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ABSTRACT

We use the recently introduced factorization of motion polynomials for constructing overconstrained spatial
linkages with a straight-line trajectory. Unlike previous examples of such linkages by other authors, they are single
loop linkages and the end-effector motion is not translational. In particular, we obtain a number of linkages with
four revolute and two prismatic joints and a remarkable linkage with seven revolute joints one of whose joints
performs a Darboux motion.

1 Introduction
Spatial mechanisms with exact straight-line trajectories are rare. The first non-trivial example is due to [1]. It has the

property that all trajectories are straight-lines and is nowadays called Sarrus’ 6R linkage. Multi-looped linkages, composed of
spherical and planar parts, with one straight-line trajectory were presented by Pavlin and Wohlhart in [2]. Other mechanisms
with non-trivial straight-line trajectories include the “Wren platform” and some of its variants [3, 4] or the generators for the
vertical Darboux motion of Lee and Hervé [5].

In this article we construct new single-looped linkages with a straight-line trajectory. In contrast to Sarrus’ linkage, the
end-effector motion is not purely translational. In contrast to the examples given by Pavlin and Wohlhart, the linkage is
single-looped and in general not composed of planar or spherical parts. In a special case, we show that the Darboux motion
can be uniquely decomposed in a rotation and a circular translation and use this for the construction of Darboux linkages
which do not contain prismatic or cylindrical joints and, in contrast to [5], perform the general Darboux motion. To define
the scope of this paper more precisely: We systematically construct closed-loop straight-line linkages with only revolute
or prismatic joints whose coupler motion is neither planar, nor spherical, nor translational and has degree three in the dual
quaternion model of rigid body displacements.

We do not claim that spatial straight-line linkages are of particular relevance to engineering sciences. But it should be
evident after reading this paper that we gained new insight to some well-known planar and spatial motions. The presented
ideas may be extended to other, more useful, synthesis tasks. Our basic tool is factorization of motion polynomials, as
introduced in [6]. While that paper presents a general theory and algorithmic treatment for the generic case, a good deal of
this paper deals with non-generic cases and thus furthers our understanding of motion polynomial factorization. The basic
idea is to decompose a rational end-effector motion, parameterized by a motion polynomial, in different ways into the product
of coupled rotations or translations. These rotations/translations give rise to open chains with revolute/prismatic joints that
are capable of performing the given end-effector motion. Suitably combining these open chains then yields mechanisms
with one degree of freedom whose end-effector follows the prescribed rational motion. Our key-tool is the factorization of
motion polynomials into products of linear factors which correspond to the rotations or translations in the decomposition of
a rational motion.



2 Preliminaries
We continue with a brief introduction to the dual quaternion model of rigid body displacements. In particular, we derive

the straight-line constraint in that model and introduce the notion of “motion polynomials”.

2.1 The straight-line constraint
We begin by deriving the constraint equation for all direct isometries of Euclidean three-space that map one point

p onto a straight-line L. We do this in terms of dual quaternions, making use of the well-known isomorphism between
the group SE(3) of direct isometries and the factor group of unit dual quaternions modulo ±1. A dual quaternion is an
expression of the form h = h0 +h1i+h2j+h3k+ ε(h4 +h5i+h6j+h7k). Multiplication of dual quaternions is defined by
the rules i2 = j2 = k2 = ijk =−1, ε2 = 0, iε = εi, jε = εj, kε = εk. We denote the set of dual quaternions by DH. The dual
quaternion h may be written as h = x+εy with ordinary quaternions x, y∈H, the primal and dual part of h, respectively. The
conjugate dual quaternion is defined as h = x+ εy and ordinary quaternions are conjugated by multiplying the coefficients
of i, j and k with −1. Conjugation obeys the rule (hk) = k h for any two h,k ∈ DH. The norm of the dual quaternion h is
‖h‖ := hh = ‖x‖+ ε(xy+ yx). It can be immediately confirmed that it is a dual number, that is, primal and dual part are real
numbers.

