ∈ Q, an integer tuple s = (sδ)δ|N , a finite set
Pm,r(ℓ) of integers such that ℓ ∈ Pr,m(ℓ), and eta quotients e1, . . . , ek together with
c1, . . . , ck ∈ Q such that

(14) qσ
∏

δ|N

∞
∏

n=1

(1− qδn)sδ
∏

ℓ′∈Pm,r(ℓ)

∞
∑

n=0

ar(mn+ ℓ′)qn = c1e1 + · · ·+ ckek.

An identity of the format as in (14) is called a Ramanujan-Kolberg identity.

Note. Radu’s algorithm returns such an identity only if such an identity exists.

For example, the identities (1) and (11) rewritten in this output format read as

(15) q

∞
∏

j=1

(1− q5j)

∞
∑

n=0

p(5n+ 4)qn = 5

(

η(5τ)

η(τ)

)6

and

(16) q

∞
∏

j=1

(1− q7j)

∞
∑

n=0

p(7n+ 5)qn = 7

(

η(7τ)

η(τ)

)4

+ 49

(

η(7τ)

η(τ)

)8

,

respectively. In both cases Pm,r(ℓ) = {ℓ} with ℓ = 4 and ℓ = 5, respectively.

Note. Identities of the form (14) where Pm,r(ℓ) is bigger than {ℓ} go back to
Kolberg [16].

To give a concrete example in the context of broken partition diamonds, recall the
congruences (8) and (10):

(17) ∆2(25n+ 14) ≡ ∆2(25n+ 24) ≡ 0 (mod 5), n ∈ N.
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Using (1− qj)5 ≡ 1− q5j (mod 5) we observe that
∞
∑

m=0

∆2(n)q
n =

∞
∏

j=1

(1− q2j)(1− q5j)

(1− qj)3(1− q10j)
≡

∞
∏

j=1

(1− q2j)(1− qj)2

(1− q10j)
(mod 5)

=:

∞
∑

n=0

d(n)qn.

Hence ∆2(n) ≡ d(n) (mod 5), and we will prove (17) with d(n) instead of ∆2(n).

Radu’s program “Ramanujan-Kolberg” delivers

q
3
2
η(2τ)12η(5τ)10

η(τ)6η(10τ)20

(

∞
∑

m=0

d(25n+ 14)qn

)(

∞
∑

m=0

d(25n+ 24)qn

)

=25(2t4 + 28t3 + 155t2 + 400t+ 400)

(18)

where

(19) t =
η(τ)3η(5τ)

η(2τ)η(10τ)3
.

Rewriting the η-quotients in terms of q-products of the form
∞
∏

k=1

(1− qδk)tk

makes the divisibility by 5 for each of the two classes d(25n+ 14) and d(25n+ 24)
explicit.

Here, in view of (14), ℓ = 14, m = 25, M = N = 10, r = (r1, r2, r5, r10) =
(2, 1, 0,−1), s = (s1, s2, s5, s10) = (−6, 12, 10,−20), σ = −4 and Pm,r(ℓ) = {14, 24}.

Note. The program computes a similar identity also for ∆2(n) instead of d(n), but
the output is much bigger.

For the automatic derivation of Ramanujan-Kolberg identities of the form (14)
Radu has chosen a particular setting in order to deal with modular functions in an
algebraic fashion. The basic ingredients to this setting are given in the Sections 5,
6, and 7. The description of the steps of Radu’s Ramanujan-Kolberg Algorithm can
be found in Section 8.

5. Modular Functions: Basic Notions

As defined by (4) at the end of Section 3, eta functions are holomorphic functions
defined on the upper half of the complex plane. Obviously, for f(τ) := η(τ)24 we
have the periodicity f(τ + 1) = f(τ) for τ ∈ H.

Note. In view of q-series representation we recall a fundamental, but important
fact. Namely, for a given holomorphic function f(τ) on H with period N ∈ N \ {0}
(i.e., f(τ +N) = f(τ), τ ∈ H), there exists (uniquely) a holomorphic function h(τ)
on the open unit disk, punctured at 0, such that for all τ ∈ H:

(20) f(τ) = h(e2πiτ/N ).

For example, for f(τ) := η(τ)24 (i.e., N = 1) one has

h(q) = q

(

∞
∑

n=1

p(n)qn

)−24

for all q from the punctured open unit disc.
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But more is true. Namely, f(τ) := η(τ)24 satisfies

(21) f

(

aτ + b

cτ + d

)

= (cτ + d)kf(τ), τ ∈ H,

for k = 12 and all

(

a b
c d

)

∈ SL2(Z) =

{(

a b
c d

)

∈ Z2×2 : ad− bc = 1

}

. Holo-

morphic functions on H with this property plus suitable asymptotic behaviour at
τ ∈ Q ∪ {∞} are called modular forms of weight k for SL2(Z).

Note. A standard reference for modular forms and the related arithmetic of their
q-series coefficients is [20].

Taking quotients g(τ) := f1(τ)/f2(τ) of such modular forms f1(τ) and f2(τ) result
in stronger symmetry:

(22) g

(

aτ + b

cτ + d

)

= g(τ),

(

a b
c d

)

∈ SL2(Z), τ ∈ H.

