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Abstract

In this paper, we study closed linkages with six rotational joints that allow a
one-dimensional set of motions. We prove that the genus of the configuration
curve of a such a linkage is at most five, and give a complete classification of
the linkages with a configuration curve of genus four or five. The classification
contains new families.
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1. Introduction

A linkage is a mechanism composed of a finite number of rigid bodies, called
links, and connections between them, called joints. The links move in three-
dimensional space, and when two links are connected by a joint, then the rel-
ative motion is constrained to a certain subgroup of the group of Euclidean
displacements, depending on the type of joint. For instance, a revolute joint
ensures that the relative motion is always a rotation around a fixed axis. A
linkage consisting of n links that are cyclically connected by n revolute joints is
called a closed nR linkage.

In kinematics, one studies the set of all possible configurations of a linkage.
If the configuration set has positive dimension, then the linkage is mobile. This
is always the case for nR linkages when n ≥ 7. There are mobile closed nR
linkages for n = 4, 5, 6. A mobile closed 4R linkage is either planar, or spherical,
or a Bennett linkage [1]. For 5R linkages, we have a similar classification that
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has been completed by [2]. The classification of mobile closed 6R linkages is
still an open problem.

The theory of bonds was introduced in [3] as a method for the analysis of
linkages with revolute joints. The configuration curve of such a linkage can be
described by algebraic equations. Intuitively, bonds are points in the config-
uration curve with complex coefficients where something degenerate happens.
For a typical bond of a closed nR linkage, there are exactly two joints with
degenerate rotation angles. In this way, the bond “connects” the two links.

The theory of bonds has been used in [3] to give an almost computation-free
proof of the classification of closed 5R linkages. The original proof [2] is based
on complex computations done with computer algebra. In [4], bonds are used
for studying Stewart-Gough platforms with self-motions.

The main result in this paper is the classification of all 6R linkages with a
configuration curve of maximal genus (in particular, we assume that the con-
figuration set has dimension 1, which makes it a curve.) In Section 4, we show
that the maximum is 5 (examples of genus 5 are well-known, but the fact that
5 is an upper bound is new). In Section 6, we give a classification of all link-
ages with configuration curve of genus 5 in terms of their Denavit–Hartenberg
parameters. It turns out that they come in 4 families, two are well-known and
two are new.

In order to derive equations for linkages of the classification, we use a tech-
nique which allows to produce polynomials in the Denavit–Hartenberg param-
eters such that their vanishing is necessary (but in general not sufficient) for
the existence of bonds. This technique has been introduced in [5]. For the con-
venience of the reader, we give in Section 5 an introduction of this technique
with sketch of the proofs (for the proof details, we refer to [5]). Section 5 is
also logically independent of Section 4, and we hope that some readers are able
to solve the equation system for bond diagrams which we could not treat up to
now.

It is apparent that the results of bond theory have their main interest in the
field of kinematics. However, we also want to address algebraists and geometers,
because we hope to serve as an inspiration to use this technique and develop
similar ones for solving more questions of interest in kinematics.

2. Preliminary Definitions

In this section we recall several classical concepts and definitions that we
need later: linkages and their configuration set and coupler maps, the Study
quadric, and dual quaternions.

We denote by SE3 the group of Euclidean displacements, i.e., the group of
maps from R3 to itself that preserve Euclidean distances and orientation. It is
well-known that SE3 is a semidirect product of the translation subgroup and the
orthogonal group SO3, which may be identified with the stabilizer of a single
point.

We denote by D := R + εR the ring of dual numbers, with multiplication
defined by ε2 = 0. The algebra H is the non-commutative algebra of quaternions,
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and DH := D ⊗R H. The conjugate dual quaternion h of h is obtained by
multiplying the vectorial part of h by −1. The dual numbers N(h) = hh and
h+ h are called the norm and trace of h, respectively.

By projectivizing DH as a real 8-dimensional vector space, we obtain P7. The
condition that N(h) is strictly real, i.e. its dual part is zero, is a homogeneous
quadratic equation. Its zero set, denoted by S, is called the Study quadric.
The linear 3-space represented by all dual quaternions with zero primal part is
denoted by E. It is contained in the Study quadric. The complement S − E
is closed under multiplication and multiplicative inverse and therefore forms a
group, which is isomorphic to SE3 (see [6, Section 2.4]).

A nonzero dual quaternion represents a rotation if and only if its norm and
trace are strictly real and its primal vectorial part is nonzero. It represents
a translation if and only if its norm and trace are strictly real and its primal
vectorial part is zero. The 1-parameter rotation subgroups with fixed axis and
the 1-parameter translation subgroups with fixed direction can be geometrically
characterized as the lines on S through the identity element 1. Among them,
translations are those lines that meet the exceptional 3-plane E.

