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Abstract

Reeb graphs are topological graphs originating in Morse theory, which represent the topological structure of a manifold by con-
tracting the level set components of a scalar-valued function defined on it. The generalization to several functions leads to Reeb
spaces, which are thus able to capture more features of an object. We introduce the layered Reeb graph as a discrete representation
for Reeb spaces of 3D solids (embedded three-dimensional manifolds with boundary) with respect to two scalar-valued functions.
After that we present an efficient algorithm for computing the layered Reeb graph, which uses only a boundary representation of the
underlying three-dimensional manifold. This leads to substantial computational advantages if the manifold is given in a boundary
representation, since no volumetric representation has to be constructed. However, this algorithm is applicable only if the defining
functions satisfy certain conditions.
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1. Introduction

A Reeb graph [1] is a topological data structure which is
able to capture the topology of shapes. Considering a scalar-
valued function defined on the domain of interest, the level
sets of this function may consist of several components, which5

evolve while sweeping through the function values. The Reeb
graph encodes the evolution of these level set components, which
are sometimes referred to as contours in the literature, by col-
lapsing each contour to a point. Typical applications of Reeb
graphs include shape abstraction [2, 3, 4], shape recognition10

[5, 6, 7, 8, 9] and shape decomposition [10, 11], but they are
also applied e.g. to loop detection [12], landscape modeling
[13], to guide hex-meshing [14] or in the analysis of trajectories
[15] and point data [16].

Generalizing this approach to vector-valued defining func-15

tions (or, equivalently, to several scalar-valued functions) leads
to Reeb spaces [17], which are thus able to capture more fea-
tures of a shape. However, they are a more complicated struc-
ture. Consider for example the Reeb space of a three-dimensional
manifold with respect to two functions. In general it consists of20

several connected surface patches, which makes its computa-
tion and storage more difficult. As our first goal, we propose
the layered Reeb graph for this situation, which encodes the in-
formation captured by the Reeb space using two layers of Reeb
graphs, see Figure 1.25

We demonstrate that the Reeb graph of a general solid ob-
ject does not capture the topology of the object. In contrast, the
Reeb space with respect to two functions, and therefore also the
layered Reeb graph proposed in this paper, is able to do so. Be-
sides, the layered Reeb graph can easily be embedded into the30

object. From this embedding, a skeletal structure of the object

can be derived. To our knowledge, no algorithm for the com-
putation of Reeb spaces has been proposed in the literature, and
our algorithm for the layered Reeb graph is a first step in this
direction. We expect that the Reeb space will find various appli-35

cations in shape recognition, classification and decomposition.
The existing literature on Reeb graphs describes several al-

gorithms, which compute the Reeb graph of a manifold with
boundary with respect to a given scalar-valued function, typ-
ically using a simplex mesh of the manifold as input, or us-40

ing a voxel-based description, as in [18]. However, if a three-
dimensional manifold is given in a boundary representation, a
volumetric representation has to be generated to apply these ap-
proaches, since the Reeb graph of the manifold and the Reeb
graph of its boundary surface are, in general, different objects.45

As our second goal, we describe a construction algorithm
for the layered Reeb graph (and, implicitly, for the Reeb graph),
which uses only a boundary representation of the manifold.
This leads to substantial computational advantages, since the
generation of a volume representation is costly, and a boundary50

representation typically has a smaller data volume, e.g. com-
paring the number of elements in a surface- and volume mesh.
However, the class of defining functions has to be restricted.

The remainder of this paper is structured as follows. In the
next section, we will review related work on Reeb graphs be-55

fore defining the layered Reeb graph in Section 3. In Section 4
we identify the conditions on the defining functions which we
will need to construct the layered Reeb graph from a bound-
ary representation. After that, we study the Jacobi set and its
relevance for the layered Reeb graph in Section 5. Finally, our60

construction algorithm is described in Section 6 and we present
some results in Section 7.
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Figure 1: Example of a layered Reeb graph. Left: Object with the blue curves indicating the Jacobi set, which guides our construction, see Section 5. Center-left:
For each level set component of the height function, a Reeb graph with respect to a second function is shown, which is embedded into the level set, see Definition 3.
First, the level set components A and B occur, which are joined to form C, and so on. Center-right: The Reeb graph with respect to the height function, where arcs
are labeled by the capital letters of the corresponding level set component. Right: The Reeb graphs of each level set component with respect to a second function.
The primary and secondary graphs together form the layered Reeb graph, see also Definition 3. For a detailed explanation of the labels, see Section 7.1.

2. Related Work

Several algorithms for the computation of Reeb graphs are
described in the literature, see e.g. Biasotti et al. [19, 20] or65

Edelsbrunner and Harer [21] for overviews.
The first known algorithm by Shinagawa and Kunii [22]

constructs the Reeb graph in any dimension by explicitly main-
taining the level sets of the function while sweeping through
the function values. The level sets are updated at every vertex,70

which results in an O(n2) runtime. This approach was improved
by using more efficient data structures for storing the level sets,
by Cole-Mclauglin et al. [23] and Brandolini and Piastra [24]
for two-dimensional manifolds and by Doraiswamy and Natara-
jan [25] and Parsa [26] for higher dimensions.75