Note:
(

a b
c d

)

(τ) :=
aτ + b

cτ + d

defines a group action of SL2(Z) on H. Often one writes γτ instead of γ(τ) where
γ ∈ SL2(Z).

Sometimes one needs to restrict property (22) to

(

a b
c d

)

from subgroups of

SL2(Z), for instance,

(

a b
c d

)

∈ Γ0(N), N ∈ N \ {0}, where

Γ0(N) :=

{(

a b
c d

)

∈ SL2(Z) : N |c

}

.

Modular forms g of weight k = 0 with symmetry (22) for

(

a b
c d

)

∈ Γ0(N)

(i.e., (23) below) and being holomorphic on H are called modular functions for
Γ0(N). It is obvious that such functions for fixed N form C-algebras; i.e., they are
commutative rings with 1 and vector spaces over C.

Notation. The C-algebra of modular functions for Γ0(N) will be denoted by M(N).

For example, one can show that the functions (η(5τ)/η(τ))6 from (15), and f(z)
and f(z)2 with f(z) = (η(7τ)/η(τ))4 from (16) are elements from M(5) and M(7),
respectively. To this end, one needs to verify for N = 5, resp N = 7 the following
variant of (22) :

(23) g

(

aτ + b

cτ + d

)

= g(τ),

(

a b
c d

)

∈ Γ0(N), τ ∈ H,

and the suitable asymptotic behaviour at all τ ∈ Q∪{∞}. This “suitable asymptotic
behaviour” is described by using the Laurent expansion as in (20) of h around 0.
Consider τ ∈ H close to ∞ or to a point a

c ∈ Q. Allowing c = 0 we include the case

∞ = a
0 . For γ =

(

a b
c d

)

∈ SL2(Z) we have γ(∞) = a
c . Because of periodicity

the following theorem holds [15, Thm 4].
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Theorem 5.1. Let γ(∞) = a
c for γ =

(

a b
c d

)

∈ Γ0(N) and g be a holomorphic

function on H satisfying (23). Then for all τ ∈ H sufficiently close to a
c ∈ Q∪{∞}

there exists a Laurent series expansion such that

(24) g(τ) =

∞
∑

n=−∞

cn(γ)e
2πin(γ−1τ)/wγ

where

wγ := min
{

h ∈ N∗ :

(

1 h
0 1

)

∈ γ−1Γ0(N)γ
}

.

Now we can give a precise definition of modularity. Namely, g as in the theorem is
called a modular function, if (23) holds, and if

(25) for all γ ∈ SL2(Z) : cn(γ) = 0 for almost all negative n.

(Instead of (25) one also says that g is meromorphic at τ = a
c = γ∞.) If this holds

and if m is the smallest index such that cm(γ) 6= 0, then we call m the γ-order of g
at τ = a

c ; notation: m = ordγa/c(g).

Note. If cn(γ) = 0 for all n ∈ Z we set ordγa/c(g) = ∞.

Using the fact that γ−1
2 γ1∞ = ∞ iff γ−1

2 γ1 =

(

1 h
0 1

)

for some k ∈ Z, it is not

too difficult to check that if a
c = γ1∞ = γ2∞ for γ1, γ2 ∈ SL2(Z), then wγ1

= wγ2

and

(26) ordγ1

a/c(g) = ordγ2

a/c(g).

Thus we can define the order of a modular function g at a
c ∈ Q ∪ {∞} by

orda/c(g) := ordγa/c(g)

for some γ ∈ SL2(Z) such that γ∞ = a
c .

On the same line, let g be a modular function, and let γ∞ = a
c ∈ Q ∪ {∞} for

γ =

(

a b
c d

)

∈ SL2(Z) with expansion at a
c being

g(τ) =
∑

n≥orda/c

cn(γ)e
2πi(γ−1τ)/wγ .

Furthermore, let γ′ =

(

a′ b′

c′ d′

)

∈ SL2(Z) be such that γ′ = γ0γ for some γ0 ∈

Γ0(N). Then

wγ′ = wγ

owing to (γ′)−1Γ0(N)γ′ = γ−1Γ0(N)γ. In addition, g has an expansion at a′

c′ = γ′∞
as follows

g(τ) =
∑

n≥orda′/c′ (g)

cn(γ
′)e2πi((γ

′)−1τ)/wγ′

=
∑

n≥orda′/c′ (g)

cn(γ
′)e2πi(γ

−1τ)/wγ

where the second equality is by g(τ) = g(γ0τ). Hence, by uniqueness of Laurent
expansion, for all n ∈ Z:

(27) cn(γ
′) = cn(γ); in particular , ordγ

′

a′/c′(g) = ordγa/c(g).
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In other words, the (24) expansions at points a′

c′ = γ0
a
c with γ0 ∈ Γ0(N) are all the

same.

Example. For g(τ) := (η(5τ)/η(τ))6 property (23) for N = 5 follows from a refined
version of the symmetry (21) for the η-function. To show property (25) we need
to show that for all γ ∈ SL2(Z) the expansion (24) has only a finite sum as its
principal part. In view of property (27), this task can be reduced to a finite number
of inspections. To this end, we make use of the coset decomposition [15].