Let n ≥ 4. For the analysis of the configurations of a closed nR linkage
with links o1, . . . , on, the actual shape of links is irrelevant; it is enough to know
the position of the rotation axes. Exploiting the fact that there is a bijection
between lines in R3 and involutions in SE3, we describe a closed nR linkage by
a sequence L = (h1, . . . , hn) of dual quaternions h1, . . . , hn such that h2i = −1
and hi 6= ±hi+1 for i = 1, . . . , n (we set hi+kn = hi and oi+kn = oi for all
k ∈ Z). The line hi specifies the joint connecting the links oi−1 and oi. The
subgroup of rotations with axis hi is parametrized by (t− hi)t∈P1 . The pose of
oi with respect to on is then given by a product (t1 − h1)(t2 − h2) · · · (ti − hi),
with t1, . . . , ti ∈ P1. Setting i := n, we get the closure condition

(t1 − h1)(t2 − h2) · · · (tn − hn) ∈ R∗. (1)

The set K of all n-tuples (t1, . . . , tn) ∈ (P1)n fulfilling (1) is called the configu-
ration set of the linkage L.

The dimension of the configuration set is called the mobility of the linkage.
We are mostly interested in linkages of mobility one. Let L = (h1, . . . , hn) be
such a linkage. Let K be its configuration curve. For any pair (oi, oj) of links,
there is a map

fi,j : K → P7, (t1, . . . , tn)→ (ti+1 − hi+1) . . . (tj − hj)

parametrizing the motion of oj with respect to oi. This map is is called coupler
map, and the image Ci,j is the coupler curve. The algebraic degree of the coupler
curve is defined as deg(Ci,j) deg(fi,j), where deg(Ci,j) is the degree of Ci,j as a
projective curve, and deg(fi,j) is the degree of fi,j as a rational map K → Ci,j .

3. Bonds: Definition and Main Properties

In this section we recall the fundamentals of bond theory, as introduced in
[3].
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Let n ≥ 4 be an integer. Let L = (h1, . . . , hn) be a closed nR linkage with
mobility 1. We assume, for simplicity, that the configuration curve K ⊂ (P1

R)n

has only one component of dimension 1 (see Remark 4 for a comment on the
reducible case). Let KC ⊂ (P1

C)n be the Zariski closure of K. We set

B := {(t1, . . . , tn) ∈ KC | (t1 − h1)(t2 − h2) · · · (tn − hn) = 0}. (2)

The set B is a finite set of conjugate complex points on the configuration curve’s
Zariski closure. If K is a nonsingular curve, then we define a bond as a point of
B. If K has singularities, then it is necessary to pass to the normalization N(K)
of K as a complex algebraic curve, and a bond is then a point on N(K) lying
over B. Zero-dimensional components of K never fulfill the equation above and
so they have no effect on bonds.

Let β be a bond lying over (t1, . . . , tn). By Theorem 2 in [3], there exist
indices i, j ∈ [n], i < j, such that t2i + 1 = t2j + 1 = 0. If there are exactly
two coordinates of β with values ±i, then we say that β connects joints i and
j. In general, the situation, is more complicated. Let β ∈ N(K) be a bond; we
assume, for simplicity, that it lies over a point (t1, . . . , tn) such that no ti is the
infinite point in P1. For i, j ∈ {1, . . . , n}, we define

Fi,j(β) = (ti+1(β)− hi+1) · · · (tj(β)− hj) ∈ DH, (3)

The distinction between Fi,j and fi,j is necessary because Fi,j may vanish at
the bonds, and then it does not give a well-defined pose in P7. We define vτ (i, j)
as the vanishing order of Fi,j at τ . We define the connection number

kβ(i, j) := vβ(i, j − 1) + vβ(i− 1, j)− vβ(i, j)− vβ(i− 1, j − 1).

We visualize bonds and their connection numbers by bond diagrams. We
start with the link diagram, where vertices correspond to links and edges cor-
respond to joints. Then we draw kβ(i, j) connecting lines between the edges
hi and hj for each set {β, β} of conjugate complex bonds. Since we cannot
exclude that kβ(i, j) < 0, we visualize negative connection numbers by drawing
the appropriate number of dashed connecting lines (because the dash resembles
a “minus” sign). No linkage in this paper has a negative connection number.
Actually, the authors do not know if closed 6R linkages may or may not have
bonds with negative connection numbers.