After projectivizing DH, we obtain Study’s kinematic mapping SE(3)→ P7, see for example [7]. The unit dual quater-
nion x+ εy acts on p = (p1, p2, p3) ∈ R3 according to

1+ ε(p′1i+ p′2j+ p′3k) = (x− εy)(1+ ε(p1i+ p2j+ p3k))(x+ εy). (1)

The dual quaternion x+εy is projectively equal to a unit norm dual quaternion, if the Study condition xy+yx = 0 is fulfilled
and x 6= 0. In this case, the action of x+ εy on p is still defined as in (1) but the right-hand side has to be divided by xx. It is
hence a rational expression in the components of x and y.

Straight-line constraints in the dual quaternion setting are the topic of [8, Section 5.1]. We re-derive a dual quaternion
condition for a particular case. Choosing appropriate Cartesian coordinates in the moving frame, we may assume p =
(0,0,0). Similarly, it is no loss of generality to assume that {(t,0,0) | t ∈ R} is the set of points on L. Writing x =
x0 + ix1 + jx2 +kx3 and y = y0 + iy1 + jy2 +ky3, the second and third coordinate of p′ vanish if and only if

x0y2− x1y3− x2y0 + x3y1 = 0, x0y3 + x1y2− x2y1− x3y0 = 0. (2)

This system has to be augmented with the Study condition

x0y0 + x1y1 + x2y2 + x3y3 = 0. (3)

It is straightforward to check that the system of equations (2) and (3) has the solution

x≡ iy or, equivalently, y≡−ix (4)

where “≡” denotes equality in projective sense, that is, up to multiplication with constant scalars.

2.2 Motion polynomials
Denote the set of all polynomials in the indeterminate t by DH[t] and, similarly, by H[t] and R[t] the set of polynomials

in t with quaternion or real coefficients, respectively. A parameterized rational motion is given by a polynomial C = X +
εY ∈ DH[t] with X , Y ∈ H[t] and the additional properties X 6= 0 and XY +Y X = 0. The latter is equivalent to CC ∈ R[t]
(the conjugate polynomial is obtained by conjugating the coefficients) and is the polynomial form of the Study condition
(3). Both conditions ensure that C(t) describes a rigid body displacement for all t ∈ R with the exception of possible real
zeros of X . By a re-parametrization, we may then assume that the leading coefficient of C is invertible whence a suitable
change of coordinates makes C even monic (leading coefficient equals 1). These polynomials have been called motion
polynomials in [6]. Their coefficients are dual quaternions and do not commute. Therefore, additional conventions for
notation, multiplication and evaluation are necessary:

− We always write coefficients to the left of the indeterminate t. This convention is sometimes emphasized by speaking of
“left-polynomials” but we just use the term “polynomial”.



− Multiplication of polynomials uses the additional rule that the indeterminate t commutes with all coefficients: With C =

∑
n
i=0 cit i and D = ∑

m
i=0 dit i we have CD = ∑

n+m
i=0 eit i where ei = ∑

i
j=0 c jdi− j for i = 0, . . . ,n+m.

− The value of the polynomial C = ∑
n
i=0 cit i at h ∈ DH is defined as C(h) := ∑

n
i=0 cihi, that is, it is obtained by substituting h

for t in the expanded form.

Here is a short example to clarify these conventions. Consider the polynomial C = (t−k)(t−h) with h, k ∈DH. Its expanded
form reads C = t2−(h+k)t+kh (we used commutativity of t and h). The dual quaternion h is a zero of C but k is, in general,
not: C(h) = h2− (h+ k)h+ kh = 0, C(k) = k2− (h+ k)k+ kh = hk− kh. Substituting t by k in the factorized form gives a
different value. This is clear since factorized form and expanded form are only equivalent under commutativity assumptions.

Above examples suggest a relation between right factors and zeros of motion polynomials that, in fact, holds true in a
more general setting. The following lemma has been stated in proved in [6, Lemma 2].

Lemma 1. Let C ∈ DH[t] and h ∈ DH. Then t−h is a right factor of C (there exists Q ∈ DH[t] such that C = Q(t−h)) if
and only if C(h) = 0.