Sampling-based algorithms analyze the evolution of level
sets by dissecting the domain of interest at certain (e.g. uni-
formly distributed) function levels and analyzing their connec-
tivities, e.g. by Hilaga et al. [8], Attene et al. [2], Berretti et
al. [10] and Biasotti et al. [6]. They are, in principle, able80

to produce a multilevel representation of a shape by decreas-
ing the distance between analyzed function levels in every step.
However, they are not guaranteed to compute the correct Reeb
graph, since they may loose important features if their resolu-
tion is chosen too coarse unless an additional check is included.85

Other approaches exploit the vital relation between the Reeb
graph and the critical points of the defining function. Patanè et
al. [27] successively slice a given two-dimensional manifold at
critical function levels and extract the adjacencies between the
saddle points by flooding through surface triangles. Berretti et90

al. [11] successively merge level sets that are represented by
the same arc in the Reeb graph. Other authors first identify all
critical points and then find connections between them using
monotone paths. For example, Doraiswamy and Natarajan [28]
use paths of adjacent triangles of a simplex mesh of arbitrary95

dimension, and Strodthoff et al. [29] use monotone edge paths
to construct the Reeb graph of a three-dimensional manifold in
boundary representation.

The loop-free variant of Reeb graphs, called contour trees,
can be constructed more efficiently than the Reeb graph, and100

there are many applicable algorithms described in the literature.
For example, Carr et al. [30] first sweep through the function
values twice to construct the split- and join-tree, which are then
put together to form the contour tree. Chiang et al. [31] im-
proved this approach by avoiding to sort all input vertices. In-105

stead, they first identify component-critical points, which they
connect to split- and join-trees using monotone paths. This re-
sults in a construction time of O(n + t log t) with t denoting the
number of component-critical points.

Due to the efficient possibilities for constructing contour110

trees, there have been efforts to reduce the construction of Reeb
graphs to the computation of contour trees. Tierny et al. [32]
use the Reeb graph of an object to find all loops in the ob-
ject, and introduce cuts to open the loops of the Reeb graph.
Thus they produce one manifold with a loop-free Reeb graph,115

which can be handled by a contour tree algorithm. Similarly
Doraiswamy and Natarajan [33] identify saddle points where
they cut the object into several parts with loop-free Reeb graphs
to which the algorithm of [30] is applied individually.

Some recent computation algorithms for the Reeb graph do120

not fit into one of these frameworks. Pascucci et al. [34] intro-
duce an on-line algorithm, which constructs the Reeb graph of
a simplex mesh while streaming the input data. This algorithm
performs well in practice and is applicable to large meshes since
it does not require the whole input to be stored in memory. Har-125

vey et al. [35] propose a randomized algorithm for simplex
meshes which computes the Reeb graph in O(n log n) expected
time by successively collapsing triangles in random order. Fur-
thermore Dey and Wang [36] study the approximation of the
Reeb graph for a manifold given by a point sample, and a sim-130

plified Reeb graph was introduced in [24]
Reeb graphs are defined via a scalar function on a given

domain of interest. The extension to several functions leads to
Reeb spaces. They were introduced by Edelsbrunner et al. [17],
including a construction algorithm for simplex meshes, but ap-135

pear to be little researched by now. Reeb spaces are able to cap-
ture more features of an object than Reeb graphs, which makes
them an interesting object of study. However, as mentioned
before, they possess a more complicated structure than Reeb
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graphs, and are, therefore, harder to handle. We introduce a140

different representation for a special class of Reeb spaces using
two layers of Reeb graphs, which we call layered Reeb graphs,
and an algorithm to compute this object.

Another possible extension considers the evolution of Reeb
graphs over time. Edelsbrunner et al. [37, 38] give a full char-145

acterization of the changes which may occur in the Reeb graph
while the defining function evolves. This work has some sim-
ilarity to the evolution of the second layer Reeb graphs in our
setup of the layered Reeb graph.

All the above algorithms rely on a full-dimensional repre-150

sentation of the input shape, typically using triangular meshes
to analyze surfaces or tetrahedral meshes to analyze volumes.
In contrast, we will consider three-dimensional manifolds in
space which are given by an oriented triangular surface mesh
that represents their boundary. The boundary-based construc-155

tion algorithm for Reeb graphs of three-dimensional manifolds
with respect to the height function was introduced in [29]. Here
we will extend this approach to the computation of layered
Reeb graphs. Furthermore we will define a feasible function
class for the defining functions, for which the layered Reeb160

graph can be computed using only a boundary representation of
the three-dimensional manifold in space. This leads to compu-
tational advantages, since we can work with a lower-dimensional
object, its boundary surface. If the domain is given in a bound-
ary representation in the first place, for example because it was165

exported from a CAD program, we do not need to construct a
volume representation, which saves an expensive computation
step. We will restrict ourselves to triangular surface meshes,
since several steps of the algorithm are more efficient on meshes
than on other surface representations. This work extends the ex-170

tended abstracts [39]and [40].

3. The layered Reeb graph (LRG)

We begin by recalling the definition of Reeb graphs (see
also [20] for an introduction). As typical in Morse theory, struc-
tural information about a manifold is obtained by analyzing a175

scalar-valued function defined on it. Figure 2 gives two simple
examples for Reeb graphs.

Definition 1. Consider a scalar-valued function f defined on
a d-dimensional manifold M with boundary. Points mapped to
the same function value form a level set, connected parts of a180

level set are called level set components or sometimes contours.
The Reeb graph of M with respect to f is obtained by contract-
ing every level set component to a point, maintaining adjacency
between level sets.