Theorem 1. The algebraic degree of the coupler curve Ci,j can be read off from
the bond diagram as follows: Cut the bond diagram at the vertices oi and oj to
obtain two chains with endpoints oi and oj; the algebraic degree of Ci,j is the
sum of all connections that are drawn between these two components (dashed
connections counted negatively).

Proof. This is a consequence of Theorem 5 in [3]. Note that here we give a
different definition of connection numbers, but Lemma 2 in [3] shows that the
definitions are equivalent.

The basic idea of the proof is that the algebraic degree of Ci,j is 1
2 times the

number of points τ in the configuration curve such that N(fi,j(τ)) = 0. All these
points are bonds, and a closer investigation leads to the statement above.
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Example 1. We illustrate the procedure for computing the degrees in Figure 1.
In order to determine the algebraic degree of the coupler curve C3,5, we cut
the bond diagram along the line through o3 and o5 and count the connections
between the two chain graphs. There are precisely two of them, one connecting
h1 with h4 and one connecting h2 with h5. Thus, the algebraic degree d(3, 5) of
C3,5 is two.

o1

o2

o3

o4

o5 h1

h2

h3h4

h5

h1

h2

h3
h4

h5

o5 o1

o2

o3
o3

o4

o5

Figure 1: Computing the degree of coupler curves by counting connections in the bond-
diagram. There are two connections between the two chains, hence the algebraic degree of
the coupler curve C3,5 is two.

For a sequence hi, hi+1, . . . , hj of consecutive joints, we define the coupling
space Li,i+1,...,j as the linear subspace of R8 generated by all products hk1 · · ·hks ,
where s ≥ 0 and k1, . . . , ks are integers such i ≤ k1 < · · · < ks ≤ j. (Here, we
view dual quaternions as real vectors of dimension eight.) The empty product
corresponding to s = 0 is included, its value is 1. The coupling dimension
li,i+1,...,j is the dimension of Li,i+1,...,j and the coupling variety Xi,i+1,...,j ⊂ P7

is the set of all products (ti − hi) · · · (tj − hj) with tk ∈ P1 for k = i, . . . , j
or, more precisely, the set of all equivalence classes of these products in the
projective space.

The coupling variety is a subset of the projectivization of the coupling space.
The relation between the coupler curve and the coupling variety is described by
the “coupler equality” Ci,j = Xi+1,...,j ∩Xi,...,−n+j+1.

The relation between bonds and coupling dimensions is described in the
following

Theorem 2. All coupling dimensions l1,...,i with 1 ≤ i ≤ n are even. We have
l1,2 = 4 and kβ(1, 2) = 0 for every bond β. If kβ(1, 3) 6= 0 for some β, then
l1,2,3 ≤ 6. If l1,2,3 = 4, then the lines h1, h2, h3 are parallel or have a common
point.

Proof. This is part of Theorem 1, Theorem 3, and Corollary 3 in [3]. The first
statement is a consequence of the fact that the coupling spaces can be given the
structure of a complex vector space, because they are closed under multiplication
by h1 from the left.
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We will also use a more precise description of the coupling varieties in each
of the three possible cases, which is interesting in itself.

Theorem 3. If l1,2,3 = 4, then X1,2,3 is a linear projective 3-space, and its
parametrization by t1, t2, t3 is a 2:1 map branched along two quadrics in this
3-space.

If l1,2,3 = 6, then X1,2,3 is a complete intersection of two quadrics in a
5-space and its parametrization by t1, t2, t3 is birational.

If l1,2,3 = 8, then X1,2,3 is a Segre embedding of (P1)3 in P7, and its
parametrization by t1, t2, t3 is an isomorphism.

Proof. The first statement is well-known in kinematics. For non-parallel axes it
is, for example, implicit in the exposition of [7, Section 5]. Branching occurs for
co-planar joint axes. There are two components of the branching surface, and
each of the component is the image of a subset of (P1)3 in which t2 is constant.

If l1,2,3 = 6, then (i−h1)(s2−h2)(±i−h3) = 0 for some s2 ∈ P1
C, by the proof

of Theorem 1 in [3]; we may assume that the third factor is (+i− h3). Clearly
there is also a complex conjugate relation (−i− h1)(s̄2− h2)(−i− h3) = 0. The
parametrization p : (P1)3 → X1,2,3 has two base points (i, s2, i) and (−i, s2,−i).
We distinguish two cases.

