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The imaging quality of modern ground-based telescopes such as the planned European Extremely Large Telescope
is affected by atmospheric turbulence. In consequence, they heavily depend on stable and high-performance
adaptive optics (AO) systems. Using measurements of incoming light from guide stars, an AO system compensates
for the effects of turbulence by adjusting so-called deformable mirror(s) (DMs) in real time. In this paper, we
introduce a novel reconstruction method for ground layer adaptive optics. In the literature, a common approach
to this problem is to use Bayesian inference in order to model the specific noise structure appearing due to spot
elongation. This approach leads to large coupled systems with high computational effort. Recently, fast solvers of
linear order, i.e., with computational complexity O�n�, where n is the number of DM actuators, have emerged.
However, the quality of such methods typically degrades in low flux conditions. Our key contribution is to
achieve the high quality of the standard Bayesian approach while at the same time maintaining the linear order
speed of the recent solvers. Our method is based on performing a separate preprocessing step before applying the
cumulative reconstructor (CuReD). The efficiency and performance of the new reconstructor are demonstrated
using the OCTOPUS, the official end-to-end simulation environment of the ESO for extremely large telescopes.
For more specific simulations we also use the MOST toolbox. © 2016 Optical Society of America

OCIS codes: (000.3860) Mathematical methods in physics; (010.1080) Active or adaptive optics; (010.7350) Wave-front sensing;

(350.1260) Astronomical optics.
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1. INTRODUCTION

The image quality of modern ground-based telescopes such as
the planned European Extremely Large Telescope (E-ELT) de-
pends heavily on adaptive optics (AO) systems. AO systems use
the measurements of incoming wavefronts from reference
sources (guide stars) for the reconstruction of the turbulence
above the telescope. Based on the turbulence profile, the shape
of deformable mirror(s) (DMs) is determined such that the im-
age of the scientific objects is corrected after reflection on the
deformable mirror(s). Several AO systems are currently in
use or proposed for ELTs, such as single conjugate adaptive
optics (SCAO), ground layer adaptive optics (GLAO), multi-
conjugate adaptive optics (MCAO), and multi-object adaptive
optics (MOAO). With the exception of SCAO, all systems rely
on measurements from several guide stars, taken by a wavefront
sensor (WFS) for each guide star. However, as the coverage of

the sky with sufficiently bright natural guide stars (NGSs)
is low, laser guide stars (LGSs) are used. Unfortunately,
LGSs introduce additional effects into the modeling of the
measured data, e.g., the cone effect, tip/tilt indeterminacy,
and spot elongation, and hence affect the reconstruction of
the atmosphere or the shape of the deformable mirror.

In this paper, we propose a new reconstruction method for
GLAO. In GLAO, several guide stars, each associated to a
WFS, and a single mirror are used for the correction of the
turbulence in the layer closest to the ground, where usually
most of the atmospheric turbulence is located. There are several
approaches for the reconstruction of the optimal mirror shape
for GLAO. The simplest one consists in averaging the measure-
ments of the incoming wavefronts from the guide stars, recon-
structing the wavefront from the averaged measurements,
and deforming the mirror accordingly [1,2]. Alternatively, the
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wavefronts can be reconstructed separately and then averaged
[1]. More evolved approaches consider a GLAO system as an
MCAO system with one mirror; i.e., an atmospheric tomog-
raphy and a good mirror fitting are needed. For the latter
approach, any of the many suggested computational methods
for MCAO can be used [3–14].

GLAO systems use a combination of NGSs and LGSs. As
mentioned above, spot elongation is a well-documented effect
complicating the use of LGSs on ELTs. When an LGS is
observed with a Shack–Hartmann WFS, the spot registered on
each subaperture is elongated due to the parallax effect. The
elongation degrades the measurement accuracy, and the error
increases linearly with the elongation of the spot in the direc-
tion of the centroid [2]. Furthermore, spot elongation introdu-
ces correlation between the X and Y measurements in the
subaperture [15]. Correction for spot elongation is in particular
needed for the planned generation of ELTs.

