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Abstract In this paper, we consider a special kind of overconstrained 6R closed
linkages which we call sharp linkages. These are linkages with the property that
their bond diagram looks like a ] sign. We give a construction of this linkage using
the bond theory and motion polynomial factorization methods. These two methods
are introduced recently in [6, 7]. Another type of 6R linkages is also introduced. To
my knowledge, both types of linkages are new.
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1 Introduction

In kinematics, a closed 6R linkages with mobility one have been considered by
many authors (see [1, 3, 4, 6, 11–13]).

In this paper, we mainly focus on closed 6R linkages. More precisely, we con-
sider a very special type of 6R linkages, which we call sharp linkages. Their bond
diagrams look like a ] sign. Namely, this bond diagram has two Bennett conditons
as the bond diagram of Waldrons double Bennett hybrid, Dietmaier 6R linkages and
Bricard plane symmetric 6R linkages [3, Section 4.8.3]. But it is not a special case
of those 6R linkages. We also get another 6R linkage which has quasi-symmetric
bond diagram. One can find a special angle symmetric 6R linkage in [8] with the
same bond diagram. But this new linkage is not angle symmetric, because there is
one pair of opposite angles which are not equal.

Our main tools are the bond theory and the factorization of a motion polyno-
mial. These two are based on dual quaternions. In the paper [6], the authors found
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a new 6R linkage by using the factorization of a cubic motion polynomial. We find
a quartic motion polynomial in this paper. This quartic motion polynomial has two
factorizations which generate two 3R open chains. Using these two chains we can
construct the sharp linkage. The main difficulty is to find such quartic motion poly-
nomials. In the future, we want to find all quartic motion polynomial that lead to
closed 6R linkages.

The remaining part of the paper is set up as follows. In Section 2, we give the
preliminaries we need i.e. dual quaternions, the factorization of a motion polyno-
mial, the bond theory. Section 3 introduces our motivation. Section 4 contains the
main result and examples.

2 Preliminaries

In this paper, we mainly use two tools (Bond theory and motion polynomial factor-
ization). Before introducing each of them, let us recall the dual quaternions.

2.1 Dual quaternions

The algebra DH of dual quaternions is the 8-dimensional real vector space generated
by 1,ε, i, j,k,εi,εj,εk (see [6]). Following [6], we can represent a rotation by a
dual quaternion of the form

(
cot
(

φ

2

)
−h
)

, where φ is the rotation angle and h

is a dual quaternion such that h2 = −1 depending only on the rotation axis. We
use projective representations, which means that two dual quaternions represent the
same Euclidean displacement if only if one is a real scalar multiple of the other.

The set of all possible motions of a closed 6R linkage is determined by the posi-
tion of the six rotation axes in some fixed initial configuration. Let L be a 6R linkage
given by 6 lines, represented by dual quaternions h1, . . . ,h6 such that h2

i = −1 for
i = 1, . . . ,6. A configuration (see [6]) is a 6-tuple (t1, . . . , t6), such that the closure
condition

(t1−h1)(t2−h2)(t3−h3)(t4−h4)(t5−h5)(t6−h6) ∈ R\{0} (1)

holds. The configuration parameters ti – the cotangents of the rotation angles – may
be real numbers or ∞, and in the second case we evaluate the expression (ti−hi) to
1, the rotation with angle 0. The set of all configurations of L is denoted by KL. We
say L is movable when KL is a one-dimensional set. Mostly, we will assume, slightly
stronger, that there exists an irreducible one-dimensional set for which none of the ti
is fixed. Such a component is called a non-degenerate component. We also exclude
the case dimC KL ≥ 2. Linkages with mobility ≥ 2 do exist, for instance linkages
with all axes parallel have mobility 3.
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2.2 The factorization of a motion polynomial

In the paper [6], the authors introduced the motion polynomial P which is a monic
polynomial in Study quadric of degree n with PP̄ ∈ R[t]. Let h1,h2, . . . ,hn be rota-
tions; using their algorithm, in general, one can compute a factorization

P = (t−h1)(t−h2) · · ·(t−hn).

One application of the factorization of a motion polynomial is to construct closed
linkages by combining the different factorization (which corresponding to different
open chains). The difficulty is to find a quartic (or higher degree) motion polynomial
which has two factorizations. Furthermore, each of these two factorizations should
be corresponding to an open 3R chains. Our main contribution is that we construct
such two special quartic motion polynomials. Our construction is based on the bond
theory [7].

2.3 The bond theory

Let L = (h1, . . . ,h6) be a closed 6R linkage with mobility 1. We assume, for simplic-
ity, that the configuration curve KL⊂ (P1

R)
n has only one component of dimension 1.