In the following, we will restrict ourselves to the cases d = 2185

and d = 3 as shown in Figure 2, and assume that M is embedded
in R3.

We can observe that, while the Reeb graph nicely reflects
the main structure of a two-dimensional manifold, it may miss
certain features of a three-dimensional manifold, like the inner190

void in Figure 2(b). The usage of more functions leads to Reeb
spaces, which are thus able to capture more features.

ff

(a) (b)

Figure 2: Reeb graphs with respect to the height function, which maps each
point to its last Cartesian coordinate, of (a) a two-dimensional manifold in the
plane, and (b) a three-dimensional manifold in space, containing an inner void
shaped like an indented ball. For a three-dimensional image of this object, see
Figures 4 and 18.

Reeb spaces were considered in 2008 by [17], generaliz-
ing Reeb graphs by considering up to d − 1 scalar-valued func-
tions on a d-dimensional manifold. We will consider the case of195

two functions on a three-manifold with boundary. From now
on, we therefore consider two scalar-valued, C1-smooth func-
tions f and g, defined on a three-dimensional manifold M with
boundary, see also Figure 3.

Definition 2. Level sets consist of all points with constant f -200

and g-value. The Reeb space of M with respect to f and g is
obtained by contracting every level set component to a point,
maintaining adjacency between level sets.

f

g

Figure 3: Reeb space for ( f , g) = (z, y). Level sets are line segments parallel to
the x-axis, contracting them leads to the structure on the right.

As shown in Figure 3, the Reeb space captures the struc-
ture of a three-dimensional manifold better than the mere Reeb205

graph. However, it is a more complicated object to compute,
store and handle, since it consists of surface patches. There-
fore, we introduce the layered Reeb graph as a discrete rep-
resentation for the structure of a Reeb space. It captures the
information stored in the Reeb space using two layers of Reeb210

graphs, see also Figure 4.

Definition 3. For a constant value c attained by f , the Reeb
graph of the level set Lc := {x | f (x) = c} with respect to g|Lc is
called a level set Reeb graph. To obtain the layered Reeb graph,
the arcs of the Reeb graph with respect to f are subdivided into215

parts of equivalent level set Reeb graphs. Then, the correspond-
ing level set Reeb graphs are added to these parts as a secondary
structure. The primary Reeb graph is the Reeb graph with re-
spect to f , enhanced by adding vertices of valency two where
the structure of the level set Reeb graph changes. The level set220

Reeb graphs will be referred to as secondary Reeb graphs.

A level set with respect to f consists of points with the same
f -value. Of these, the level set Reeb graph identifies all points
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f

Figure 4: Layered Reeb graph. Left: Spherical object with an inner void like
in Figure 2(b) with some representative level sets of f . Center: detailed view
of the f -level sets in the left picture. The depicted levels are chosen such that
every change in the level set Reeb graphs is captured. Right: layered Reeb
graph. As compared to the Reeb graph shown in Figure 2(b), the layered Reeb
graph captures the topology of this object. Here, some level set Reeb graphs
contain circles, which encodes the existence of an inner void in the object.

f
g

(a) (b) (c)

Figure 5: For a simple example: (a) Object (b) level sets with level set Reeb
graphs and (c) Reeb space.

which additionally share the same g-value. Thus, each point
on a level set Reeb graph represents a connected component of225

points of M with constant f - and g-value, same as a point on
the Reeb space. Therefore, the Reeb space basically consists
of the level set Reeb graphs for all f -values, stacked together
with intact adjacency, see Figure 5. In this way, the layered
Reeb graph actually captures the structure of the Reeb space by230

grouping parts with equivalent level set Reeb graphs.

4. Feasible functions

In this section, we will define a class of functions for which
the layered Reeb graph can be computed using a boundary rep-
resentation of the domain of interest.235

Critical points.
First, we consider the behavior of the level sets of f and g in a
point.

Definition 4. A point x in M is called regular, if there exists a
neighborhood U(x) in which the level sets of f and g are two-240

dimensional manifolds that dissect U(x) into exactly four parts.
Otherwise, x is called critical, see Figure 6.

Figure 6: Neighborhood of two regular (left) and four critical (right) points.

Since we want to work only with a boundary representation
of the model, we will consider functions without critical points
in M.245

Lemma 5. Two C1-smooth functions f and g with |∇ f×∇g| , 0
on a neighborhood1 of M induce no critical points in M.

Proof. Consider a small sphere U(x) centered in a point x in M.
If x is critical according to our definition, the level set surfaces
of f and g dissect U(x) into either more or less than four parts.250

To achieve less than four parts, either at least one level set
surface has to degenerate, or the level set surfaces must not
change sides while intersecting. In the first case, the gradient of
the function whose level set degenerates becomes zero. In the
second case, the surfaces touch in x, thereby causing their gradi-255

ents to be linearly dependent. For getting more than four parts,
the level set surfaces have to intersect non-trivially in x, which
also requires the gradients of f and g to be linearly dependent
in x. Thus, in every critical point we have |∇ f × ∇g| = 0.

Note that Lemma 5 gives a sufficient, but non-necessary260

condition for critical points. For example in the second picture
in Figure 6, the gradients of f and g are linearly dependent, but
the point is still regular according to our definition.

Feasibility condition.
Once we assumed the gradients of f and g to be linearly in-265

dependent, we additionally assume to know a third function h
such that ( f , g, h) form a reparametrization of space.