In order to apply motion factorization for the construction of straight-line linkages, we need to find a polynomial C =
X + εY ∈ DH[t] that satisfies (4) identically in t. This already implies that C is a motion polynomial. Our construction of
straight-line linkages is largely based on the factorization theorem for motion polynomials [6, Theorem 1]. Consider a monic
motion polynomial C = X + εY ∈ DH[t] of degree n whose primal part X ∈H[t] has no real factor. Then this theorem states
that C can in general be written in n! ways as

C = (t−h1) · · ·(t−hn) (5)

with h1, . . . ,hn ∈ DH representing rotations. Here, the phrase “in general” refers to possible coinciding of two or more
factorizations, for example in the case C = (t−h)n. Note that, in contrast to polynomial factorization over real or complex
numbers, the linear factors in (5) do not commute. If the primal part X has real factors, it is possible that some of the hi
represent translations but also cases with no or infinitely many factorizations exist. Examples of these situation can be found
in Theorem 4 in the appendix.

The algorithm for computing factorizations in generic cases is explained in [6] and, in more algorithmic form, in [9]. A
basic understanding of this algorithm is necessary for reading this paper. Therefore, we provide an informal description. A
more formal algorithmic description in pseudo-code is given in [9], actual implementations can be found in the supplementary
material of [6].

The norm polynomial CC is real and non-negative. Hence, it factors into the product CC = M1 · · ·Mn of n quadratic
factors such that each factor Mi is either irreducible over R or the square of a linear factor. In order to compute a factorization
of the form (5), we pick one of the quadratic factors, say Mi, and right-divide C by Mi. That is, we compute Q,R ∈ DH[t]
such that degR≤ 1 and C = QMi +R. In general, R has a unique zero – the rotation or translation polynomial hn. Once the
rightmost factor hn has been computed, we compute C1 such that C = C1(t−hn) and repeat above steps with C1 instead of
C. Note that

C1C1 = ∏
j 6=i

M j

such that all factors of the original norm polynomial CC will be used during this process. In this sense, we can say that a
factor t−hi or the rotation/translation quaternion hi itself “corresponds” to one of the quadratic polynomials M j. Different
factorizations come from permutations of these polynomials.

In exceptional cases, the leading coefficient of the linear remainder polynomial R fails to be invertible. Then, the above
algorithm will not produce a valid factorization. This does, however, not mean that no factorization exists. In fact, in this
paper we will encounter situations with no or infinitely many factorizations of the form (5).

The kinematic interpretation of motion polynomial factorization is that the motion polynomial parameterizes the rational
end-effector motion of, in general, n! open chains consisting of n revolute or prismatic joints. Linkages are obtained by
suitably combining a sufficient number of these open chains. In case of degC ≤ 3, two suitably chosen open chains are in
general sufficient and will result in an overconstrained, single-looped linkage. Constructions of this type are the topic of this
paper’s main section.

3 Mechanism synthesis
The most general polynomial solution of (4) is given by

C = X + εY with X = ξ P; Y =−η iP; P ∈H[t]; ξ , η ∈ R[t],



and P has no real factor. Let us verify that the trajectory of p = (0,0,0) is really a straight line. According to (1), the image
p′ of p can be read off from

1+ p′ ≡ (X− εY )(X + εY ) = (ξ P+ εη iP)(ξ P− εη iP) = (ξ P+ εη iP)(ξ P+ εηPi) = PP(ξ 2 +2εξ η i). (6)

Indeed, the right-hand side of (6) leads to a point on the line L. More precisely, a parameterized equation of the trajectory
is p′(t) = 2η

ξ
i. From this, we conclude that η = 0 or constant ξ and η yield a constant point p′. The resulting motion is

spherical and shall be excluded from further consideration. That is, we can assume η 6= 0 and ξ , η are not both constant.
This implies degP < degC. In order to narrow the focus of this paper, we also wish to avoid degP = 0 or, more generally,
P ∈ R[t]. This leads to a translation in constant direction — a motion which is planar in multiple ways.1 By a change of
coordinates we can achieve that C is monic whence degη < degξ . Finally, we may transfer constant real factors between P
and ξ , so that we can assume that both, P and ξ are monic. Summarizing these constraints, we have:

0≤ degη < degξ , 1≤ degP < degC ≤ 3, P /∈ R[t], ξ ,P are monic.

Hence, we only have to discuss two major cases, degP = 1 and degP = 2. The former has three sub-cases (degξ = 1 and
degη = 0, degξ = 2 and degη = 0, degξ = 2 and degη = 1), the latter only one (degξ = 1, degη = 0).