In the Bayes approach it is natural to model the spot elon-
gation as a specific noise distribution. There is a line of research
[2,15–18] studying such an approach in different adaptive
optics configurations. The standard approach is to consider the
operator that maps the turbulent atmosphere to the Shack–
Hartmann measurements, and include the noise distribution
of the spot elongation directly into the reconstruction of the
atmosphere, e.g., by the minimization of an appropriate
Tikhonov functional, which takes the form

min
φ
‖Γφ − s‖Cn

� α‖s‖Cp
;

or, equivalently, solving

Γ†CnΓφ � Γ†s;

where Γ is the (Shack–Hartmann) WFS operator and Γ† its
pseudo inverse, φ is the incoming wavefront, s is the vector
of all WFS measurements, Cn is the covariance noise matrix,
and Cp is the prior noise matrix. This approach leads to a large
coupled system of linear equations for the atmospheric layers
and thus causes a high computational effort.

Within this paper, we discuss the benefits of compensating
for the spot elongation in a separate and fast preprocessing step.
We formulate a denoising problem where the noise model from
[2] is assumed. X and Y measurements on one subaperture of a
given WFS are statistically dependent due to spot elongation.
Our algorithm eliminates this dependence and thus decouples
X and Y measurements of the LGS. Different subapertures on a
given WFS and also different WFSs are statistically indepen-
dent. Therefore, measurements for each LGS can be treated
separately. We discuss in particular a numerical example of
the correction for spot elongation for a SCAO system equipped
with a LGS. The main body of our work is to demonstrate the
advantage of our preprocessing approach for a GLAO system,
when a modified cumulative reconstructor (CuReD) [19] is
utilized.

Our whole proposed algorithm is potentially also applicable
to MCAO, laser tomography AO (LTAO), and MOAO to cor-
rect for the ground layer of the atmosphere. The reconstructed
ground layer can be used in tomographic reconstructors
straightforwardly. In some cases the speed of a tomographic
reconstructor might become slower due to the additional
operations.

As our simulation environment we use two different tool-
boxes. Our main simulation enviroment is the OCTOPUS, the
official end-to-end ELT simulation environment of the ESO
[20]. This is used especially for the simulations regarding
GLAO. For more specific tests regarding the statistics, we used
the MOST toolbox developed by our research group in Linz,
Austria [21].

The paper is organized as follows. In Section 2 we describe
some preliminaries to Bayesian inference in adaptive optics. In
particular, we discuss the choice of prior and noise statistics.
Our preprocessing step in introduced in Section 3, where
we study its qualitative denoising effect (Section 3.B) and per-
formance on a classical SCAO system. Our main results are
presented in Section 4, where the impact of the preprocessing
method is demonstrated in OCTOPUS using different imaging
scenarios. Finally, we give some remarks and conclusions in
Sections 5 and 6.

2. BAYESIAN INTERFERENCE IN ADAPTIVE
OPTICS

A. Preliminaries
In the Bayesian paradigm the reconstruction problem is cast
into a question of statistical inference: what information do we
have regarding the possible values of the unknown? Consider
the equation

S � AX� E; (1)

where S ∈ Rm, X ∈ Rn, and E ∈ Rm are the measured data,
the unknown, and the measurement noise, respectively.
Moreover, the matrix A ∈ Rm×n models the physics behind
the measurement.

The unknown quantities in Eq. (1) are in the Bayesian
scheme replaced by random variables. The degree of informa-
tion regarding their values is encoded into the corresponding
probability distributions. A common choice in adaptive optics
is to model both the prior and noise distributions, i.e., X and
E using Gaussian statistics. We motivate this choice in more
detail below. For now assume that X ∼N �x0;Σ� and E ∼
N �e0;Λ� with positive definite covariance matrices Σ ∈ Rn×n

and Λ ∈ Rm×m.
Using the Bayes formula (cf., e.g., [22, Theorem 3.7]) for

the problem above yields that the posterior distribution, i.e., X
conditioned on a measurement S � s, is also Gaussian. In fact,
the posterior mean is given by

x̄ � �ATΛ−1A� Σ−1�−1�ATΛ−1�s − e0� � Σ−1x0�:
In what follows, the structure of the covariance is fixed up to

a constant, i.e., Σ � σ2prioreΣ and Λ � σ2noiseeΛ, where the var-
iances σ2prior and σ2noise are case-dependent. An equivalent
way to recover the posterior mean is then to find the minimizer

x̄�argmin
x

�
‖eΛ−1∕2�Ax−s0�e0�‖22�

σ2noise
σ2prior

‖eΣ−1∕2�x−x0�‖22
�
:

In this paper we concentrate on studying the properties of

the posterior mean. The optimization of parameter α � σ2noise
σ2prior

plays a key role in the reconstruction process. In the following
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sections the noise and prior models are introduced and moti-
vated in detail.