Let KC ⊂ (P1
C)

n be the Zariski closure of KL. We set

B := {(t1, . . . , tn) ∈ KC | (t1−h1)(t2−h2) · · ·(tn−hn) = 0}. (2)

The set B is a finite set of conjugate complex points on the configuration curve’s
Zariski closure.

Let β be a bond with coordinates (t1, . . . , tn). By Theorem 2 in [7], there exist
indices i, j ∈ [n], i < j, such that t2

i +1 = t2
j +1 = 0. If there are exactly two coordi-

nates of β with values ±i, then we say that β connects joints i and j. In general, the
situation, is more complicated.

We visualize bonds and their connection numbers by bond diagrams. We start
with the link diagram, where vertices correspond to links and edges correspond to
joints. Then we draw a connecting line between the edges hi and h j for each set
{β ,β} of conjugate complex bonds. Multiple connections are possible.

Let us recall [7, Corollary 12] for explaining the connection.

Corollary 1. For a bond β with t2
i +1 = t2

j +1 = 0 and i < j, the equality

(ti−hi)(ti+1−hi+1) · · ·(t j−h j) = 0 (3)

holds.

In Figure 2, we show some known examples and our new examples with bond
diagrams.
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Fig. 2: Bond diagrams for the cube linkage (a), the Waldrons double Bennett hybrid (b), the sharp
linkage type one (c), the sharp linkage type two (d)

3 Motivation

In the paper [6], the authors constructed a new 6R linkage by using the factorization
of a cubic motion polynomial. It has bond diagram of figure 2(a) which is one of sim-
plest bond diagrams. The other one of simplest bond diagram is figure 2(b) which
is known as the Waldrons double Bennett hybrid (see [3] 4.2.5). There is no other
6R linkages with bond diagrams of only three bond connections. Using [7, Theo-
rem 23], one can find the reason as an excise. We consider diagrams with four bond
connections, e.g. figure 2(c), (d). There are some other types of bond diagrams with
four bond connections. We only consider these two types in this paper.

4 The main results

First, let us make our purpose clear. We want to construct a monic quartic polyno-
mial Q in DH[t] such that QQ̄ ∈R[t]. Furthermore, we can factor Q in two different
ways (at least) which both constitute a 3R open chain. Then we can construct a 6R
linkage by combining these two factorizations.
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Remark 1. Such 6R linkage exists (angle symmetric 6R linkage [8, 9]). Up to now,
it was not known whether or not there exist such 6R linkages that are not angle
symmetric. This paper gives a positive answer.

Now we introduce our procedure for finding such examples.

I. We choose four lines with two different bond connections (3) as following

(i−h1)(α−h2)(β −h3)(i−h4) =0,
(i−h1)(α

′−h2)(β
′−h3)(i+h4) =0,

where i is the imaginary unit, complex numbers α and β have the same
linear relation as α ′ and β ′ i.e.

β = aα +b, β
′ = aα

′+b.

II. Use these two bond conditions to calculate quartic motion polynomials.
III. Use the factorization algorithm to compute another factorization of the

first three factors. This procedure contribute the two lines h5 and h6 which
we want.

IV. Return the 6R linkage [h1,h2,h3,h4,h5,h6].

Remark 2. There are two options in procedure III (either change the order of second
and third or not), which contribute two kinds of 6R linkage with bond diagrams 2(c)
and (d).

As the first step is the most important step, we show the details in the following
subroutine.

I.a Choose h2 and h3 as two random lines with h2
2 = h2

3 =−1.
I.b Choose two complex number α and α ′ where α 6=±i and α ′ 6=±i.
I.c Choose two random real numbers a,b with a 6= 0.
I.d Assume that the other two lines have the following formula

h1 = (x1i+ x2j+ x3k)+(y1i+ y2j+ y3k)ε,
h4 = (u1i+u2j+u3k)+(v1i+ v2j+ v3k)ε.

I.e Solve the following system for unknowns x1, x2, x3, y1, y2, y3, u1, u2, u3, v1,
v2, v3 

(i−h1)(α−h2)(β −h3)(i−h4) = 0,
(i−h1)(α

′−h2)(β
′−h3)(i+h4) = 0,

h2
1 =−1, h2

4 =−1.

I.f Choose one solution (all variables are in real) for the next steps.

We add one example to support our procedure. This is a particularly easy example
which we found by our procedure.
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Input: I.a, I.b, I.c

h2 =

(
−3

5
i− 4

5
j
)
− 6

5
kε,

h3 =

(
3
7

i− 2
7

j+
6
7

k
)
+

(
76
49

i+
24
49

j− 30
49

k
)

ε,

α =−1
5
− 4

3
i, α

′ =
4
5
− 1

2
i,

a =
5
2
, b =−3

4
.