Definition 6. Two functions f and g on M are called feasible if
|∇ f × ∇g| , 0 and if additionally a function h is available such
that det(∇ f ,∇g,∇h) , 0 on a neighborhood of M.270

In the ( f , g, h)-space, level set surfaces are planes. Thus,
geometric decisions in the level set surfaces, like the relative
position of a point to a curve or the orientation of a curve, are
reduced to decisions in the plane. These decisions are important
in order to work with boundary representations, since they al-275

low us to reconstruct the structure of a level set surface when we
know only its boundary curves along the surface of the mani-
fold. Additionally we know that the function h is monotonic
along the common level set curves of f and g, so we can see it
as a parameter along these curves.280

Existence of function h.
Note that a function h fulfilling our requirements does not al-
ways exist. For example, consider the case where f (x, y, z) = z
and g(x, y, z) = rx,y, with rx,y denoting the distance of a point
to the z-axis, and consider a torus M centered at the origin.285

Then, M contains common level set curves of f and g which
are closed curves. Thus, we cannot hope to find a function h
that is monotone along these level set curves.

On the other hand, the existence of h is guaranteed if we
find a gradient field H which is linearly independent of ∇ f and290

1We consider two functions f and g which are defined on an open set Ω,
M ⊂ Ω ⊆ R3.

4



∇g. So, if we can find parameters α, β, γ : R3 → R, α > 0 such
that

H = α(∇ f × ∇g) + β∇ f + γ∇g

is a gradient field, we can choose h as the potential of H, i.e.
such that ∇h = H. A sufficient condition for H to be a gradi-295

ent field is if it is curl-free, i.e. curlH = 0, on an open, simply
connected domain containing our manifold M, e.g. on a neigh-
borhood of its convex hull. A more detailed discussion of this
topic is beyond the scope of this paper.

Piecewise linear setup.300

So far we have considered C1-smooth functions. However, we
will work with piecewise linear approximations of these func-
tions in the implementation. We assume the manifold to be
given as a sufficiently fine surface mesh. We then assume that
there exists a sufficiently fine, conforming tetrahedral mesh,305

which approximates also the gradients of the functions suffi-
ciently well. Then, the conditions for feasible functions carry
over to their piecewise linear approximations. Additionally we
assume that the level set surfaces of the functions intersect the
boundary in a generic way, such that the level sets of each func-310

tion on the boundary are curves (without 2D patches) which
intersect only in points.

5. Jacobi set

According to the previous section, we consider functions
without critical points inside the manifold. In this section, we315

will consider the functions’ behavior on the manifold’s bound-
ary. We will introduce the Jacobi set of two functions on a
surface and explain its relation to the layered Reeb graph.

5.1. Definition of the Jacobi set

We now consider the restrictions of f and g to the boundary320

of M. For them, we define the Jacobi set as considered in [41],
see also Figures 7 and 8.

Definition 7. The Jacobi set of two functions on the boundary
of M consists of all points on the boundary in which the level
set curves of the two functions do not cross.325

f

g

Figure 7: Jacobi sets for three piecewise linear examples.

In [41], the Jacobi set was introduced for a smooth setup
as the set of points where |∇̄ f × ∇̄g| = 0, with ∇̄ denoting the
gradient vector in the boundary surface. One can verify that, in

Figure 8: Points on the boundary of a sphere M. Left: the black point does
not lie on the Jacobi set, since the level sets of f and g cross on the boundary.
Middle and right: the black point lies on the Jacobi set, since in the restriction
to the boundary the level sets of f and g do not cross.

the smooth case, our definition coincides with their definition
of the Jacobi set. However, it is applicable directly to the piece-330

wise linear case we consider. In this section, we will denote
the piecewise linear approximations of f and g on the boundary
which are induced by the given triangular surface mesh by f̄
and ḡ, respectively.

The authors of [41] also describe some properties of the335

Jacobi set, for example that, in our setup of two functions on a
boundary surface, it forms a network of curves in which every
vertex has even degree, see Figure 7.

5.2. Relation to level set Reeb graphs

Inspired by [37, 38], we will use the relation between Jacobi340

sets and Reeb graphs, but our setup is slightly different. While
there the Jacobi set on the domain of interest is used in order
to track the vertices of the Reeb graph, we ruled out these crit-
ical points inside the domain. Instead, we use the Jacobi set of
the functions restricted to the boundary to trace changes in the345

level set Reeb graphs which are induced by the boundary. The
following lemma states the relation between the Jacobi set on
the boundary and the level set Reeb graphs, see also Figure 5.

Lemma 8. For feasible functions f and g, a point p on ∂M lies
on the Jacobi set of f̄ and ḡ exactly if it induces a vertex or leaf350

in the level set Reeb graph of the f -level set containing p.

Proof. A point p lies on the Jacobi set exactly if the level sets
of f̄ and ḡ do not cross in p. This is equivalent to saying that in
a neighborhood of p, the points on the f̄ -level set either have all
higher, or all lower ḡ-value than p. Therefore, on the boundary355

curve of the f -level set, p is a local extremum with respect to
ḡ. If we denote the restriction of g to a level set {x | f (x) = c}
of f by gc, this means that the level sets of gc touch (with-
out crossing) the boundary curve of {x | f (x) = c} exactly in
the points which lie on the Jacobi set. Therefore, these are the360

points where the level sets of gc may collapse or connect, i.e.
the vertices or leafs of the level set Reeb graph.