B. Statistical Modeling of Noise and Prior
1. Noise Statistics Produced by LGS with Spot Elongation
Let us describe the noise model for spot elongation introduced
in [2]. The elongation of the SH-WFS spot at a given subaper-
ture can be approximated by a vector (cf. [15])

β � FWHMNa

h20
�x − xLLT�; (2)

where vectors x and xLLT describe the corresponding coordi-
nates of the center of the subaperture and the laser launch
telescope (LLT) in the pupil plane in meters, respectively.
Moreover, h0 is the central altitude in meters, and FWHMNa
is the Gaussian vertical density profile of the full width at half-
maximum (FWHM) of the sodium layer in the atmosphere
in meters. Thus, β and the following derived quantities are
dimensionless. The normalized elongated and nonelongated
directions for the subaperture are denoted by

e � β
‖β‖

and n � �−�β�2; �β�1�T
‖β‖

: (3)

In the following we consider a simplified imaging situation
with G SH-WFSs each composed of N subapertures. For con-
venience each WFS observes a LGS. We highlight the index of
the subaperture and the WFS by using notation βgn, e

g
n, and ngn

for n � 1; :::::; N and g � 1; :::::; G.
In the literature the noise observed in the subaperture with

indices g and n is assumed to have a Gaussian distribution with
zero expectation and covariance

Cg;n � σ2noise · n
g
n�ngn�T � σ2noise

�
1� ‖β‖2

θ2

�
· �egn��egn�T

� σ2noise

�
1� �βgn�21

θ2
�βgn�1�βgn�2

θ2

�βgn�1�βgn�2
θ2 1� �βgn�22

θ2

�
; (4)

where σnoise stands for the noise variance of a nonelongated
measurement and θ is the FWHM of the nonelongated
spot. It is natural to assume that the noise in two separate sub-
apertures is generated by independent random variables.
Consequently, the noise model for the full measurement vector
inherits a Gaussian distribution with zero expectation and a
block-diagonal covariance matrix

Cnoise � diag�C1;1;…;C1;N ;C2;1;…;CG;N �: (5)

We point out that the centroiding algorithm can already
mitigate the elongation. In our simulations, centroiding is done
by a center of gravity algorithm incorporated in OCTOPUS. In
this case an approximate elongation vector and hence also a
covariance have to be tuned numerically. The effect of the cen-
troiding algorithm in OCTOPUS has been considered in [2].
We leave these considerations regarding our preprocessing step
for future studies.

C. Empirical Estimation of the Prior
The statistical distributions of measurements and turbulence
have a direct connection via the imaging geometry. In an
open-loop setting it would be rather straightforward to estimate
a reliable prior model for the measurements based on classical

turbulence models. However, the problem is more complicated
in the closed-loop setting, since the residual measurements are
naturally affected by the reconstruction procedure.

Due to the severe time constraints in adaptive optics, we
take a simplified approach by assuming that the measurement
statistics are also stationary in closed-loop. Moreover, our key
assumption is that measurements on each subaperture are iden-
tically distributed and jointly independent. In order to support
the second claim, we simulated an SCAO system on MOST
described in Table 1, where we assumed an extreme high flux
setting (roughly no noise) and used CuReD for reconstruction.

We simulated a large set of measurements fstgTt�1 for T �
5000 and computed the empirical mean mT ∈ R842 and
covariance matrix CT ∈ R842×842 . In particular, we sampled
only every tenth screen to achieve lower statistical dependence
in time. Further, only the measurements from the active sub-
apertures were sampled. We found that the results were similar
for different atmosphere profiles and, consequently, restrict
here to the results obtained with the ESO Standard atmosphere
from [20]. Notice that the Shack–Hartmann mesurements are
dimensionless quantities that are linearly dependent on the
wavelength (see Table 1).

It was clearly visible in our results that the empirical mean is
zero to a good approximation: the l1 norm of mT was of order
10−5 in all tests, giving an absolute value of the mean for
the measurement on one subaperture of order 10−9. We studied
the empirical covariance CT by decomposing it into diagonal
and residual components, i.e., CT � DT � ET, where
DT � diag�CT �. We also found that the diagonal DT is domi-
nating: the respective l2 norms were ‖DT ‖l2 ≈ 10−10 and
‖ET ‖l2 ≈ 10−9. Considering that in this example there were
5044 active subapertures, the mean absolute values of entries
of DT and ET are of the order 10−12 and 10−13, respectively.
Recall that while the measurements are linearly dependent on
the wavelength λ, the variance depends on λ2. Also, the values
of DT (illustrated in Fig. 1) are of the same order with a mean
σ̄2prior � 6.24 � 10−12 � 18λ2. Thus it turns out in computa-
tions that couplings are introduced, e.g., by the DM correction,
but those couplings are weak. Bayesian inverse problems are
known to be stable in the sense that small perturbation in the
(Gaussian) prior introduces only a small perturbation in the
posterior (cf., e.g., [23]), and, in consequence, the prior
covariance can be modeled by a diagonal matrix to a good
approximation.