If s2 6= s2, then we apply projective transformations moving the base points
to (0, 0, 0) and (∞,∞,∞). The transformed parametrization is

(P1)3 → P5, (y1, y2, y3) 7→ (x0:x1:x2:x3:x4:x5) = (y1:y2:y3:y1y2:y1y3:y2y3),

which is birational to the quartic three-fold defined by x0x5 = x1x4 = x2x3.
If s2 = s2, then we apply projective transformations moving the base points

to (0,∞, 0) and (∞,∞,∞). The transformed parametrization is

(P1)3 → P5, (y1, y2, y3) 7→ (x0:x1:x2:x3:x4:x5) = (1:y1:y3:y1y2:y1y3:y2y3),

which is birational to the quartic three-fold defined by x0x4 = x1x2, x1x5 =
x2x4.

If l1,2,3 = 8, then the eight products generating L1,2,3 are linearly indepen-
dent, and it follows that the parametrization is the Segre embedding in the
projective coordinate system induced by this basis.

All bonds connecting h1 and h4 satisfy t1, t4 ∈ {+i,−i}. We will prove a
lemma that is useful to give an upper bound for the number of bonds in some
situations; before that, we need an algebraic lemma.

Lemma 1. Let h1, h2 ∈ DH be dual quaternions representing lines (i.e. h21 =
h22 = −1). Let DC := D ⊗R C and DHC := DH ⊗R C be the extensions of the
dual numbers/quaternions to C.

(a) The left annihilator of (i− h1) is equal to the left ideal DHC(i + h1).
(b) The intersection of this left ideal and the right ideal (i−h2)DHC is a free

DC-module of rank 1.
(c) The set of all complex dual quaternions x such that (i−h2)x(i−h1) = 0

is a free DC-module of rank 3.

6



Proof. For h1 = h2 = i, the proofs for all three statements are straightforward.
The group of unit dual quaternions acts transitively on lines by conjugation,

so there exist invertible g1, g2 ∈ DH such that h1 = g1ig
−1
1 and h2 = g2ig

−1
2 .

Then

{q | q(i− h1) = 0} = {q | qg1(i− i)g−11 = 0} = {q | qg1(i− i) = 0} =

DHC(i + i)g−11 = DHCg
−1
1 (i + h1) = DHC(i + h1),

which shows (a). The DC-linear bijective map DHC → DHC, q 7→ g−12 qg1
maps the left ideal DHC(i + h1) to the left ideal DHC(i + i) and the right ideal
(i− h2)DHC to the right ideal (i− i)DHC, which shows (b). The same map also
maps the set {x | (i−h2)x(i−h1) = 0} to the set {x | (i− i)x(i− i) = 0}, which
shows (c).

Lemma 2. Assume that l1,2,3 = l4,5,6 = 8. Then there are at most 2 bonds β :=
(t1, . . . , t6) connecting h1, h4 for fixed values of t1 and t4 in {+i,−i} (counted
with multiplicity).

Proof. Without loss of generality, we may assume t1 = t4 = +i; the other
situations can reduced to this case by replacing h1 or h4 or both by its negative.

By the algebraic lemma above, the intersection of the left annihilator of
(t4−h4) and the right ideal (t1−h1)DHC is a 2-dimensional C-linear subspace.
Let G ⊂ P7 be its projectivization. Let q := f3,6(β) be image of a bond
β = (t1, . . . , t6) connecting h1 and h4 with t1 = t4 = +i. Then we have q =
(t1 − h1)(t2 − h2)(t3 − h3), hence q is in the right ideal (t1 − h1)DHC. Since β
connects h1 and h4, we have q(t4−h4) = F3,6(β) = 0, q is in the left annihilator
of (t4 − h4), and therefore q ∈ G.

There exist no two bonds β1, β2 with the same bond image q, because the
parameterization of X1,2,3 by t1, t2, t3 is an isomorphism, hence q determines
the first three coordinates, and the parametrization of X6,5,4 by t4, t5, t6 is also
an isomorphism, hence q determines the second three coordinates. This shows
that the number of bonds connecting h1 and h4 with t1 = t4 = +i is equal to
the number of intersections of G and C3,6; tangential intersections give rise to
higher connection numbers.

On the other hand, C3,6 is generated by quadrics, so it does not have any
tritangents, so the number of such bonds is at most 2.

4. Bounding the Genus

In this section, we prove that the genus of the configuration curve of a closed
6R linkage is at most 5.

Let L = (h1, . . . , h6) be a closed 6R linkage with mobility 1. We use the
notation of the previous section. As before, we assume that the configuration
curve K has only one irreducible one-dimensional component. We write g(K)
for the genus of this component.