3.1 The case of degree two
We consider the case degP = 2, degξ = 1, and degη = 0 first. The norm polynomial admits the factorization CC =

M1M2M3 where ξ 2 = M1 and PP = M2M3. This is already a special case as one factor, M1, is not strictly positive. The
following theorem gives a relation between the factors of a motion polynomial and the factors of its norm polynomial for
this case.

Theorem 1. The norm polynomial of a motion polynomial factors as CC = ∏
n
i=1 Mi with non-negative factors M1, . . . ,Mn

which are either irreducible over R or the squares of linear polynomials in R[t]. If M is such a square, the corresponding
factor t−h in every factorization of C describes a translation.

The first part of this proposition is already due to [6]. The statement on the translation can also be found there but it is
only motivated, not proved.

Proof of Theorem 1. If t− h is a factor corresponding to M, the dual quaternion h is necessarily a common zero of C and
M ([6, Lemma 3]). In particular, if M = (t − r)2 with r ∈ R, we can evaluate the condition h2− 2hr + r2 = 0. By [10,
Theorem 2.3], this equation can only be satisfied by dual quaternions of primal part r ∈ R. Hence, h is necessarily a
translation quaternion.

By Theorem 1, every factorization of C contains at least one prismatic joint, corresponding to M1. Two of them are
obtained from the two factorizations,

P = (t−h1)(t−h2) = (t−h′1)(t−h′2) with h1,h2,h′1,h
′
2 ∈H (7)

of P over H.2 They are

C = (ξ − εη i)(t−h1)(t−h2) (A)
= (ξ − εη i)(t−h′1)(t−h′2). (A′)

The open chains to each factorization consist of two revolute joints, intersecting in the origin p, and one prismatic joint in
direction of i. The trajectory of p is trivially a straight line.

Two further factorizations are of the form

C = (t− r1)(t− r2)(t− s1) (B)
= (t− r′1)(t− r′2)(t− s1) (B′)

1Note however, that the factorization of a translation in constant direction does not necessarily lead to planar linkages. An example of this are Sarrus
linkages with rational coupler motion.

2Recall that P has no real factor and hence always admits a finite number of factorizations.



with rotation quaternions r1, r2, r′1, r′2 ∈ DH and a translation quaternion s1 ∈ R+ εH.
Finally, there are two factorizations with factors t− r1, t− r2 on the left and factors t−h2, t−h′2 on the right:

C = (t− r1)(t− s2)(t−h2) (C)
= (t− r′1)(t− s′2)(t−h′2). (C′)

Here, the translation quaternions are s2 and s′2. In each chain, the last revolute axis (corresponding to the factor on the right)
contains the origin p of the moving frame.

Assuming that the two factorizations in (7) are really different, a suitable combination of the factorizations (A)–(C′)
results in spatial linkages with a straight-line trajectory. We will have a closer look at the manifold relations between the
involved joint axes. This will deepen our geometric understanding of these linkage classes and provide us with necessary
conditions on the linkage’s Denavit-Hartenberg parameters.

To begin with, it must be noted that not every combination of two open chains resulting from the factorizations (A)–(C′)
is admissible for the construction of overconstrained, single looped linkages with one degree of freedom. In order to avoid
“dangling” links, we must not combine two factorizations with the same factor at the beginning or at the end. Hence, we have
only four essentially different admissible pairings: A–B, A–C′, B–C′, C–C′. Non-admissible pairings do not give suitable
linkages but information on joint axes. If two factorizations have a common factor at the beginning or the end, the remaining
factors can be assembled into a closed linkage with four joints. Consider, for example, the factors (A) and (C). Their closure
equation simplifies to

1≡ (ξ − εη i)(t−h1)(t−h2)(t−h2)(t− s2)(t− r1)≡ (ξ − εη i)(t−h1)(t− s2)(t− r1) = (ξ − εη i)(t−h1)(t− s2)(t− r1).

Hence, the axes of the pair (h1,r1), and also that of (h′1,r
′
1), (h2,r2), and (h′2,r

′
2), are parallel because they are revolute axes

in overconstrained RPRP linkages. A similar argument shows that the axes to r1, r′1, r′2, and r2 define a Bennett linkage.
Finally, the axes to εi, h1, h′1, h2, and h′2 intersect in the point p whose trajectory is a straight line. These observations are
responsible for special geometric features of the admissible linkages.

Type A–B: The linkage is of type PRRPRR. The second and third axes intersect. The second and sixth axis and the third
and fifth axis are parallel.