(28) SL2(Z) = Γ0(5) ∪ Γ0(5)T ∪ Γ0(5)TS ∪ · · · ∪ Γ0(5)TS
4

where

S =

(

1 1
0 1

)

, and T =

(

0 −1
1 0

)

;

this means, we just need to check for γ = {id, T, TS, . . . , TS4}.

A further reduction of the number of inspections comes from the fact that S(∞) =
∞ and thus

id(∞) = ∞ and TSj(∞) = 0 (j = 0, . . . , 4).

This means, we need to inspect the Laurent expansion (24) for all τ close to ∞ (i.e.,
choosing γ = id) and close to 0 (i.e., for γ = T ). For γ = id we can invoke (4) with
q = e2πiτ

g(τ) = q

∞
∏

j=1

(

1− q5j

1− qj

)6

;

i.e., ord∞(g) = 1. For γ = T we have to use [15, Thm. 9]

(29) η
(

−
1

τ

)

= (−i)1/2τ1/2η(τ), τ ∈ H,

(taking that branch of the square root function τ1/2 which is positive for real τ > 0)
and obtain for τ close to 0:

(30) g(τ) =
1

53
1

Q

∞
∏

j=1

( 1−Qj

1−Q5j

)6

where Q = e2πi(T
−1τ)/5. This means, ord0(g) = −1.

Note 1. Relation (30) corresponds to the following relation:

g(τ)g
(

−
1

5τ

)

=
1

53
, τ ∈ H.

Note 2. Matching the right hand side of (30) to the series expansion as in (24) one
sees that wT = 5. This is in accordance with the fact [17, Lemma 3.2.4]

(31) wγ =
N

gcd(c2, N)
if γ =

(

a b
c d

)

∈ Γ0(N).

Summarizing, with these considerations we have sharpened our understanding of
modular functions for a given group Γ0(N). Recall that these objects form a C-
algebra which we denoted by M(N). We also note that if f(τ) ∈ M(N) without
having roots in the upper half complex plane, then also

1

f(τ)
∈ M(N).
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6. Modular Functions: Zero Recognition

Our task is to establish and to prove algebraic relations between functions from
M(N). To illustrate various points, consider the following functions on H using
q = e2πiτ :

(32) f(τ) := q

∞
∏

j=1

(1− q5j)

∞
∑

n=0

p(5n+ 4)qn

and

(33) g(τ) := q

∞
∏

j=1

(

1− q5j

1− qj

)6

=

(

η(5τ)

η(τ)

)6

.

Following the example above we know that g ∈ M(5). Suppose we also know that
f ∈ M(5). Equipped with this knowledge: how does one prove (15); i.e.,

(34) f(τ)− 5g(τ) = 0, τ ∈ H?

Since both functions can be expressed as power series in q, one way to proceed
would be comparing the (infinitely) many coefficients in these expansions. However,
in the given context, it is non-trivial to turn this strategy into a feasible (finitary)
argument. Rather than that, one looks at expansions at points a

c ∈ Q∪{∞}, where
poles arise. In view of (24), the representations in (32) and (33) correspond to

expansions at γ∞ = 1
0 = ∞ with γ =

(

1 0
0 1

)

and where w∞ = 1 by (31). Next

consider the expansion at γ∞ = 0
1 = 0 with γ =

(

0 −1
1 0

)

= T and w0 = 5

by (31). If we expand (30) in powers of Q = e2πi(T
−1τ)/5 we obtain

g(τ) =
1

53
Q−1 −

6

53
+

9

53
Q1 + . . . .

As we shall see below, to prove (15) it is sufficient to check for the Q-expansion

f(τ) =

∞
∑

n=−∞

cn(T )Q
n,

whether ord0(f) = −1 and whether

(35) c−1(T ) =
1

52
and c0 = −

6

52
.

This is done as follows. First, rewrite f(τ), as defined in (32) as

f(τ) = q
19
24 η(5τ)

∞
∑

n=0

p(5n+ 4)qn

and define

H(τ) :=
1

5
η(5τ) and F (τ) := 5q

19
24

∞
∑

n=0

p(5n+ 4)qn.

By (29) we have

H(Tτ) =
1

5
(−i)1/2

(τ

5

)1/2

(q
1
5 )24

∞
∏

j=1

(1− (q
1
5 )j).
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To express F (Tτ) in terms of powers of q
1
5 is more involved. Using properties of

the eta function, Rademacher [22] derived that

F (Tτ) =

4
∑

λ=0

η
(τ + 24λ

5

)−1

=(−i)−1/2(5τ)−1/2(q
1
5 )−

25
24

×

(

∞
∏

n=1

(

1− (q
1
5 )25n

)−1

− 5

∞
∑

n=1

(n

5

)

p(n− 1)(q
1
5 )n

)

(36)

where
(

n
5

)

is the Legendre symbol. Consequently,

f(τ) =f(T (T−1τ)) = H(T (T−1τ))F (T (T−1τ))

=
1

52
Q−1

∞
∏

j=1

(1−Qj)

=×
(

∞
∑

n=0

p(n)Q25n − 5

∞
∑

n=1

(n

5

)

p(n− 1)Qn
)

=
1

52
Q−1 −

6

52
+

9

52
Q+ . . . ,

which confirms (35). Why is this sufficient to prove (34)?