Here is an auxiliary Lemma.
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Lemma 3. Let C1, C2 be two curves of genus at most 1. Let C ⊂ C1 × C2

be an irreducible curve such that the two projections restricted to C are either
birational or 2:1 maps to C1 resp. C2. Then g(C) ≤ 5, with equality only if
g(C1) = g(C2) = 1 and both projections being 2:1.

Proof. If one of the two projections is birational, say the projection to C1, then
g(C) = g(C1) ≤ 1. So we may assume both projections are 2:1 maps.

If C1 and C2 are isomorphic to P1, then C is a curve in P1×P1 of bi-degree 2,
which has arithmetic genus 1. The geometric genus is 1 in the nonsingular case
and 0 if C has a double point.

If C1 = P1 and C2 is elliptic, then the numerical class group is generated by
the two fibers F1

∼= C2 and F2
∼= C1 of the two projections. The class of C is

2F1 + 2F2, and the canonical class is −2F2. Hence the arithmetic genus of C is
C(C+K)

2 + 1 = 2(F1 + F2)F1 + 1 = 3.
If C1 and C2 are elliptic, then the canonical class of C1×C2 is zero. If F1, F2

are fibers of the projections, then F1C = F2C = 2 and (F1 + F2)2 = 2. By the
Hodge index theorem, (C − 2F1 − 2F2)2 ≤ 0, which is equivalent to C2 ≤ 8.

Hence the arithmetic genus of C is at most C2

2 + 1 = 5.

Lemma 4. If l1,2,3 = 4, then g(K) ≤ 5.

Proof. Let C1, C2 ⊂ (P1)3 be the projections of K to (t1, t2, t3) and (t4, t5, t6),
respectively. Let p1 : K → C1 and p2 : K → C2 be the projection maps. The
coupler curve C3,6 is a common image of C1 and C2, by the two sides of the
closure equation

(t1 − h1)(t2 − h2)(t3 − h3) ≡ (t6 − h6)(t5 − h5)(t4 − h4),

where we write ≡ for equality in the projective sense, modulo scalar multipli-
cation. Let f1 : C1 → C3,6 and f2 : C2 → C3,6 be these two maps. Then K is a
component of the pullback of f1, f2. We distinguish several cases.

Case 1: l6,5,4 = 4. Then C3,6 is the intersection of two linear subspaces, hence
a line by the mobility 1 assumption. One can introduce an additional joint,
rotational or translational, between links o3 and o6, and the linkage decomposes
into two 4-bar linkages which are planar or spherical. The configuration curves of
these two linkages are isomorphic to C1 and C2. The maps f1, f2 are restrictions
of the 2:1 parametrizations of X1,2,3 and X6,5,4, hence they are either 2:1 or
birational to the line C3,6. Therefore p1 and p2 are also either 2:1 or birational.
The configuration curve of a planar or spherical 4-bar linkage is the intersection
curve of two quadrics (see [8, Chapter 11, § 8] for the planar and [9, § 21] for
the spherical case). Hence its genus is at most 1. By Lemma 3, g(K) ≤ 5.

Case 2: l6,5,4 = 6. Then X6,5,4 is an intersection of quadrics in a 5-space and
X1,2,3 is a linear 3-space contained in the Study quadric. The intersection of
both linear spaces is either a line or a plane, because the vector space L6,5,4 does
not contain any 4-dimensional subalgebras. Hence the intersection C3,6 is either
a line or a plane conic. If C3,6 is a line, then we have a similar situation as before:
the linkage decomposes into two 4-bar linkages, one planar or spherical and the
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second being a Bennett linkage. In any Bennett linkage, the maps from K to P1

parametrizing the 4 rotations are isomorphisms. Therefore K is isomorphic to
the configuration curve of the planar or spherical component, hence g(K) ≤ 1.
If C3,6 is a plane conic, then we decompose it into two rotational linear motions
with coplanar axes. These two axes form together with h3, h4, h5 a closed 5R
linkage, which is known as the Goldberg 5R linkage (see [10]). Its configuration
curve is rational, more precisely the coupling map to the plane conic is an
isomorphism (see [3]). Hence K is isomorphic to C1. Now f1 : C1 → C3,6

has 8 branching points (counted with multiplicity), namely the intersections of
C3,6 with the branching surface. By the Hurwitz genus formula, it follows that
g(K) = 3; the genus may drop in case of singularities.

Case 3: l6,5,4 = 8. Then C3,6 is a curve in a Segre embedding of (P1)3 in P7

cut out by four hyperplane sections. This is only possible if C3,6 is a twisted
cubic. Then the lines h4, h5, h6 could be re-covered from C3,6 by factoring
the cubic motion parametrized by C3,6 described in [11]. On the other hand,
C3,6 is either a planar or spherical motion, hence the whole linkage is either
planar or spherical, and this contradicts the mobility 1 assumption, as planar
and spherical 6R linkages have mobility 3. So this case is impossible.