Type A–C′: In this linkage, three consecutive revolute axes (corresponding to h1, h2, h′2) intersect so that we may view it
as PSPR linkage. However, because of (7) we have (t−h1)(t−h2)(t−h′2)≡ t−h′1 and the spherical joint can actually be
replaced by a revolute joint. It has to be noted that this replacement cuts away the end effector and, thus, changes the end
effector motion. One consequence of this coalescence of the S and R joints are the angle equalities ^(i,r1) = ^(r1,s2),
^(i,r′1) = ^(r′1,s

′
2). which are known to hold for the corresponding RPRP linkages. Here, the angle between rotation and

translation quaternions is to be understood as angle between their respective axis directions.
Type B–C′: This linkage of type RRPRPR contains a Bennett triple of revolute axes (axes one, two and six).
Type C–C′: This is an RPRRPR linkages where the third and fourth axes intersect. An example is depicted in Figure 1. The
linkage differs from Type A–B in the linkage geometry and in the position of the link with straight-line trajectory.

Remark 1. So far, we constructed 6R/P linkages whose end-effector motion contains the component paramterized by C.
In particular, these linkages have at least one degree of freedom. A heuristic argument that they cannot have two or more
degrees of freedom is as follows: Because of the presence of two P joints, the spherical motion component is a spherical
coupler motion with only one degree of freedom. The two non-parallel P joints cannot change this.

3.2 The cases of degree one
Now we turn to the case degP = 1 and start our discussion with the sub-case degξ = 1. The motion polynomial C is of

degree two and it is well-known that its factorizations produce either Bennett linkages or, in limiting cases, an RPRP linkage.
The latter occurs here because C = (ξ −εη i)P clearly is a factorization of C. The second factor, P, describes a rotation about
an axis through p, the first factor, ξ −η i, describes a translation in direction of i. We omit the possible computation of the
second pair of revolute and prismatic joints as this gives us no additional insight. Clearly, every point of either rotation axis
and in particular the point p = (0,0,0) has a straight-line trajectory.

The remaining cases, degP = 1, degξ = 2, and degη = 0 or degη = 1, can be discussed together. Motion polynomial
and norm polynomial are C = (ξ − εη i)P and CC = ξ 2PP. We distinguish two sub-cases:

In the first case, the polynomial ξ factors over the reals. Then, by Theorem 1, every closed linkage obtained from
factorization of C has four prismatic and two revolute joints. The axes of the revolute joints are necessarily parallel and the



Fig. 1. An RPRRPR linkage with a straight-line trajectory

joint angles for every parameter value t sum to zero. For every fixed revolute joint angle, the linkage admits a one-parametric
translational motion along a fixed line. Hence, it has two degrees of freedom and infinitely many straight-line trajectories.

In the second case, the polynomial ξ is irreducible over the reals. Then every closed linkage obtained from factorization
of C necessarily consists of only revolute joints which makes the envisaged generation of a straight-line trajectory even more
interesting. It will turn out that this is only possible under very special circumstances.

Setting ξ = t2 + x1t + x0, P = t−h, and η = y1t + y0 with h ∈H and x0, x1, x2, y0, y1 ∈ R, we assume that C factors as
C =C1(t− k) with a rotation or translation quaternion k. By Lemma 1, k must be a zero of C. We set k = k1 + εk2 with k1,
k2 ∈H and compute 0 =C(k) = P(k′)ξ (k′)+ε

(
P(k1)(k1k2 +k2k1 +x1k2)+k2ξ (k1)− iP(k1)η(k1)

)
. In order for the primal

part to vanish, we have either P(k1) = 0 or ξ (k1) = 0. In the former case, we have k1 = h and the dual part vanishes only if
k2 = 0 or ξ (k1) = 0. If k2 = 0, we have C1 = ξ − iηε and, by Theorem 4 in the appendix, C1 admits no further factorization.
Hence, we can assume ξ (k1) = 0 in any case. This implies x1 =−(k1 + k1) and x0 = k1k1.