We remark that if the WFSs (LGS and NGS) are sensing
at the same wavelength, the prior covariance and the noise

Table 1. Description of the Simulated SCAO System

Telescope diameter 42 m
Central obstruction 11.76 m
1 LGS Shack–Hartmann WFS 84 × 84 subapertures
Wavelength λ 0.589 μm
WFS integration time 2 ms
Laser launch telescope [0; 23] m
Na-layer altitude 90,000 m
Na-layer FWHM 11,400 m
1 DM at height 0 m closed loop
DM actuator spacing 0.5 m
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variance σnoise in Eq. (4) scale identically with respect to the
wavelength. In the following our reconstruction method re-
quires estimating α � σ2noise∕σ̄2prior. In consequence, working
at a constant wavelength implies that α does not depend on
the wavelength. All GSs give full measurements.

Notice carefully that for the statistical inference method pro-
posed below, a choice of α > 0 will lead to different statistics
than obtained above for the residual measurements. That
being said, our numerical simulations indicate that the crucial
assumptions, zero-mean, independent, and identically residual
data, remain valid. Hence in what follows the choice of α is part
of the optimization process for our method.

3. BAYESIAN APPROACH TO MEASUREMENT
DENOISING

A. Statistical Denoising Procedure
Consider the problem of denoising the measurement vector
from the Bayesian perspective. Let us assume that the statistics
of residual measurement are Gaussian with zero-mean and a
covariance matrix Cprior � 1

α I. Clearly, the maximum a poste-
riori estimate solves the minimization problem

SMAP � argmin
S̃

‖C−1∕2
noise�S̃ − Sδ�‖22 � α‖S̃‖22: (6)

Since Cnoise is block-diagonal and the prior covariance is
diagonal, the problem above reduces to independent minimi-
zation problems at each subaperture. In conclusion, we notice
that

�SMAP�g;n � argmin
S∈R2

‖�Cg;n�−1∕2�S − Sδg;n�‖22 � α‖S‖22; (7)

and, consequently,

�SMAP�g;n � �I� αCg;n�−1Sδg;n: (8)

The matrix on the right-hand side can be computed explicitly
from the eigenvalue decomposition in Eq. (4). Namely, we have

�I� αCg;n�−1 �
1

1� ασ2noise
· ngn�ngn�T

� 1

1� ασ2noise

�
1� ‖βgn‖2

θ2

� · egn�egn�T : (9)

Thus, the data preprocessing step has linear complexity and
can be incorporated in an efficient way.

B. On the Qualitative Influence of Preprocessing
In this section we want to illustrate the effect of the preprocess-
ing step to the noisy wavefront measurements. Hence we
assume that the “true” noise-free measurements, i.e., without
spot elongation, are at our disposal. Our aim is to demonstrate
that the preprocessing step reduces the noise in the measure-
ments already in the case with one single LGS. We demonstrate
the impact using a telescope with 42 m diameter with the
setting described in Table 1. However, note that the effect
depends on the laser launch position of the telescope. We leave
this aspect for future considerations as the SCAO system is
not our focus in this work. The system was set up and simu-
lated in MOST. For this problem, note that α � 0 implies no
preprocessing.

In our simulations we study different flux levels from 10 to
300 photons per subaperture per frame (see Fig. 2). In the plot
all used photon flux levels are indicated with crosses. Using
different flux levels is of interest as a lower photon flux also
leads to a lower signal-to-noise ratio. The numbers are time
averages over the respective values from a simulation of 200
timesteps. One should note that MOST is not an end-to-end
simulation tool like ESO’s OCTOPUS and thus tends to
underestimate the effects of the atmosphere as in related
OCTOPUS tests. This is the main reason why we use a lower
photon flux as in the OCTOPUS tests.