Recall the following classical fact from complex analysis:

Theorem 6.1 (MMT). Let f be a holomorphic function on a connected open subset
U ⊆ C. Suppose there is a point p ∈ U such that |f(z)| ≤ |f(p)| for all z ∈ U . Then
f is constant on U .

This theorem (“Maximum Modulus Theorem”) generalizes word by word replacing
C by a connected Riemann surface X; see [19, Thm. 1.36]. As a corollary one
obtains a fundamental tool for zero testing of modular functions:

Theorem 6.2 (ZT). Let f be a holomorphic function on a compact Riemann sur-
face X. Then f is a constant function.

Proof. The function |f | is continuous on the compact space X, hence taking on a
maximum at some point in X. Consequently, the Riemann surface version of the
MMT implies that f is a constant function. �

Note. Taking U = C in MMT gives Liouville’s theorem. In view of ZT this would
correspond to choosing the Riemann sphere for X.

Where in our context is the compact Riemann surface X to apply theorem ZT for
zero-testing of modular functions?

To answer this question we extend our group action from H to H := H ∪Q ∪ {∞}:

Γ0(N)×H → H,
((

a b
c d

)

, τ

)

7→

(

a b
c d

)

τ :=
aτ + b

cτ + d
.

Notation. We write [τ ] := {γτ : γ ∈ Γ0(N)} for τ -orbits and X0(N) for the set of
all orbits.

We remark that orbits of τ ∈ Q ∪ {∞} contain only elements from Q ∪ {∞}. Thus

X0(N) = {[τ ] : τ ∈ H} ∪ {[τ ] : τ ∈ Q ∪ {∞}}
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as a disjoint union of orbit sets.

Note. There are only finitely many orbits in {[τ ] : τ ∈ Q ∪ {∞}}. These orbits are
called cusps of X0(N); the underlying geometrical motivation and the connection to
Riemann surfaces can be found in books like [10]. Sometimes, by abuse of language,
also a representative τ of a cusp [τ ] is called cusp.

Example. For N = 5 we determine {[τ ] : τ ∈ Q ∪ {∞}}: Either τ = a
c = 1

0 = ∞ or

τ = a
c for relatively prime integers a and c. In any case there exists γ =

(

a b
c d

)

∈

SL2(Z) such that γ∞ = a
c . According to (28), γ ∈ Γ0(5) or γ = γ0TS

j with

γ0 ∈ Γ0(5) and j ∈ {0, . . . , 4}. In the first case
[

a
c

]

= [∞], in the second case
[

a
c

]

= [0] because of TSj∞ = 0. Hence

X0(5) = {[τ ] : τ ∈ H} ∪ {[0], [∞]}.

Modular functions on H can be turned into meromorphic functions on X0(N) as
follows: Suppose f ∈ M(N). For τ ∈ N define

f̃([τ ]) := f(τ).

Because of (23) this is well defined. For a
c ∈ Q ∪ {∞} let γ∞ = a

c with γ =
(

a b
c d

)

∈ SL2(Z). Consider the Laurent expansion as in (24) for τ ∈ H close

to a
c :

f(τ) =

∞
∑

n=orda/c(f)

cn(γ)e
2πin(γ−1τ)/wγ

with wγ = N
gcd(c2,N) as in (31). If now orda/c(f) < 0, define

f̃
([a

c

])

:= ∞.

If orda/c = 0, define

f̃
([a

c

])

:= c0(γ);

if orda/c(f) > 0, define

f̃
([a

c

])

:= 0.

Because of (27) all these function values at a
c ∈ Q ∪ {∞} are well-defined. Con-

sequently, with the definitions above any f ∈ M(N) gives rise to a function f̃ on
X0(N).

Without going into detail, the set of orbits X0(N) can be equipped with a (natural)
topology to make it a compact Hausdorff space. In addition, by introducing suitable
charts (local homeomorphisms from X0(N) to C) X0(N) can be turned into a
Riemann surface.

Therefore, modular functions f ∈ M(N) can be viewed as functions f̃ on the
compact Riemann surface X0(N). One can check in a straight-forward fashion

that the functions f̃ are meromorphic functions on X0(N) which, owing to f being

holomorphic on H, have possible poles only at the cusps; i.e., at the points
[

a
c

]

with
a
c ∈ Q ∪ {∞}.
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As concrete representations at these cusps, one has that for all τ ∈ H from a suitably

chosen open neighbourhood of a
c = γ∞ ∈ Q ∪ {∞} with γ =

(

a b
c d

)

∈ SL2(Z):

f̃([τ ]) = f(τ) =

∞
∑

n=orda/c

cn(γ)e
2πi(γ−1τ)/wγ .

Note. As “suitable neighbourhoods” of a
c for a

c ∈ Q one can take open discs in H

which are tangent to the real axis and to which a
c is adjoined; for a

c = ∞ one can
choose the “degenerated discs” {τ ∈ H : Im(τ) > c}, c ≥ 0.

If orda/c ≥ 0 for all cusps
[

a
c

]

then f̃ is holomorphic and, by Theorem ZT, f̃ is

even a constant function on X0(N).