From Lemma 8, we get that the vertices and leafs of the
level set Reeb graphs move along the Jacobi set on the bound-
ary. If we consider adjacent f -level sets, changes in the level set365

Reeb graph will only occur if we pass specific configurations
on the Jacobi set, see Table 1 for an overview of the generic
cases. For example, if we pass a local extremum of the Jacobi
set curve, two vertices in the level set Reeb graph will appear or
disappear. Additionally, the level set Reeb graph may change if370

two arcs of the Jacobi network swap their relative position with
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case change Jacobi set level set component level set Reeb graph

1 swap g position of
two vertices

swap

2 arc (dis)appears extremum

3 connectivity change extremum

4 contract circle
or arc

extremum

Table 1: Generic changes in adjacent Reeb graphs induced by the Jacobi set. For local extrema of the Jacobi set, the transition from the left to the right setup
corresponds to passing a local maximum, while the other direction occurs when passing a local minimum.

respect to g. This means that a vertex of the level set Reeb graph
which was below (with respect to g) another vertex in one level
set of f passes the g-level of the other vertex and lies above it
(with respect to g) in a neighboring f -level set. Of course, the375

level set Reeb graph also undergoes changes if we pass a vertex
of the Jacobi set. However, since the Jacobi network consists
of a disjoint set of topological circles in the generic case, and
vertices occur only if local extrema collapse with other curve
components, we will not include these cases in the discussion.380

Our implementation, however, works also on examples where
the Jacobi set contains vertices.

5.3. Computation of the Jacobi set

For computing the Jacobi set, we use a similar approach as
in [41]. As an input, we consider a triangular surface mesh, and385

we assume the piecewise linear approximations of the functions
induced by the mesh. In this setup, the Jacobi set consists of
edges of the surface mesh. Therefore it suffices to test every
edge of the input mesh whether it forms part of the Jacobi set.
For this test, we use an extension of the corresponding criterion390

introduced in [41].
In short, for every edge, the method proposed in [41] finds

a linear combination hλ = f + λg of f and g which is constant
along the edge. Then, hλ is evaluated in the opposite vertices in
the two triangles incident to the edge. If these vertices both have395

a higher or lower function value than the edge itself, the edge is
on the Jacobi set. While this criterion is very efficient in most
cases, it encounters problems when the opposite vertices of the
incident triangles share the same hλ-value as the tested edge.
However, these cases are not ruled out by simply prescribing400

different f - and g-values on all vertices, for example. They
occur in the special third case shown in Figure 9.

When encountering these cases, we therefore use a different
criterion. Instead of computing an additional function hλ, we
work with the f - and g-level sets directly, see also Figure 9.405

For the tested edge, we determine the four points in the incident
triangles which lie on the same f - or g-levels sets as the edge
midpoint. Then, the edge lies on the Jacobi set if these level sets
do not cross each other. While this approach also has problems
with the special case as in Figure 9, it is more intuitive in this410

setup to resolve these cases by a lexicographic ordering in f and
g. Under the conditions mentioned at the end of Section 4, we
can thus achieve consistent results, assuming a well-behaved
mesh where, for example, there are no thin triangles whose area
is near machine-precision.415

Figure 9: Piecewise linear level sets of f and g (colored) on boundary triangles
(black) incident to the tested edge. Left: the usual case, level sets intersect.
Middle: level sets touch without crossing, the edge in the middle is part of the
Jacobi set. Right: needs special care, for example by reducing this case to a
kind of lexicographic ordering. We will skip the technical details here.

From now on, we will use f and g to refer to the piecewise
linear approximations of the given, C1-smooth functions. We
assume that neither f nor g are constant on any triangle of the
surface mesh and that there is no edge on which both f and g
are constant.420
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6. Boundary-based computation of the LRG

The layered Reeb graph is computed by sweeping through
the f -level sets. First, all events are identified, i.e. points of
M where changes occur in the structure of level sets of f or
in their level set Reeb graphs. Then, we sweep through the425

level sets of f , starting at the lowest value. Information about
the current level set is stored in the status. At each event, the
event handler decides which level set components in the status
are influenced by the event, and implements these changes. We
will now describe these steps in more detail. More details are430

available in the doctoral thesis [42]..

6.1. Status

The status contains information about the current f -level
set by storing a list of all its components, see Figure 10. Each
level set component is an object which stores its current level435

set Reeb graph and a list of its boundary components. Each
boundary component basically consists of a list of references to
the Jacobi curves it intersects, sorted by their sequence along
the boundary curve. Here we assume the curves carry an ori-
entation which is derived from the orientation of the boundary440

surface.

level set of f

status

level set components:

boundary components

level set Reeb graphs e
g f

h
b d

c

a

[(   ,   ), (   ,   )][(   ,   ,   ,   )]

e f
a

c

d
b

g

h
A B

[ A , B ]

fda e hgc b

Figure 10: Information stored in the status. For the level set depicted in the top
of the figure, the status stores two level set components A and B, where each of
them stores its level set Reeb graph and a list of its boundary components.