The quaternion zeros of a quadratic equation are completely described by [10, Thereom 2.3]. Because ξ is irreducible
over R and ξ (k1) = 0, we have

k1 =
1
2
(−x1 +w(s1i+ s2j+ s3k)) (8)

where w =
√

4x0− x2
1 and s2

1 + s2
2 + s2

3 = 1. Given k1 as in (8), the dual part k2 of k has to satisfy P(k1)(k1k2 +k2k1 +x1k2)−
iP(k1)η(k1) = 0 and

k1k2 + k2k1 = 0. Because of k2 = −k2, the second equation implies k1k2 = k2k1. We plug this in the first equation and
find

0 = P(k1)(k2(k1 + k1︸ ︷︷ ︸
−x1

)+ x1k2)− iP(k1)η(k1) =−iP(k1)η(k1).

This is only possible if P(k1) = 0. Hence, we have k1 = h, x1 =−h−h and x0 = hh or, equivalently, PP= ξ . We will prove in
Theorem 2 below that the motion parameterized by C is the well-known Darboux motion, see [5, 11] or [12, Chapter 9, §3].
This is the unique non-planar, non-spherical and non-translational motion with only planar trajectories. It is the composition
of a planar elliptic motion and a harmonic oscillation perpendicular to the plane of the elliptic motion. Its trajectories are
ellipses with the same major axis length and some trajectories indeed degenerate to straight-line segments.

Theorem 2. Unless h lies in the linear span of j and k, the motion parameterized by C = ξ P− iηεP ∈ DH[t] with P =
t−h ∈H[t]\R[t], ξ = PP, η ∈ R[t], η 6= 0, degη ≤ 1 is a Darboux motion.

Proof. Using PP = ξ , we compute the parametric equation ξ−1(2η i+P(xi+ yj+ zk)P for the trajectory of a point (x,y,z).
We see that all coordinate functions are at most quadratic. Hence, all trajectories are planar. Since η is different from zero,
it is not a spherical motion. Because of our assumptions on h, it is no planar or translational motion.



We already excluded translational end-effector motions from our considerations and can therefore focus on the factor-
ization and linkage construction for Darboux motions, given by C as in Theorem 2. Algorithmic factorization, as explained in
Section 2.2 fails for Darboux motions because of the real factor ξ in the primal part. Thus, a special discussion is necessary.
We already saw previously, that right factors are necessarily of the form t− (h+ εk2). Conversely, any linear polynomial of
that form is really a right factor. The factorization is C =C1(t− (h+ εk2)) where

C1 = ξ + εD (9)

and, with k2 = ai+bj+ ck,

D = ((a− y1)i+bj+ ck)t−ah1 +bh2 +h3c− (h0a+h2c−h3b+ y0)i− (h0b−h1c+h3a)j− (h0c+h1b−h2a)k. (10)

The factorizability of C1 is discussed in Theorem 4 in the appendix. Summarizing the results there, we can say the
following:

− The motion parameterized by C1 is a planar translational motion whose trajectories are rational of degree two (or less).
− It admits factorizations if and only if it parameterizes a circular translation. In this exceptional case, the assumptions of

[6, Theorem 2] are not met and the motion polynomial admits infinitely many factorizations, corresponding to the multiple
generation of a circular translation by parallelogram linkages.

− A criterion for circular translations is ξ ≡ DD.

Thus, we only have to answer, under which conditions on a, b, c Equation (9) is a circular translation or, equivalently, ξ

is a factor of DD. The latter gives convenient linear equations for a, b, c. Writing DD = z2t2 + z1t + z0 where D is as in (10),
the linear system to solve is

z0x1− z1x0 = z0x2− z2x0 = z1x2− z2x1 = h1a+h2b+h3c = 0. (11)

This overconstrained system has a matrix M. The greatest common divisor of all 3×3 minors of M is ∆ := 4(h2
2+h2

3)((h0y1+
y0)

2 + y2
1(h

2
1 +h2

2 +h2
3)). Again, we need to distinguish two cases:

If h2 = h3 = 0, the motion is the composition of a rotation about i and a translation in direction i, that is, a vertical
Darboux motion. Because P is not a real polynomial, h1 is different from zero and we necessarily have a = 0. This leaves
us with three conditions on the solubility: y1(h0y1 + y0) = y0((h2

0 +h2
1)y1 +h0y0) = (h2

0 +h2
1)y1 + y2

0 = 0. A straightforward
discussion shows that either h1 or y1 vanish. But both, h1 = 0 and y1 = 0 have been excluded previously. Hence, the vertical
Darboux motion allows no factorizations into the product of three linear factors.