As an obvious consequence, f is constant function on H. And as another obvious
consequence we obtain the following zero test for a modular function f ∈ M(N):

MF-ZeroTest.

(T1) Determine all different cusps {
[

a
c

]

: a
c ∈ Q ∪ {∞}}.

(T2) For each cusp representative a
c = γ∞ with γ =

(

a b
c d

)

∈ SL2(Z) deter-

mine whether all the coefficients of the principal part

−1
∑

n=orda/c(f)

cn(γ)e
2πi(γ−1τ)/wγ

are zero.

(T3) If the answer to (T2) in each instance is yes: choose a suitable cusp
[

a
c

]

to

test whether c0(γ) = 0.

7. Interlude: Monoids and Modular Functions

Before describing the Ramanujan-Kolberg Algorithm in Section 8, we have to intro-
duce a special C-algebra of modular functions. This algebra and a related (commu-
tative) monoid structure allow to simplify the MF-ZeroTest and to carry out also
other algebraic/algorithmic tasks.

To this end, we consider those functions f ∈ M(N) for which f̃ as a meromorphic
function on X0(N) has a pole only at the cusp

[

a
c

]

= [∞]; i.e.,

M∞(N) := {f ∈ M(N) : orda/c(f) ≥ 0 for all
a

c
∈ Q}.

As its ambient space M(N), also M∞(N) forms a C-algebra which, in addition,
gives rise to a naturally defined additive monoid induced by the pole orders.

The natural numbers N = {0, 1, . . . } form a commutative monoid with respect to
both multiplication (with identity element 1) and addition (with identity element 0).
Let M ⊆ N be an additive submonoid. It is easily seen that M is finitely generated.
Namely, fix some m ∈ M \{0} and consider in M the equivalence classes modulo m.
If a, a′ ∈ M such that a′ = a + ℓm for some ℓ ∈ N, then a′ can be discarded as
a generator. Hence, choosing the minimal element ui ∈ M from each equivalence
class gives a set of generators {u0 = 0, u1, . . . , uk−1,m}, k ≤ m, that generate all
of M .
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Note. It may happen that k < m because some of the equivalence classes may have
empty intersection with M . However, this cannot happen in the case of numerical
semigroups M which have the additional defining property that 1 ∈ GM (i.e.,
GM = Z) where

GM := {α1m1 + · · ·+ αℓmℓ : ℓ ∈ N, αi ∈ Z,mj ∈ M}

is the (cyclic) subgroup of Z generated by M . Because then one can find a repre-
sentation of 1 as

1 + α1m1 + · · ·+ αimi = αi+1mi+1 + · · ·+ αjmj ∈ M

with αk ∈ N. For m′ := α1m1 + · · ·+ αimi ∈ M we have 1 +m′ ∈ M ; this implies
ui := i(1 + m′) ∈ M are solutions of the congruences ui ≡ i (mod m′) for each
i ∈ {0, . . . ,m′−1}. Hence N\M is a finite set, and also modulo any other non-zero
element m ∈ M no congruence class in M can remain empty. Vice versa, if N \M
is a finite set for a submonoid M ⊆ N then there exists an m′ ∈ M such that
1 + m′ ∈ M ; hence (1 + m′) − m′ = 1 ∈ GM and M is a numerical semigroup.
Finally we note that considering numerical semigroups is no serious restriction of
generality because for each submonoid M of N there is a monoid homomorphism
φ : M → Md,m 7→ m/d, where Md := {m/d : m ∈ M} is a numerical semigroup
with d being the generator of GM . Further information on numerical semigroups
with connections to Diophantine systems of inequalities like (3) can be found in [25].

Given non-constant modular functions f, f1, . . . , fn ∈ M∞(N), our goal is to de-
velop an algorithm for checking membership in the C-algebra R generated by
{f1, . . . , fn}; i.e., to decide whether

f ∈ R := C[f1, . . . , fn]?

For simplicity we assume gcd(ord∞(f1), . . . , ord∞(fn)) = 1. In this case

M := {− ord∞(g) : g ∈ R}

is a numerical semigroup. Define m := − ord∞(f1) and t := f1, and let u0 = 0,
u1, . . . , um−1, and m be the generators of M as explained above. Let g0 = 1,
g1, . . . , gm−1 ∈ R be such that − ord∞(gi) = ui for i ∈ {0, . . . ,m− 1}, then we
have

Theorem 7.1. For every f ∈ R there exist polynomials p0(x), . . . , pm−1(x) ∈ C[x]
such that

f = p0(t) + p1(t) g1 + · · ·+ pm−1(t) gm−1.

Proof. If d = ord∞(f), then d = ui + ℓm for some index i ∈ {0, . . . ,m − 1} and
some ℓ ∈ N. In particular, ord∞(git

ℓ) = ord∞(f); therefore there exists c ∈ C such
that ord∞(f − cgit

ℓ) > ord∞(f). Continuing this process with h1 := f − cgit
ℓ ∈ R

instead of f , one obtains an h2 ∈ R, and so on. Finally, after k steps one obtains
an hk ∈ R with ord∞(hk) > 0, and thus hk = 0 by the MF-ZeroTest. By back
substitution we obtain the desired form of f . �

Theorem 7.2. With the assumptions as in the previous theorem we have that

(37) C[f1, . . . , fn] = 〈g0 = 1, g1, . . . , gm−1〉C[t],

the right side denoting the C[t]-module generated by g0 = 1, g1, . . . , gm−1 ∈ M∞(N)
where the gi are computed according to the Algorithm MODULE GENERATORS.