For feasible functions, we can then reconstruct a level set
component from the information stored in the status when nec-
essary. First, we trace all oriented boundary curves of the level
set component, starting from the Jacobi-references stored in the445

status. For every curve, its orientation in the (g, h)-plane then
tells us whether its inside or outside contains the level set com-
ponent. Finally, we can determine the relative position of the
curves using a point-in-curve operation in the (g, h)-plane, if
necessary.450

6.2. Events

Considering the information stored in the status, there are
basically four types of events:

À Level set events where the number or connectivity of level
set components changes.455

Á Boundary events where the number or connectivity of
boundary components changes.

Â Jacobi events where the Jacobi references of a boundary
change.

Ã Swap events where a level set Reeb graph changes, the460

motivation for this name will follow.
One can observe that by this definition, these types are not dis-
joint, since level set events are also boundary events, boundary
events are also Jacobi events, and Jacobi events always induce
changes to the level set Reeb graph. In the following, we will465

categorize an event by the smallest set it belongs to, see Figure
11.

f
1

1

1

1

1

2

2

3

4

*

*

Figure 11: Example from Figure 4. Left: level set components. Right: Layered
Reeb graph including categorization of events.

Events of the first three types occur in vertices or local ex-
trema of the Jacobi set. They can be identified efficiently once
the Jacobi set has been determined. Swap events occur if two470

vertices of the level set Reeb graph (or, equivalently, the Jacobi
arcs they move on) swap their relative position with respect to g.
In Figure 11, the two vertices marked by ◦ and ∗ in the level set
Reeb graph are swapped, and the graph connectivity changes.
To find these events, we do a preliminary sweep through the Ja-475

cobi set, maintaining a list of intersected Jacobi arcs sorted by
the g-value of their intersection with the current f -level set.

6.3. Handling level set components

Every event contains a specific event handler, which con-
sists of four parts: the positioner, the associator, the level set480

adaptor and the level set Reeb graph handler. We will shortly
mention the tasks of the first three of these here, and go into
some more detail for the level set Reeb graph handler in the
next section.

The positioner stores relevant information about the event,485

like references to the swapped Jacobi arcs in a swap event or
to the underlying vertex of the Jacobi set in the other types of
events. Additionally, it remembers the necessary information to
reconstruct the influenced level set component(s).

When handling an event, first of all the associator identi-490

fies all elements of the status which are influenced by the event.
There are different types of associators depending on the char-
acter of the event, see also Figure 12.
A1: If the event is not a local minimum of the Jacobi set, its

lower Jacobi arcs can be looked up in the status, directly.495

A2: For local minima of the Jacobi set which are not local
minima of the surface, the associator traces a curve along
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Local
extremum:

Saddle point:

Max

Min

Jmin

Jmax

D3

Boundary event Level set event

D4

A1

A3

A1

A2

A1

A1

A4

Swap event

Jmin

Jmax

D1A1

D2

Jacobi  event A2

A2

A1

Figure 12: Associators (A1 to A4) and level set adaptors (D1 to D4) for differ-
ent kinds of events. In the finer classification, Jmin and Jmax denote the local
minima or maxima of the Jacobi set that are no local extrema of the bound-
ary surface, while Min and Max denote the local minima and maxima of the
boundary surface.

the f -level set to the next intersection with a Jacobi arc.
Then, the encountered arc can be looked up in the status.

For local minima of the boundary surface, there is yet another500

distinction.
A3: If the event is a level set event, then a new level set com-

ponent appears, so no association to lower components is
necessary.

A4: In a boundary event, on the other hand, a new boundary505

component appears in an existing level set component.
To find the influenced component, the associator succes-
sively traces out the boundaries of level set components
in the status, until one of the tested level set components
contains the minimum.510

In the next step, the level set adaptor carries out the neces-
sary changes in the status. Again, there are different types of
adaptors, see Figure 12.
D1: In a swap event, there are no changes in the level set com-

ponents.515

D2: In a Jacobi event, the lower Jacobi arcs are simply re-
placed by the upper Jacobi arcs, if any, in the correspond-
ing boundary component.

D3: For a boundary event, the influenced boundary compo-
nents additionally have to be split or merged in this point.520

D4: Finally, in a level set event, the incoming level set compo-
nents are replaced by new ones. In this case, the remain-
ing boundary components of the lower level set compo-
nents have to be assigned carefully to the correct new
components.525

In the end, the level set Reeb graph handler carries out nec-
essary changes to the level set Reeb graphs. We would like to
go into more detail here, so we will design the next section to
this topic.

6.4. Handling level set Reeb graphs530

We use a mixture of two approaches for handling the level
set Reeb graphs.

In the brute force approach, the level set Reeb graph of a
level set component is recomputed between each two succes-
sive events on the corresponding arc of the primary Reeb graph.535

In order to do this, the boundary curves of a level set are traced
at an intermediate f -level. Then, a sweep with respect to g pro-
vides the level set Reeb graph, see the embedded level set Reeb
graphs in Figure 1 and in Figures 14 to 16 for some results.

This approach is obviously very costly. Since the computa-540

tion of the level set Reeb graphs has to be repeated many times,
it easily dominates the total computation time. For many events
it is, however, rather straightforward how to adapt the level set
Reeb graph to reflect the structure of the level set component
above the event.545

We were able to reduce the number of recomputed graphs
by 90% using adaptation rules for many of the generic cases in
Table 1. We fully implemented adaptation rules for the generic
cases 1, 2 in the table, cases 3 and 4 are partly covered by adap-
tation rules. If no adaptation rule is available, we recompute the550

level set Reeb graph like in the brute force approach mentioned
earlier, like for example in the following cases.
• We do not use adaptation rules for vertices of the Jacobi

set, since, in a general setup, they appear by far more
seldom than local extrema of the Jacobi set.555

• Higher degree saddle points and degenerate cases are not
covered by adaptation rules since they are also uncom-
mon in a general setup.