If h2 and h2 are not both zero, ∆ cannot vanish and the system (11) has the unique solution

a =
y1

2
, b =

y0h3 + y1(h0h3−h1h2)

2(h2
2 +h2

3)
, c =

y0h2 + y1(h0h2 +h1h3)

2(h2
2 +h2

3)
.

In other words, there is precisely one admissible choice for k2 such that (9) is a circular translation. By an earlier remark, it
admits infinitely many factorizations (see also Footnote 3). Thus, we have proved

Theorem 3. A non-vertical Darboux motion, parameterized by C as in Theorem 2, admits infinitely many factorization into
linear motion polynomials. The first two factors on the left describe the same circular translation, the right factor is the same
for all factorizations.

Closed loop linkages for the generation of vertical Darboux motions are described in [5]. Here, it seems that we closely
missed the possibility to construct a closed loop linkage with one degree of freedom and only revolute joints that generates
a general (non-vertical) Darboux motion. Though we managed to factor the non-vertical Darboux motion in infinitely many
ways, we may not form a linkage with one degree of freedom from two factorizations as they have the right factor in
common. Nonetheless, there is a way out of this. It requires a “multiplication trick” which will be investigated in more detail
and generality in a forthcoming publication. Here, we present the basic idea through an example.

We consider the Darboux motion C = ξ P− iηεP ∈ DH[t] with

ξ = t2 +1, η =
5
2

t− 3
4
, P = t−h and h =

7
9

i− 4
9

j+
4
9

k.
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Fig. 2. A 7R linkage that generates a non-vertical Darboux motion.

As seen above, this give us a first factorization C = Q1Q2Q3, where

Q1 = t− 7
9

i− 4
9

j+
4
9

k− 5
4

εi+
43
64

εj− 97
64

εk, Q2 = t +
7
9

i+
4
9

j− 4
9

k, Q3 = t− 7
9

i+
4
9

j− 4
9

k− 5
4

εi− 43
64

εj+
97
64

εk.

In order to obtain a second factorization, we first set the right factor to Q4 := P and compute C1 such that C =C1Q4: C1 =
t2 +1− εi( 5

2 t− 3
4 ). The motion polynomial C1 parameterizes a translation in constant direction. According to Theorem 4 in

the appendix, it cannot be written as the product of two linear motion polynomials. However, after multiplying C1 by t2 +1,
it actually has infinitely many factorizations into products of three motion polynomials, one of them being C′(t2 + 1) =
Q7Q2

6Q5, where

Q7 = t− j− 5
4

εi− 3
8

εk, Q6 = t + j, Q5 = t− j− 5
4

εi+
3
8

εk.

The multiplicity of the middle factor Q6 is no coincidence but inherent in the structure of the factorization problem at hand.
The kinematic structure to this factorization is an open 4R chain with coinciding second and third axis, that is, actually just
a 3R chain. Because C = Q1Q2Q3 and ξC = Q7Q2

6Q5Q4 are projectively equal, we can combine these two factorizations to
form a 7R linkage where each rotation is defined by Qi, i = 1, . . . ,7. It can be seen that the axes of Q1, Q2 are parallel, as are
the axes of Q3, Q4 and Q5, Q6, Q7. Moreover, all joint angles are the same – a property that has not yet been observed in
non-trivial linkages obtained from motion polynomial factorization.

To complete the above construction, we should check that the configuration space of the 7R linkage is really just a
curve. A Gröbner basis computation reveals that this is indeed the case. Note that the configuration curve contains several
components, also components of higher genus. One component corresponds to the rational curve parameterized by C. Thus,
we have indeed constructed a 7R linkage whose coupler motion is a non-vertical Darboux motion. In Figure 2, we present
three configurations of this linkage in an orthographic projection parallel to j. We can observe the parallelism of axes and
constancy of one direction during the coupler motion.

4 Conclusions and future research
We have studied spatial straight-line linkages obtained by factorizing a cubic motion polynomial. The mobility and

straight-line property of some of the resulting linkages can be explained geometrically while for others the explanation
remains algebraic. In the course of this investigation, we showed that a Darboux motion can be decomposed into a circular
translation and a rotation and we presented one particular example of a 7R Darboux linkage. A closer investigation of the
used “multiplication trick” is left to a forthcoming publication.