Proof. The following algorithm description shows how to obtain g1, . . . , gm−1 from
f1, . . . , fn in an algorithmic fashion. The rest of the statement is only a reformula-
tion of Theorem 7.1. �
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Algorithm MODULE GENERATORS.

INPUT: non-constant t := f1, f2, . . . , fn ∈ M∞(N) with m := − ord∞(t) and

gcd (ord∞(t), ord∞(f2), . . . , ord∞(fn)) = 1;

OUTPUT: g0 = 1, g1, . . . , gm−1 ∈ M∞(N) such that (37).

STEP 0: Set E := {}. Set mk := − ord∞(fk), k = 2, . . . , n. For each 1 ≤ i ≤ m−1:
if there exists fj ∈ {f2, . . . , fn} such that − ord∞(fj) ≡ i (mod m) then do nothing.
Suppose such fj for i does not exist. Then there exist αi,k ∈ N such that

αi,2m2 + αi,3m3 + . . . αi,nmn ≡ i (mod m)

owing to gcd(m,m2,m3, . . . ,mn) = 1; in this case, add to the set E the element
f
αi,2

2 f
αi,3

3 · · · f
αi,n
n . — Remark. After STEP 0 the set {h1, . . . , hℓ} := {f2, . . . , fn}∪

E has the property

{− ord∞(h1), . . . ,− ord∞(hℓ)} ≡ {1, . . . ,m− 1} (mod m).

STEP 1: Define as input list L := {h1, . . . , hℓ} := {f2, . . . , fn} ∪ E. To do an
“elementary step” consider a pair {hi, hj} ⊆ L with − ord∞(hj) ≥ − ord∞(hi). If

− ord∞(hj) 6≡ − ord∞(hi) (mod m),

do nothing; otherwise, set

F := hj − c t
− ord∞(hj)+ord∞(hi)

m hi

where c ∈ C is chosen such that − ord∞(F ) < − ord∞(hj). If F = 0, delete hj from
L; otherwise, replace hj by F .

Repeat this “elementary step” until the list of functions remains unchanged.

Note 1. STEP 1 turns L into {F1, . . . , Fm−1} ⊆ M∞(N) such that

C[f1, f2, . . . , fn] = C[t, f2, . . . , fn] = C[h1, h2, . . . , hℓ] = C[t, F1, . . . , Fm−1]

and
{− ord∞(F1), . . . ,− ord∞(Fm−1)} ≡ {1, . . . ,m− 1} (mod m).

Note 2. In view of the finiteness of N \M ′ the monoid M ′ generated by the orders
− ord∞(F1), . . . ,− ord∞(Fm−1) is a numerical semigroup. But, in general, M ′ is
only a submonoid of M = {− ord∞(g) : g ∈ C[F1, . . . , Fm−1]. STEP 2 now takes
care of products of the Fi.

STEP 2: To start with STEP 2, take the output L := {F1, . . . , Fm−1} from STEP 1.
To do an “elementary step”, we now consider L∗ := L∪ {FiFj} with fixed i, j such
that 1 ≤ i ≤ j ≤ m − 1, and apply STEP 1 to L∗ to obtain {G1, . . . , Gm−1} ⊆
M∞(N). Then these Gi have the property that

C[t, F1, . . . , Fm−1] = C[t, F1, . . . , Fm−1, FiFj ] = C[t, G1, . . . , Gm−1]

and
{− ord∞(G1), . . . ,− ord∞(Gm−1)} ≡ {1, . . . ,m− 1} (mod m).

Moreover, one can easily check that either {G1, . . . , Gm−1} = {F1, . . . , Fm−1} or

(38) −

m−1
∑

i=1

ord∞(Gi) < −

m−1
∑

i=1

ord∞(Fi).

The next “elementary step” is made with choosing Gi, Gj ∈ {G1, . . . , Gm−1} such
that FiFj 6= GiGj and applying STEP 1 to L∗ := {G1, . . . , Gm−1} ∪ {GiGj}. Such
“elementary steps” are continued until the set {G1, . . . , Gm−1} does not change
anymore, and the Algorithm MODULE GENERATORS returns the output

(g0, g1, . . . , gm−1) := (1, G1, . . . , Gm−1).
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Termination is guaranteed by (38).

Note. There are more efficient, but less transparent strategies for this algorithm.

8. The Ramanujan-Kolberg Algorithm

To describe the steps of Radu’s Ramanujan-Kolberg Algorithm [23] (in short called
“RK Algorithm” below) we need to specify certain sets of eta quotients:

E(N) :=
{

∏

δ|N

η(δτ)rδ : (rδ)δ|N is proper
}

,

where an integer sequence (rδ)δ|N is called proper if

∑

δ|N

rδ = 0,
∑

δ|N

δrδ ≡
∑

δ|N

N

δ
rδ ≡ 0 (mod 24), and

∏

δ|N

δ|rδ|/2 ∈ N.