Depending on the flux of the LGS, the error in the l2 norm
can be reduced by 10 to 30%; i.e., for the x measurement the
quantity

‖Sx − S
preprocessed
x ‖l2

‖Sx − S
noisy
x ‖l2

ranges between 0.7 and 0.9, where Sx are measurements com-
ing from the simulated atmosphere without any read-out and
measurement noise, Snoisyx are measurements containing simu-
lated noise such as spot elongation and read-out noise, and
Spreprocessedx are the preprocessed measurements resulting
from our denoising procedure. The improvement is higher
for lower flux as there the signal-to-noise ratio is worse and thus

Fig. 1. Diagonal values of the empirical covariance matrix. The
y axis represents the value of empirical variance at each subaperture
indexed at the x axis. The horizontal line stands for the mean of
the diagonal values.

Fig. 2. Effect of the preprocessing on the l2 error of the measure-
ments to the noise-free measurements, where the l2 error is the square
root of the sum of squared differences in the sample points.
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elongation effects and noise have more influence on the quality
of the measurements.

We conclude that the preprocessing has a positive effect
already in the case of just one LGS, which suggests an extension
of the method toward more LGSs or a combination between
LGS and NGS.

1. Performance on an SCAO System
As demonstrated above the preprocessing step reduces the mea-
surement noise produced by spot elongation and other sources
and, in consequence, should also improve the quality of the
wavefront reconstruction. To illustrate the impact of prepro-
cessing to wavefront reconstruction, we simulated an LGS
SCAO system as described in Table 1. The system was set
up in OCTOPUS. Different photon fluxes are simulated, vary-
ing between 20 and 500 photons per subaperture per frame.
Our numerical simulations show that in closed loop the
reconstruction quality in terms of Strehl ratio increases by
about 2 to 5 percentage points. In extreme low flux settings
the advantage is even more, as shown in Fig. 3. The main ben-
efit, however, is that the preprocessing step stabilizes the wave-
front reconstruction and thus a higher integrator loop gain can
be chosen, obtaining the same or even higher Strehl ratios.

Note that the analysis of the effects of spot elongation for
the regularization does not take the tip-tilt indeterminacy into
account; thus further studies might be necessary.

4. MEASUREMENT PREPROCESSING
FOR GLAO

A. Principle Concept for GLAO Preprocessing
In this section we discuss the preprocessing scheme in the con-
text of GLAO. It is well known that a large amount of atmos-
pheric turbulence is located close to the ground. By providing a
good correction for the ground layer, the imaging quality would
increase significantly over the full field of view. GLAO systems
have been designed for this purpose. The idea in GLAO is to
utilize several guide stars in order to achieve a high-resolution
reconstruction of the ground layer. A typical GLAO system is
designed with one deformable mirror.

In the literature, the reconstruction problem in GLAO is
often approached using Bayesian inference and by postulating
the data-to-reconstruction solver as a one-step method. As
noted in the introduction, this leads to coupled systems and
causes high computational effort. Our idea is to propose a pre-
processing step for the measurements that removes most of the
unwanted noise. In the second step we are able to apply a stan-
dard wavefront reconstructor to the denoised measurement
vector. In our simulations we use a method called the cumu-
lative reconstructor with domain decomposition (CuReD),
which is a fast, matrix-free wavefront reconstructor developed
in [19,24,25]. Our approach leads to significant reductions in
the computational effort, while providing comparable quality
for the reconstructions.

The preprocessing step proposed here could be seen as a
simple weighted sum of the measurements—the weights
being determined by the prior and noise statistics discussed
in Section 2. We point out that a reversed method was
used in [1], where the authors first reconstructed the incoming
wavefronts from the measurements and afterward applied
weighting. However, the noise covariance of the reconstructed
wavefronts is not sparse and again produces computational
costs.

We recognize that by reconstructing only the ground layer
one neglects the separation of the guide stars. However, this
approximation is motivated by two properties: first, the sepa-
ration of field of view between two WFSs is small even at the
highest altitudes. In our examples, the separation of the centers
(see Fig. 4) is at maximum 10 arcmin for two GSs lying op-
posite to each other as the LGSs are on a ring with 7.5 arcmin
diameter and the NGSs one third further outside. Second, most
of the turbulence is located close to the ground.

Fig. 3. Effect of the preprocessing on the Strehl ratio in an LGS
SCAO system.