Another natural step is to study general trajectory generation in relation to the factorization of motion polynomials. We
are already in a position to announce concrete and promising results in this direction.

As already mentioned in the introduction, the engineering relevance of these linkages is probably limited. The present
investigation should be rather seen as an exercise in factorization of motion polynomials and a demonstration of what it is
capable of. We expect more interesting and applicable linkages to arise from the factorization of motion polynomials in other
constraint varieties. Already a cursory glance at the descriptions of constraint varieties in [8] shows that there is plenty of
room for further investigations.

A Factorization of quadratic translational motions
In this appendix we prove an auxiliary result that is often referenced in the preceding text. Throughout this section,

C = ξ + εD is a monic, quadratic motion polynomial with ξ ∈R[t], degξ = 2 and D ∈H[t]. It is our aim to give a complete
description of all possibilities to write C as C = (t−h)(t− k) with rotation or translation quaternions h, k ∈ DH.

Lets start with some basic properties of the motion C. Because ξ , the primal part of C, is a real polynomial, the motion is
translational. Because C is of degree two and monic, the degree of D is at most one. Moreover, CC = ξ (ξ +ε(D+D))∈R[t]
implies D =−D. Conversely, any translational motion of degree two can be written in that way.

The trajectory of the coordinate origin can be parameterized as x−1
0 (x1,x2,x3) with polynomials xi ∈ R[t], given by

x0 + ε(x1i+ x2j+ x3j) = ξ (ξ −2ε(D−D)) = ξ (ξ −2εD)≡ ξ −2εD. (12)

We see that this trajectory is rational of degree two at most. Hence, the motion under investigation is a planar, curvilinear
translation.

Theorem 4. Let C = ξ + εD be a monic, quadratic motion polynomial with irreducible ξ ∈ R[t], degξ = 2, D ∈H[t]. Then
the following statements are equivalent:

1. There exist two rotation quaternions h, k ∈ DH such that C = (t−h)(t− k).
2. There exist infinitely many rotation quaternions h, k ∈ DH such that C = (t−h)(t− k).
3. The motion polynomial C parameterizes a circular translation.
4. The polynomial ξ divides DD. (This implies ξ ≡ DD.)

Proof. 1 =⇒ 4: Write h = h1 + εh2, k = k1 + εk2 with rotation quaternions h1, h2, k1, k2 ∈ H. By equating the primal
part of (t−h)(t− k) with ξ we find h1 + k1 ∈ R and h1k1 ∈ R. This is only possible if k1 = h1. Let us write, for simplicity,
p := h1 = k1. Then ξ = t2− (p+ p)t + pp = (t− p)(t− p).

Because k = p+ εk2 is a rotation quaternion, we have pk2 = −k2 p = k2 p (Study condition) and hence (t − p)k2 =
k2t− pk2 = k2t− k2 p = k2(t− p). Using this, the dual part of (t−h1− εh2)(t− k1− εk2) can be written as D = −(h2(t−
p)+(t− p)k2) =−(h2 + k2)(t− p). Compute now DD = (h2 + k2)(t− p)(t− p)(h2 + k2) = ξ qq with q = h2 + k2. Thus, ξ

is, indeed, a factor of DD.
4 =⇒ 3: We already know that C describes a curvilinear translation with rational quadratic trajectories given by (12).

The trajectory of the coordinate origin (and hence all other trajectories) are circles if its points at infinity lie on the absolute
conic of Euclidean geometry. Algebraically this means that x0 = ξ divides x2

1 + x2
2 + x2

3 = 4DD. But this is precisely the
assumption.

3 =⇒ 2: A circular translation occurs in infinitely many ways as coupler motion of a parallelogram linkage. This
linkage is composed of two 2R chains, each corresponding to one of infinitely many factorizations of C.3

The trivial final implication (2 =⇒ 1) completes the proof.

Remark 2. By Theorem 1, translation quaternions cannot occur in the factorization of C if ξ is irreducible. Hence Theorem 4
gives all factorizations in the case of irreducible ξ .
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3This can also be verified at hand of a concrete example. The circular translation C = 1+ t2− ε(i+ jt) allows the factorizations C = (t−k− ε(−ai+
(1−b)j))(t +k− ε(ai+bj))) with a,b ∈ R.
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