Using transformation properties of the η-function one sees that E(N) ⊆ M(N).
The set E(N) and also

E∞(N) := E(N) ∩M∞(N)

clearly form a (multiplicative) monoid. The following, algorithmically important
lemma traces back to Newman; see [23].

Lemma 8.1. For each N ∈ N∗ there exists µ ∈ E∞(N) such that

orda/c(µ) > 0 for all
a

c
∈ Q.

As a consequence, multiplying functions f ∈ M(N) with suitable powers µk of such

eta quotients µ, one can remove all the poles sitting at the cusps
[

a
c

]

whenever
a
c ∈ Q; i.e., resulting in µkf ∈ M∞(N).

RK Algorithm Step 1. For the INPUT as specified in Section 4, compute σ ∈ Q

and an integer sequence (sδ)δ|N together with the finite set Pm,r(ℓ) of integers such
that

(39) qσ
∏

δ|N

∞
∏

n=1

(1− qδn)sδ
∏

ℓ′∈Pm,r(ℓ)

∞
∑

n=0

ar(mn+ ℓ′)qn ∈ M∞(N).

In [23] one finds conditions for the existence of such σ and (sδ) together with
algorithms to compute them.

Example. In the case of (16) the algorithm determines

(40) q
17
24

η(τ)8

η(7τ)7

∞
∑

n=0

p(7n+ 5)qn ∈ M∞(7).

Define

〈E(N)〉C := the C-vector space generated by the elements of E(N).

Note. This vector space is infinite dimensional and it contains the constant func-
tions; i.e., 1 ∈ 〈E(N)〉C.

Suppose f ∈ M∞(N) is given in a form like on the left side of (39). The goal of
the RK Algorithm is to find e1, . . . , ek ∈ E(N) such that for c1, . . . , ck ∈ C:

(41) f = c1e1 + · · ·+ ckek ∈ 〈E(N)〉C ∩M∞(N).
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Suppose that

(42) 〈E(N)〉C ∩M∞(N) = 〈E∞(N)〉C

where

〈E∞(N)〉C := the C-vector space generated by the elements of E∞(N).

Then the e1, . . . , ek in (41) can be chosen from E∞(N). Owing to the next lemma,
and to Theorem 8.3 below, there is a finite presentation of the infinite vector space
〈E∞(N)〉C.

Lemma 8.2. The (multiplicative) monoid E∞(N) is finitely generated.

RK Algorithm Step 2. Compute generators E1, . . . , Em of E∞(N) according to
[23, Lemma 25].

Note. The generators can be computed using algorithms that solve Diophantine
problems like (3).

Example. The RK Algorithm tells that the monoid E∞(7) is generated by E1 :=
(

η(τ)
η(7τ)

)4

∈ E∞(7). Consequently,

〈E∞(7)〉C ={c1e1 + · · ·+ cjej : j ∈ N, ci ∈ C, ei ∈ E∞(7)}

=C[E1] = polynomials in E1 with coefficients in C.

As an alternative to a polynomial ring presentation, 〈E∞(7)〉C can be also viewed
as C[E1]-module over the trivial generator 1 ∈ E∞(7); in notation:

〈E∞(7)〉C = 〈1〉C[E1].

Indeed, this is possible in general by the following theorem extracted from [23]:

Theorem 8.3. Suppose the multiplicative monoid E∞(N) is generated by E1, . . . ,
Em. Then there are elements t and z1, . . . , zn ∈ 〈E∞(N)〉C such that the C-vector
space 〈E∞(N)〉C = C[E1, . . . , Em] can be represented as a C[t]-module freely gener-
ated by z1, . . . , zn; i.e.,

〈E∞(N)〉C = 〈1, z1, . . . , zn〉C[t].

RK Algorithm Step 3. Apply Algorithm MODULAR GENERATORS from
Section 7 to {E1, . . . , Em}.

Note. All these computations rely on the fact that we are dealing with modular
functions in M∞(N). As already mentioned, for such functions it is sufficient to
handle the principal part of the Laurent series expansions in powers of q = e2πiτ at
a
c = ∞. Also the last step benefits from this fact.

RK Algorithm Step 4. Let f(τ) denote the left hand side of (39) and let

〈E∞(N)〉C = 〈1, z1, . . . , zn〉C[t]

be the output of Step 3. Following the steps as described in the proof of Theorem 7.1,
compute polynomials p0(t), . . . , pn(t) ∈ C[t] such that

f = p0(t) + p1(t)z1 + · · ·+ pn(t)zn.

Example. Define
∞
∑

k=0

L(k)qk :=
∞
∏

j=1

1

1− q2j−1
=

∞
∏

j=1

1− q2j

1− qj
.
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Note. This is the generating function of partitions into odd parts; we started with
the Lecture Hall partition problem (2) where such partitions arise but with a re-
striction on the size of the parts.

RK Step 1 with M = 2, r = (r1, r2) = (−1, 1), m = 7, and ℓ = 3 delivers Pm,r(3) =
{3, 4, 6} and

q−5
∞
∏

j=1

(1− qj)13(1− q7j)8

(1− q2j)5(1− q14j)16

×

∞
∑

n=0

L(7n+ 3)qn ·

∞
∑

n=0

L(7n+ 4)qn ·

∞
∑

n=0

L(7n+ 6)qn ∈ M∞(14).