Fig. 4. Scheme with three atmospheric layers and three WFSs
and GSs.
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B. Regularization by Combining all WFS
Measurements
In GLAO we are given a set of measurements Sδg;n ∈ R2 at each
subaperture n � 1; :::::; N for all guide stars indexed by g. The
goal of our approach is to filter out the noise from spot elon-
gation from the measurements by using a Bayesian approach.
To this end the measurements are decomposed into a part rep-
resenting the measurements coming from the real wavefront
without any kind of noise and another part representing the
noise. The first part should be the same for all WFSs as they
all sense the same atmosphere. Sn are the measurements from
the real wavefront, δn represents the measurement noise, and Sδn
are the measurements.

Below, for each subaperture n we explicitly solve Bayes-
optimal measurements Sn ∈ R2 of the ground layer given such
measurements. Let us combine the measurements Sδg;n, g �
1; :::::; G into a system

Sδn � ĨSn � δn;

where

Sδn �

0
B@

Sδ1;n
..
.

SδG;n

1
CA ∈ R2G; δn �

0
B@

δ1;n
..
.

δG;n

1
CA ∈ R2G;

and Ĩ � �I2×2 ⊗ … ⊗ I2×2�⊤ ∈ R2×2G . The noise covariance
is now given by Cn � diag�C1;n; :::::;CG;n�. Following
Section 2 we find that the maximum a posteriori estimate on
each subaperture n satisfies

Sn � �ĨTC−1
n Ĩ� αI�−1ĨTC−1

n Sδn

�
�XG

g�1

C−1
g;n � αI

�−1�XG
g�1

C−1
g;nSδg;n

�
;

where α � σ2noise∕σ̄2prior. Equivalently, we obtain Sn by
minimization

Sn � argmin
S∈R2

XG
g�1

‖Sδg;n − S‖2C−1∕2
n

� α‖S‖22:

Writing the MAP estimate in vector form Sn � �Sn;x ; Sn;y�⊤
leads to�

Sn;x
Sn;y

�
� 1

det Cn

�
α�PG

g�1 τ
g;n
yy −

PG
g�1 τ

g;n
xy

−
PG

g�1 τ
g;n
xy α�PG

g�1 τ
g;n
xx

�

×
�PG

g�1 τ
g;n
xx Sδg;n;x � τg;nxy Sδg;n;yPG

g�1 τ
g;n
xy Sδg;n;x � τg;nyy Sδg;n;y

�
;

where

det Cn �
�
α�

XG
g�1

τg;nxx

��
α�

XG
g�1

τg;nyy

�
−

�XG
g�1

τg;nxy

�2

;

and

C−1
g;n �

�
τg;nxx τg;nxy
τg;nxy τg;nyy

�
; (10)

for any n � 1; :::::; N and g � 1; :::::; G.

1. Taking NGS into Account
Including the NGS measurements in the method is straightfor-
ward. For NGS the noise covariance is diagonal, since no spot
elongation occurs. In this case only the low photon flux and
read-out noise contribute to the noise.

Suppose our GLAO system has GL LGSs and GN NGSs so
that G � GL � GN . Also, let us also associate the first indices
to the LGSs. In this case, the formula for the mixed setting has
the form� Sn;x
Sn;y

�
� 1

det Cn

� α�PG
g�1 τ

g;n
yy −

PGL
g�1 τ

g;n
xy

−
PGL

g�1 τ
g;n
xy α�PG

g�1 τ
g;n
xx

�

×
�PG

g�1 τ
g;n
xx Sδg;n;x � τg;nxy Sδg;n;yPG

g�1 τ
g;n
xy Sδg;n;x � τg;nyy Sδg;n;y

�
; (11)

where detCn��α�PG
g�1 τ

g;n
xx ��α�

PG
g�1 τ

g;n
yy �−�

PGL
g�1 τ

g;n
xy �2

and τgkl as before from Eq. (10). Notice that τgxy � 0
for g � GL � 1; :::::; G, i.e., corresponding to an NGS WFS.

2. Computational Complexity
Let us analyze the preprocessing step described above in terms
of computational complexity. The first computational task is to
set up the covariance matrices for all WFSs. This can be done in
a precomputing step and requires a memory of 4 � N � G,
where N is the number of active subapertures and G is the
number of WFSs.

The computation of the weighted measurements requires us
to multiply the measurements with the covariances and sum up
over all WFSs. This leads to �4 � GL � 2 � GN � operations
for each line in the vector on the right-hand side of Eq. (11).
These two lines can be calculated independently for each of the
N subapertures. Next, the scaling by means of the summed
covariance matrices has to be applied, i.e., the matrix of
Eq. (11), which requires another four calculations per line
and subaperture.