Output: Then one can get a numerical solution with 10 digits as following

x1 = 0.4058453976, x2 =−0.9139192147, x3 =−0.0064173294,
y1 = 1.244931364, y2 = 0.5535129673, y3 =−0.09606363509,
u1 =−0.6219669897, u2 =−0.3316117352, u3 = 0.7093593733,
v1 =−0.5417103337, v2 =−1.024569908, v3 =−0.9539386886.

Then the next two steps are for calculating the factorization. We assume that t1(t)
and t4(t) are quadric rational functions of t, and we also assume that

t1(α) = i, t1(α ′) = i, t4(α) = i, t4(α ′) =−i. (4)

The quartic motion polynomial is (t1(t)−h1)(t−h2)(at +b−h3). The other factor-
ization is obtained by multiplying (t4(t)−h4) from the right. Then (t1(t)−h1)(t−
h2)(at+b−h3)(t4(t)−h4) is a quadric motion polynomial when we remove the real
denominators and factors. The next step is to factor this quadric motion polynomial.
We show all these details in the following:

Assumption:

t1(t) =
t2 + p2t + p3

p4t + p5
, t4(t) =

t2 + p′2t + p′3
p′4t + p′5

,

α =−1
5
− 4

3
i, α

′ =
4
5
− 1

2
i.

Do: Solve the linear system (4) for unknowns p2, p3, p4, p5, p′2, p′3, p′4, p′5.
Output: Then one can get a solution of t1(t) and t4(t) as following

t1(t) =
t2− 3

5 t− 62
75

− 11
6 t + 29

30

, t4(t) =
t2− 3

5 t + 38
75

− 5
6 t + 7

6

.

After substituting t1(t) and t4(t) into

(t1(t)−h1)(t−h2)(at +b−h3)(t4(t)−h4),
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we have a numeric quadric motion polynomial in 10 digits (replacing the real de-
nominators and factors)

t2 +(−0.3000000000+0.6543154994i−1.037575959j+0.2365105645k+
1.210540727iε−0.0349528507jε +0.4738323880εk)t−

0.2003149450−0.0160185109i+0.3911798525j+ .2378984092k−
0.9404081633ε−1.436504834iε−0.5526215606jε +0.0201175896εk.

As the norm of this quadric motion polynomial is (t2 + 1)(t2 − 3
5 t + 1

4 ), we can
construct two 6R linkages Lc = [hc

1,h
c
2,h

c
3,h

c
4,h

c
5,h

c
6] and Ld = [hd

1 ,h
d
2 ,h

d
3 ,h

d
4 ,h

d
5 ,h

d
6 ]

(with bond diagram 2(c) and (d)) basing on these two factorization as following
(numerically in 10 digits).

hc
1 = (0.4058453976i−0.9139192147j−0.0064173294k)+

(1.244931364i+0.5535129673j−0.09606363509k)ε,

hc
2 =

(
−3

5
i− 4

5
j
)
− 6

5
kε,

hc
3 =

(
3
7

i− 2
7

j+
6
7

k
)
+

(
76
49

i+
24
49

j− 30
49

k
)

ε,

hc
4 = (−0.6219669897i−0.3316117352j+0.7093593733k)+

(−0.5417103337i−1.024569908j−0.9539386883k)ε,

hc
5 = (0.9529670102)i−0.2884245020j−0.0930869702k)+

(0.145998817i−0.4419436106j+2.863982166εk)ε,

hc
6 = (0.2731286954)i−0.9222061578j+0.2737453525k)+

(1.152141200i+0.1418245937j−0.6717604788k)ε.

hd
1 = hc

1, hd
2 = hc

2, hd
3 = hc

3, hd
4 = hc

4,

hd
5 = (0.6843121346i−0.7290081982j−0.0162465108k)+

(0.7852041130i+0.7074301081j+1.329661169k)ε,

hd
6 = (−0.0749915882i−0.7714194013j+0.6318926880k)+

(1.063341534i−1.855957397j−2.139571953k)ε.

Remark 3. At several places, we used the computer algebra system Maple for more
elaborate computations: examples, animations. Because of the length of these com-
putations, it is not reasonable to reproduce them in this paper, but they can be found
at our webpage1. They can be read with any text editor and verified using Maple 16.
One can use a new technique, namely, quad polynomials [10]2, to check mobility

1 http://people.ricam.oeaw.ac.at/z.li/softwares/sharplinkages.html
2 http://people.ricam.oeaw.ac.at/z.li/softwares/quadpolynomials.html
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from their symbolic Denavit/Hartenberg parameters [2, 5]3 which have complicate
square roots.
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