• For saddle points (case 3 in the table), only boundary
events are covered. When level set components merge or560

split, the level set Reeb graphs would have to be merged
or split up, which is not implemented at the moment.

• For saddle points (case 3), only the case of a local max-
imum of the Jacobi set is covered by an adaptation rule,
and not the symmetric case for a local minimum. This is565

because in local minima of the Jacobi set it is harder to
identify which part of the status to adapt.

Representatively for the other cases, we now consider the
adaptation rule for swap events in more detail. Here, two Jacobi
arcs swap their relative position with respect to g. There are no570

changes if the swapped Jacobi arcs belong to different level set
components, since they swap vertices on two independent level
set Reeb graphs. Otherwise, the corresponding vertices of the
level set Reeb graph are swapped in the vertex list. If the level
set Reeb graph contains an edge connecting the swapped ver-575

tices, we additionally have to swap some incident arcs between
the two vertices. This can only occur if both vertices have va-
lency three, see Figure 13 for typical cases.

g
h

g
h

Figure 13: Possible changes in a swap event (type Ã).

7. Results

We implemented the algorithm in C++: The manifold is580

given as triangular surface mesh and the piecewise linear ap-
proximations of the functions are considered.
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7.1. Some examples
Using Mathematica, an automatic visualization for the out-

put of the construction algorithm is generated, see Figures 1 and585

14 to 19. For each example, the layered Reeb graph is visual-
ized by four pictures.
• The first one shows the arcs of the Jacobi set (labeled by

lowercase characters). In addition it shows the knots and
the local extrema of the Jacobi set (i.e., all events except590

for swap events), labeled by numbers.
• The next picture shows instances of level set Reeb graphs

(see Definition 3) between consecutive events that act on
the same level set component. They are labeled by up-
percase characters. The level set Reeb graphs have been595

embedded into three-dimensional space by representing
each connected component by its midpoint. This picture
has been omitted in Figures x and x, since the visualiza-
tion is too complex.

• The primary Reeb graph is shown in the next picture. Its600

arcs correspond to the instances of level set Reeb graphs
shown in the previous picture and they are identified by
the same labels. Recall that the primary Reeb graph is ob-
tained from the Reeb graph with respect to the first func-
tion f by splitting its edges at events that change the level605

set Reeb graph. These events are exactly the ones la-
beled by numbers in the first picture plus the swap events
(which were not shown there, since one cannot identify
them with a single location).

• The final picture shows the secondary Reeb graphs that610

represent the structure of the level set Reeb graphs. The
labels in uppercase characters identify the associated arc
of the primary Reeb graph, and the lowercase characters
specify the arcs of the Jacobi set, which are traced by the
nodes of the level set Reeb graphs.615

7.2. Efficiency of adaptation rules
For the three nontrivial objects shown in Figure 20, the lay-

ered Reeb graph of the object and of its complement are com-
puted using six different combinations of the coordinate func-
tions. Of these in total 12 setups per object, we represent the620

smallest, the most complicated, and an average result in Ta-
ble 2.

A B C

Figure 20: The three objects considered in Table 2: A: Watertight model of
the Stanford bunny. B and C: Rolling stage and wooden chair model from
AIM@SHAPE shape repository.

7.3. Computation time depending on output size
Table 2 suggests that the size of the input mesh has a rather

insignificant influence on the runtime of the construction algo-625

rithm, since for the same input mesh very different runtimes

total time using
object triangles events adapts arcs brute force adaptation

A
2 669 2 423 47 492 3.6s 0.4s

69 664 4 030 3 074 109 877 6.4s 1.4s
13 265 12 662 1 058 542 49.7s 2.5s

B
3 995 3 776 81 380 15.6s 2.1s

382 242 6 569 5 647 114 055 14.4s 2.2s
63 809 60 757 5 004 230 333.9s 19.3s

C
4 697 4 162 50 647 13.4s 2.1s

408 398 14 222 13 009 529 834 77.6s 8.6s
56 593 53 202 4 555 288 262.8s 19.2s

Table 2: Some results for three function setups per object. Number of events,
the number of events which can be handled by an adaption rule, total number
of arcs in all level set Reeb graphs, total time for the pure brute force algorithm
and total time for the adaptive algorithm.

Figure 21: Computation time depending on total number of arcs in all level set
Reeb graphs in a doubly logarithmic plot.

are encountered depending on the chosen functions. When an-
alyzing the numbers in more detail, experimental results sug-
gest that the total runtime depends approximately linearly on
the output size, i.e. on the total number of arcs in all level set630

Reeb graphs, see Figure 21.

8. Conclusion

We defined the layered Reeb graph as a discrete representa-
tion of the structure of a Reeb spaces and formulated sufficient
conditions on the defining functions to allow a boundary based635

construction. After that we presented an efficient algorithm to
construct the layered Reeb graph using only a boundary repre-
sentation of the underlying manifold.