Remark 1. If g(K) ≥ 4, then we are in Case 1, and the linkage is a com-
posite of two planar or spherical 4-bar linkages with one common joint, which
is removed from the 6-loop. The most general linkage of this type is Hooke’s
linkage [12], using two spherical linkages. The genus of its configuration curve
is generically 5, but it may drop in the presence of singularities. If we take
two planar RRRP linkages and remove the common translational joint, then we
obtain the Sarrus linkage [13] with two triples of parallel consecutive axes. The
bond diagrams of both linkages can be seen in Figure 2(a).

Lemma 5. If l1,2,3 = l6,5,4 = 6, then g(K) ≤ 5.

Proof. Let V := L1,2,3 ∩ L6,5,4. Then 4 ≤ dim(V ) ≤ 5. The dim(V ) = 6
case is not possible by Lemma 6 in [3]. If dim(V ) = 4, then C6,3 is embedded
into a three dimensional projective space P3. The coupler varieties are defined
by quadrics in P5, therefore the ideal of C6,3 is generated by linear forms and
quadrics, and so its genus is at most 1. The coupler map f6,3 is birational,
therefore g(K) ≤ 1. So we may assume dim(V ) = 5.

By Theorem 3, the varieties X1,2,3 and X6,5,4 are complete intersections of
two quadrics. We may assume in each case that one of the defining equations is
the equation of the Study quadric. Then the coupler curve C6,3 = X1,2,3∩X6,5,4

is defined by three quadratic equations and the linear forms defining V . It
follows that C6,3 is a complete intersection of three quadrics in P4, which implies
g(K) ≤ 5, with equality in the case that there are no singularities.

Remark 2. In [14], Dietmaier found a new linkage by a computer-supported
numerical search. It turns out, by comparing the geometric parameters, that his
family is exactly the family of linkages with l1,2,3 = l4,5,6 = 6 and dim(L1,2,3 ∩
L6,5,4) = 5. See Figure 2(b) for the bond diagram of the Dietmaier linkage.
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Figure 2: Bond diagrams for Hooke’s double spherical linkage (a), Dietmaier’s linkage (b),
Wohlhart’s partially symmetric linkage (c), and Bricard’s orthogonal linkage (d).

Lemma 6. If l1,2,3 = 6 and l6,5,4 = 8, then g(K) ≤ 3.

Proof. If Y := X6,5,4∩L1,2,3 has dimension 1, then its Betti table coincides with
the Betti table of X6,5,4 and it follows that Y is a union of curves with genus
at most 1 (the genus 1 case occurs only if Y is irreducible). Since C6,3 ⊆ Y , it
follows that g(C6,3) ≤ 1, and by birationality of f6,3 we get g(K) ≤ 1.

Assume Y is a surface. The preimage Z of Y under the parametrization
p : (P1)3 → X6,5,4 is defined by two equations of tri-degree (1, 1, 1), and because
Y is a surface, the two equations must have a common divisor F which defines
Z. Up to permutation of coordinates, the tri-degree of F is either (1, 0, 0) or
(1, 1, 0). In the first case, one of the angles would be constant throughout the
motion. Hence the 6R linkage is actually a 5R linkage with an extra immobile
axis somewhere; then g(K) = 0 by the classification of 5R linkages (see [3] )
(if one does not want to exclude this degenerate case). In the second case, we
consider the preimage C ′ of C6,3 under p. It is defined by F and the pullback
of the quadric equations which defines X1,2,3. Hence C ′ is a component of
the complete intersection of two equations, with tri-degree (1, 1, 0) and (2, 2, 2).
Using the first equation, we can express the first variable by the second, and
so we get an isomorphic image of C ′ in (P1)2 of bi-degree (4, 2), which has
arithmetic genus 3. But p is is an isomorphism by Theorem 3, hence g(C6,3) ≤ 3
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and g(K) ≤ 3.

Remark 3. An example of a linkage where Y is a surface is Wohlhart’s partially
symmetric linkage [15] (see Figure 2(c) for the bond diagram). We do not know
if there exist also other linkages with l1,2,3 = 6 and l6,5,4 = 8 and g(K) = 3.

Lemma 7. If li,i+1,i+2 = 8 for i = 1, . . . , 6, then g(K) ≤ 5.