(43)

RK Step 2 gives that the multiplicative monoid E∞(14) is generated by

E1 =

(

η(2τ)

η(τ)

)1(
η(7τ)

η(τ)

)7(
η(14τ)

η(τ)

)−1

∈ E∞(14),

E2 =

(

η(2τ)

η(τ)

)8(
η(7τ)

η(τ)

)4(
η(14τ)

η(τ)

)−8

∈ E∞(14),

E3 =

(

η(2τ)

η(τ)

)−5(
η(7τ)

η(τ)

)5(
η(14τ)

η(τ)

)−13

∈ E∞(14),

E4 =

(

η(2τ)

η(τ)

)1(
η(7τ)

η(τ)

)3(
η(14τ)

η(τ)

)−7

∈ E∞(14),

E5 =

(

η(2τ)

η(τ)

)5(
η(7τ)

η(τ)

)7(
η(14τ)

η(τ)

)−11

∈ E∞(14),

and

E6 =

(

η(2τ)

η(τ)

)−2(
η(7τ)

η(τ)

)6(
η(14τ)

η(τ)

)−10

∈ E∞(14).

RK Step 3 computes that

〈E∞(14)〉C = 〈1, E4〉C[E1];

i.e., t = E1, z1 = E4. Denoting the function in (43) by f , RK Step 4 outputs

f = 8(p0(t) + p1(t)z1)

where p0(t) = −16t+ 9t2 and p1(t) = 2t.

Note. It is easily checked that this relation implies for all n ∈ N:

(44) L(7n+ 3) ≡ L(7n+ 4) ≡ L(7n+ 6) ≡ 0 (mod 2).

In a different setting, Gordon and Ono [11] have shown the strikingly general result
that almost all values of L(n) are divisible by 2k for any k ∈ N.

Radu’s “Ramanujan-Kolberg” package also delivers that
∞
∑

n=0

L(7n)qn ·

∞
∑

n=0

L(7n+ 1)qn ·

∞
∑

n=0

L(7n+ 5)qn

=q6
∞
∏

j=1

(1− q2j)5(1− q14j)16

(1− qj)13(1− q7j)8
(3E3

1 + 24E2
1 + 64E1)

and
∞
∑

n=0

L(7n+ 2)qn = q3
∞
∏

n=1

(1− q14j)8

(1− qj)3(1− q2j)(1− q7j)4
(8E1 + E4 − 8).
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The summands on the right hand sides have no common integer factor, so no divi-
sibility results from these identities. �

In Section 4 we remarked that so far in the literature one could not find any
Ramanujan-Kolberg identity presenting a witness for the congruence (13). In the
next example we show what the Ramanujan-Kolberg package produces for this case.

Example. RK Step 1 computes that

q−14
∞
∏

j=1

(1− qj)10(1− q2j)2(1− q11j)11

(1− q22j)22
∈ M∞(22).

RK Step 2 computes E1, . . . , E8 as generators of E∞(22) where

E1(τ) =
η(2τ)8η(11τ)4

η(τ)4η(22τ)8
, E2(τ) =

η(2τ)η(11τ)11

η(τ)η(22τ)11
, E3(τ) =

η(τ)7η(11τ)3

η(2τ)3η(22τ)7
,

and the other Ei as in [23].

RK Step 3 computes

〈E∞(22)〉C = 〈1, z1, z2〉C[t]

where

t =
1

11
E1 −

1

8
E2 +

3

88
E3, z1 = −3 +

2

11
E1 −

1

8
E2 −

5

88
E3,

z2 = −
3

11
E1 +

5

4
E2 +

1

44
E3.

RK Step 4 computes the following Ramanujan-Kolberg identity witnessing the con-
gruence (13). (Note that 11 divides each of the coefficients on the right hand side.)

∞
∑

n=0

p(11n+ 6)qn =q14
∞
∏

j=1

(1− q22j)22

(1− qj)10(1− q2j)2(1− q11j)11

× {(1078t4 + 13893t3 + 31647t2 + 11209t− 21967)

+ z1(187t
3 + 5390t2 + 594t− 9581)

+ z2(11t
3 + 2761t2 + 5368t− 6754)}.

Note. The sufficiently involved structure of this witness identity might explain why
Ramanujan (and others) did not come up with such a relation.

Finally we want to come back to the assumption (42) made above. Actually we
do not know whether this is true in general. Nevertheless, this “blind spot” is
no restriction to the framework in which the RK Algorithm works owing to the
following lemma in [23].

Lemma 8.4. Let µ ∈ E∞(N) be as in Lemma (8.1). Then there exists an n ∈ N,
computable in finitely many steps, such that

µn(〈E(N)〉C ∩M∞(N)) ⊆ 〈E∞(N)〉C.

If the left side of (39) has a presentation of the type (41), then the Lemma 8.4 tells
us that we have to apply a preprocessing step before executing the RK Algorithm.
Namely, multiplying the input (39) by µn allows us to find the ej in (41) as elements
in E∞(N) as desired.
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