When deriving our construction, we assumed that the defin-
ing functions do not possess critical points inside the considered640

manifold. The extension to Morse functions with critical points
in the interior is of great interest. A promising approach is the
following:
• Subdivide the object into smaller parts which contain no

critical points in their interior.645

• Compute the layered Reeb graph of these parts.
• Merge the different layered Reeb graphs.
Another possible extension concerns the auxiliary function

h. We now assumed to find a function h that fulfills the desired
properties globally. Instead, it would also be possible to fol-650

low a similar subdivision approach as described in the previous
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Jacobi set

g h

f

Secondary Reeb graphsPrimary Reeb graph

E

A

C

D

B

Level set Reeb graphs

Figure 14: Example of a layered Reeb graph. Left: A mushroom-shaped object whose ”cap” has a concave inner boundary. The blue lines show the Jacobi set.
Center-left: Level set Reeb graphs embedded at the midpoints of the represented ( f , g)-level sets. Center-right and right: Primary and secondary Reeb graphs. The
graphs are drawn such that the f -value (or the g-value for the level set Reeb graphs) of a vertex serves as its y (or x) coordinate in the planar picture.

Jacobi set

g h

f

Level set Reeb graphs

H

G

F

D

E

C

A

B

Primary Reeb graph Secondary Reeb graphs

D E

Figure 15: Example of a layered Reeb graph. The level set Reeb graph of the lowest component evolves from A via B to C, and symmetrically the level set Reeb
graph of the upper component evolves from F via G to H. These changes are represented by vertices of valency two in the primary Reeb graph.

Jacobi set Level set Reeb graphs

g h

f

Secondary Reeb graphsPrimary Reeb graph

A

B

C
D

Figure 16: Example of a layered Reeb graph. In this example, the primary Reeb graph with respect to f contains only vertices of valency two. Event 4 is a swap
event: In level set graph C, vertex f is slightly to the left of vertex b, and the two vertices are swapped in the transition to graph D.
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g h

f

Reeb graph
Primary

Reeb graphs
Secondary

B

A

C

Level set Reeb graphsJacobi set

Figure 17: Example of a layered Reeb graph for nonlinear defining functions. A representative level set surface for f and g, each, are shown. With f (x, y, z) = y2/5+z,
g(x, y, z) = x2/5 + y and h(x, y, z) = −x we get |(∇ f ,∇g,∇h)| = 1 , 0, so the functions f and g are feasible.

g h

f

Jacobi set Secondary Reeb graphsPrimary Reeb graph

Figure 18: Example of a layered Reeb graph. The object is a sphere with an inner void, similar to the one in Figures 2(b) and 2. Events 5, 7 and 8 are swap events.
We do not show the embedded level set Reeb graphs here, since there are too many to see them nicely in the picture.

Secondary Reeb graphsPrimary Reeb graph

g h

f

Jacobi set

Figure 19: Example of a layered Reeb graph, now of the complement of the shown object. The Reeb graph with respect to f has two components, one for the outer
volume, and one for the inner void. The nodes 	 and ⊕ in both the primary graph and the secondary graphs represent the nodes at minus and plus infinity.
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paragraph, for example by considering different functions h on
different level sets of f .

Additionally, it would be an interesting topic to determine
how to choose the functions f and g. One can distinguish two655

scenarios. On the one hand, the Morse functions may be deter-
mined by the application in mind. For example, the Reeb graph
with respect to the height function is a valuable tool in the sim-
ulation of dip coating processes [29]. A similar situation may
occur for specific applications of the Reeb space.660

On the other hand, if no functions are given, one may seek
to optimize the choice of the Morse functions depending on the
given object. For example, one could align the functions with
the principal axes of the considered object, so as to make the re-
sulting Reeb graph independent of rotation or translation of the665

object. Also, one could seek to use functions which result in a
simple or in a more complicated layered Reeb graph, depending
on the level of detail that should be resolved. The optimization
of the Morse functions is a challenging topic for future research.

So far, we considered the layered Reeb graph of a three-670

dimensional manifold in space. Currently, we are investigating
the possible extension to moving three-dimensional manifolds,
seen as four-dimensional manifolds in space-time. Sweeping
through values of f = time, a level set Reeb graph is now the
Reeb graph of the moved manifold at a fixed instance of time,675

see Figure 22. Many ideas carry over to this setup from the case
of three-dimensional manifolds in space, like e.g. the connec-
tion to Jacobi sets. While the construction of the Reeb graph
with respect to the height function finds an application in the
simulation of dip-coating processes [29], the Reeb graph of a680

moving manifold could be applied in the simulation of the dip-
coating process of an object that moves and rotates over time.

time

Figure 22: Schematic view of the layered Reeb graph of a moving three-
dimensional manifold in space-time.

As a second application of the layered Reeb graph, we are
considering its use in the decomposition of solid objects into
contractible solids. These can be used as input for other decom-685

position methods, like [43]. While the Reeb graph of the object
surface is enough to find all holes in the object [32], it does
not provide sufficient information to cut all these holes. Firstly,
if a level set component contains holes, some additional infor-
mation is needed to identify its inner boundaries for inserting a690

valid cutting surface. Secondly, cuts can only be performed ef-
ficiently along level sets of the defining function. This suffices
to make the Reeb graph of the object loop free, which is the
main objective in [32]. However, the object itself may still con-
tain holes. Consider, for example, a vertical pipe, which cannot695

be cut into hole-free pieces by cutting along any level set of

the height function. Therefore, we are currently exploring how
the layered Reeb graph can be used to provide this additional
information.
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