Therefore all together 4 � �GL � 1� � 2 � GN operations
per subaperture and per measurement type are required, i.e.,
in total 4 � �2 � �GL � 1� � GN � � N operations, and the
calculations on each subaperture are independent. Note that
using parallelization this number can be reduced as the calcu-
lations for the right-hand side vector in Eq. (11) are indepen-
dent as well as the application of the matrix in front of it, and
furthermore each subaperture can be treated without taking any
other into account. Finally, the CuReD reconstructs a wave-
front from Shack–Hartmann measurements in 20N opera-
tions, where N is the number of active subapertures [25].

C. OCTOPUS Test Results for a GLAO System

1. Simulated GLAO System
The simulations regarding the GLAO system (see Table 2) were
fully performed on the OCTOPUS simulation tool. Our set-
tings included a 42 m mirror having WFSs with 84 × 84 sub-
apertures and one deformable mirror with 85 × 85 actuators.
Altogether, nine WFSs were simulated. Six LGSs were set at
a radius of 3.75 arcmin and three NGSs at one third further
outside. The NGS WFSs have 6 × 6 pixels/subaperture, LGS
WFSs have 20 × 20 pixels/subaperture, and both are Shack–
Hartmann WFSs. The laser launch positions for the LGS
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are in the corners outside the telescope at a radius of 23 m from
the telescope center. In all our simulations, the NGS photon
flux is fixed to 500 photons/subaperture/frame and the LGS
photon flux is varying from 20 to 500 photons/subaperture/
frame. The read-out noise is 3 electrons/pixel for both NGS
and LGS. Tip-tilt is removed automatically from the LGS mea-
surements.

As the model for the atmosphere, we chose the ESO stan-
dard atmosphere with nine layers from [20]. The sodium layer
is simulated with a central height h0 � 90 km and with a
Gaussian vertical density profile of the FWHM, FWHMNa �
11.4 km.

The quality is measured by the 50% ensquared energy
(EE) of the point spread function (PSF) in the K band for
the on-axis point after 500 iterations. The units are arcseconds.
For the uncorrected atmosphere, the 50% EE in the K band is
0.441 arcsec.

Referring to computational complexity from Section 4.B.2,
for this setting 68N operations are required for the weighting
procedure and another 20N for reconstructing the wavefront,
where N is the number of active subapertures. The time for
the weighting procedure can be reduced by pipelining and par-
allelizing the computation as each subaperture can be handled
independently and almost all steps can be done independently
for x and y measurements.

2. Results
In this section, the simulation results for our new approach to
solve elongation problems in a GLAO system are compared to
the ones obtained in [26] and in [1] using CuReD. We want
to remark that for high flux LGS with and without spot elon-
gation no preprocessing is needed; cf., e.g., [1]. Therefore, we
focus on low flux imaging cases with spot elongation.

Recall from Section 2 that the parameter α needs to be
tuned for each flux setting. In this process, one is in fact esti-
mating the prior variance, since recall that α � σ2noise∕σ2prior,
where it is known that σnoise ≈ 1

N photons
, where N photons is the

number of incoming photons/subaperture/frame. All other
scaling effects will only change α slightly, but as the whole pre-
processing step is rather stable, there are no big changes. Due to
limited resolution of WFSs and rather high NGS flux (500

photons/subaperture/frame), the mathematical problem is not
very ill-posed. This is indicated by the method not being highly
sensitive to the prior variance. In fact, satisfactory results can
be achieved even by setting α � 0. However, the optimal value
of α is typically of order 0.5.

It turned out that the entries of the noise covariance matrices
have to be weighted for NGS and LGS; thus the entries in the
NGS covariance matrices are only 6/20 of the original model.
This is due to the different number of pixels per subaperture on
the CCD for NGS and LGS, which reflects exactly this ratio, as
this number influences the prior and the noise covariance. The
results are presented in Fig. 5, where we compare our method
to ESO-MVM [26] and heuristically weighted CuReD [1].
In comparison to the heuristical weighting in [1], we always
obtain better quality at the same speed of reconstruction. In
contrast to the original CuReD approach, our approach can be
used with higher integrator loop gain, around 0.7 to 0.9 com-
pared to the former 0.3 to 0.5. Regarding the MVMmethod in
[26], our method reaches comparable quality in the high flux
regime but surprisingly also in the extreme low flux setting. The
advantages in speed are remarkable.