Proof. By Theorem 2, all bonds connect opposite joints: the bond diagram
consists of b1 connections between h1 and h4, b2 connections between h2 and
h5, and b3 connections between h3 and h6. By Theorem 1, the degree of f6,1
and the degree of f3,4 are both equal to b1. Note that f6,1 and f3,4 are the
projections from K to the first and to the fourth coordinate, respectively, up to
isomorphic parameterization of the line describing rotations around h1 and h4,
respectively. Similarily, the projections to t2, t5, t3, t6 have degree b2, b2, b3, b3.

Let b+1 be the number of pairs of complex conjugate bonds connecting h1
and h4 such that t1 = t4 and b−1 be the number of pairs such that t1 = −t4
(recall that t21 = t24 = −1). The numbers b+2 , b

−
2 , b

+
3 , b
−
3 are defined analogously.

By Lemma 2, we have b+1 , . . . , b
−
3 ≤ 2.

We consider the the projection q1,4 : K → (P1)2, (t1, . . . , t6) 7→ (t1, t4). The
image of this curve has bi-degree (r1, r1), with r1 deg(q1,4) = b1. The preimage
of (±i,±i) consists entirely of bonds; moreover, if one of the coordinates of a
point on C1,4 is equal to ±i, then it must already be a bond. If, say, b+1 = b+2 = 2,
and q1,4 is birational, then +i is a branching point for both projections, hence it
must be a double point. If q1,4 is not birational, then it is a 2:1 map, because the
preimage of any of the 4 points (±i,±i) is at most 2. In this case, the numbers
b+1 and b−1 are either 0 or 2, and the bi-degree of C1,4 is (1, 1) or (2, 2). It follows
that, in the 2:1 case, the curve C1,4 has genus 0 or 1. We now have to sort out
several cases.

Case 1: the three maps q1,4, q2,5 and q3,6 are 2:1 maps. It is not possible that
all three maps factor through the same 2:1 quotient, because K is contained in
the product C1,4×C2,5×C3,6. Assume, without loss of generality, that q1,4 and
q2,5 do not factor by the same 2:1 quotient. Then (q1,4, q2,5) : K → C1,4 × C2,5

is birational. By Lemma 3, the image has genus at most five, and therefore
g(K) ≤ 5.

For the remaining cases, we may assume that q1,4 is birational.
Case 2: b1 = 3. Then the arithmetic genus of C1,4 is (b1 − 1)2 = 4. Since

b+1 + b−1 = 3, at least one of the two numbers is equal to two; assume, without
loss of generality, that b+1 = 2 and b−1 = 1. Then (+i,+i) and (−i,−i) are double
points of C1,4, and therefore g(K) ≤ 4− 2 = 2.

Case 3: b1 ≤ 2. Then the arithmetic genus of C1,4 is (b1 − 1)2 ≤ 1.
Case 4: b1 = 4, hence b+1 = b−1 = 2. Then the arithmetic genus of C1,4 is

(b1 − 1)2 = 9, and all four points (±i,±i) are double points. Then g(C1,4) ≤
9− 4 = 5, and therefore g(K) ≤ 5.

Corollary 1. The maximal genus 5 is reached in Case 1 when all C1,4, C2,5,
and C3,6 are elliptic and have bi-degree (2, 2), and in Case 3; in both cases, we
have b1 = b2 = b3 = 4.
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As a consequence of Lemma 4, Lemma 5, Lemma 6, and Lemma 7 above,
we finally obtain our bound for the genus.

Theorem 4. The genus of the configuration curve of a closed 6R linkage is at
most 5.

By re-examining the proof of Lemma 7 more closely, we can prove the fol-
lowing theorem which will be useful later for classifying linkages with a genus 5
configuration curve.

Theorem 5. If the bond diagram is different from the diagrams Figure 2(a),
(b), and (d), then g(K) ≤ 3.

Proof. In view of Remark 1, Lemma 6, and the proofs of Lemmas 7 and 5, we
just need to consider the case where li,i+1,i+2 = 8 for i = 1, . . . , 6. Assume
indirectly that b1 < 4 (using the notation as in the proof of Lemma 7). If q1,4
is birational, then it follows g(K) ≤ 3, hence we may assume that q1,4 is a 2:1
map. Hence b1 = 2 and C1,4 is a curve of bi-degree (1, 1), which is rational.
Consequently K is hyperelliptic (or g(K) ≤ 1 and the proof is finished).

If the other two maps q2,5, q3,6 are also 2:1 maps, then we have a 2:1 map
from K to a rational curve and another 2:1 map to a curve of genus at most 1;
by Lemma 3, we obtain g(K) ≤ 3.