The result for 20 photons/subaperture/frame is 50% EE of
the PSF within 0.2807 arcsec, so slightly better than 0.2809 arc-
sec from ESO-MVM and also better than 0.2864 arcsec from
[1]. For 50 to 400 our results are a bit worse than the ones from
[26], but the difference always stays smaller than 0.009 arcsec
and our results are always better than those from [1]. In the
highest flux case, 500 photons/subaperture/frame, our result
is 0.2503 arcsec and so again close to ESO-MVM being
0.2492 arcsec, while in [1] only 0.2598 arcsec was obtained,
when not changing the weighting between NGS and LGS,
and even with changes nothing better than 0.2529 could be
obtained. The best results were obtained with integrator loop
gain 0.7 for 20 photons/subaperture/frame and with 0.9 for
500 photons/subaperture/frame. The integrator loop gain
could be fixed to 0.8 even if the LGS flux is varying between
20 and 500 photons/subaperture/frame without losing a lot of
quality, as shown in Fig. 6.

We want to emphasize again that our approach does not
require us to tune any parameter besides α and the integrator

Table 2. Description of the Simulated GLAO System

Telescope diameter 42 m
Central obstruction 11.76 m
Na-layer altitude 90,000 m
Na-layer FWHM 11,400 m
WFS integration time 2 ms
1 DM at height 0 m closed loop
DM actuator spacing 0.5 m
Guide stars LGS NGS
Shack–Hartmann WFS 6 3
Subapertures per WFS 84 × 84 84 × 84
FoV 20 arcsec 2.4 arcsec
Pixels per subaperture 20 6
Wavelength λ 0.589 μm 0.5 μm
Spot elongation ON –
Spot FWHM 1.1 0 0 –
Detector read noise 3e/pixel/frame 3e/pixel/frame
Separation angle wrt zenith 3.75 arcmin 5 arcmin
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Fig. 5. Simulation results comparing our algorithm to the existing
ESO-MVM and heuristically weighted CuReD.
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loop gain. Moreover, the covariance matrices depend on the
photon flux.

5. REMARKS

Our approach of weighting the measurements can handle dif-
ferent flux from each GS, if this is incorporated in the corre-
sponding covariance matrix. We did not perform tests for such
a setting, as usually all LGSs have the same flux.

We remark that we did not consider possible overlapping of
the elongated spots to neighboring subapertures. There might
be some improvement possible into this direction.

For this paper, we considered perfectly aligned WFSs only.
In the nonaligned case, which will cause misregistration effects
between different WFS pupils, some more computations have
to be done, if one wants to perform a weighting on measure-
ments. WFSs could be shifted/rotated with respect to each
other; i.e., the subapertures do not lie on the same place. Such
shifts and/or rotations need to be modeled in the weighting
process. Rotations should be straightforward, whereas shifts
of two WFSs with respect to each other might be a bit tricky
to handle, even if they are small, as one has to shift the mea-
surements that are derivatives. Misregistrations between WFS
pupils and DM pupils just require a simple mapping.

Note that as a quality criterion the PSF for the 50% EE
evaluation is in the center direction only. Evaluating the PSF
in other directions requires some more work, but for our setting
no other comparable results were available.

6. CONCLUSION

In this paper, we presented a fast and stable method to handle
spot elongation effects in a GLAO system having LGSs and
NGSs, making use of the fast wavefront reconstruction by
CuReD. We want to emphasize that the computational costs
for weighting the measurements are linear in the number of
active subapertures and can be parallelized. Furthermore, the
method is stable with respect to changes of the LGS photon
flux and also with respect to changes in the integrator loop gain.
Compared to the MVM results provided by the ESO, our
method achieves comparable quality while maintaining a clear

advantage in speed. The quality of our method also dominates
the existing methods using CuReD without compromising
the speed.

The main benefit of the preprocessing method is that it does
not need any parameter choices and the integrator loop gain
can be chosen very high for all flux levels. It is even possible
to set the same integrator loop gain for all flux levels between
20 and 500 photons/subaperture/frame without losing much
quality. The combination of NGS and LGS measurements can
be performed directly on measurements taking spot elongation
into account. We emphasize that the regularization parameter α
only requires small adjustments, if any at all as for all testcases
α � 0.5 gives satisfying results. The only variable parameter
that has to be known is the photon flux in order to take the
correct covariance matrix for each WFS.

In this work we studied the setting with perfectly aligned
WFSs. For nonaligned WFSs, some adjustments of the method
are required and will be presented in a forthcoming paper.
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