So we may assume there is another map, say q2,5 : K → C2,5 ⊂ (P1)2, which
is birational. Its image has then bi-degree (b2, b2), and if b2 ≤ 3 then we again
get g(K) ≤ 3. So we assume b2 = 4. Then C2,5 has bi-degree (4, 4) and 4 double
points (±i,±i). The canonical map of C1,4 is defined by the polynomials of bi-
degree (2, 2) passing to all m-fold singular points with order m−1. If there is at
most one double point, then it would just pass to the 4 double points (±i,±i)
and maybe one additional double point, but this map maps (P1)2 birational
to a rational surface, and this contradicts to the fact that C1,4 is hyperelliptic,
because the canonical map of a hyperelliptic curve is 2:1. Hence there must be
at least two more double points or a triple point on C2,5, and so g(K) ≤ 3.

Remark 4. If the configuration curve has more than one one-dimensional com-
ponent, then one can define bonds for the individual components. These bonds
add up to a diagram which satisfies the same conditions we just proved for bond
diagrams of irreducible configuration curves. We conclude that the genus of any
component is at most 3 in a linkage with more than one component.

5. Quad Polynomials

In this section, we recall a technique to derive algebraic equations on the
parameters of a linkage from the existence of bonds connecting opposite edges,
as introduced in [5].

Let L = (h1, . . . , h6) be a linkage, and let β = (t1, . . . , t6) be a bond con-
necting h1 and h4. We assume that l1,2,3 = l6,5,4 = 8, and we fix t1 and t4 (e.g.
t1 = t4 = +i). Let G ⊂ P7 be the line corresponding to the two-dimensional
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intersection of the left annihilator of (t4 − h4) and the right ideal (t1 − h1)DHC
(see Lemma 1). The intersection of G and X1,2,3 can be computed by solving
the vector-valued equation (i− h1)(t2 − h2)(t3 − h3)(i− h4) = 0 for t2, t3. Geo-
metrically, this is the intersection of a quadric surface with the linear subspace
{x | (t1 − h1)x(t4 − h4) = 0}. By Lemma 1, this subspace has codimension 2.
So the intersection is either G or zero-dimensional of degree 2. We can exclude
the first case, because the lines on X1,2,3 appear in three well-known families
(two of the three parameters being constant), and none of these families may
contain G. Hence there is a quadric univariate polynomial parametrizing the
intersection of G and X1,2,3. Similarily, there is another univariate quadric poly-
nomial parametrizing the intersection of G and X6,5,4. The number of bonds
connecting h1 and h4 is then bound above by the degree of the greatest common
divisor of these two polynomials.

We describe this idea more concretely. Let h1, h2, h3, h4 be lines such that
l1,2,3 = 8. We define the quad polynomial Qh1,h2,h3,h4

∈ C[x] as the unique
normed generator of the elimination ideal C[x] ∩ I, where I ⊂ C[x, y, t2, t3] is
the ideal generated by the coordinates of (t1−h1)(t2−h2)(t3−h3)(t4−h4) and
of (t1 − h1)(t2 − h2)(t3 − h3) − y(1 + xε)(+i − h1)(+i + h4). (Here we assume
that h1 and h4 are not parallel, which implies that (+i−h1)(+i +h4) generates
G as a D-module; in the special case when h1 and h4 are parallel, we have to
choose a different generator.)

In the following, we frequently write a ≡ b for equality modulo multiplication
by a nonzero complex scalar (i.e. projective equality, or both sides equal to zero).

Remark 5. The degree of the quad polynomial is 2 unless there is a common
intersection point of the coupling variety X1,2,3, the line G, and the linear 3-
space consisting of all multiples of ε. A closer analysis shows that the existence
of such an intersection point is equivalent to either h1 being parallel to h2 or h3
being parallel to h4.

Theorem 6. The number of bonds connecting h1 and h4 with t1 = +i and
t4 = +i, counted with multiplicity, is less than or equal to the degree of the
greatest common divisor of Qh1,h2,h3,h4 and Qh4,h5,h6,h1 .

The number of bonds connecting h1 and h4 with t1 = +i and t4 = −i, counted
with multiplicity, is less than equal to the degree of the greatest common divisor
of Qh1,h2,h3,−h4

and Q−h4,h5,h6,h1
.

Proof. Let β = (+i, t2, t3,+i, t5, t6) be a bond connecting h1 and h4. Then
there exists a z ∈ C such that f63(β) ≡ (1 + zε)(+i− h1)(+i + h4) in P7, and so
Qh1,h2,h3,h4(z) = 0. The image f3,6(β) in X4,5,6 is the quaternion conjugate of
f63(β), which is equal to (1 + zε)(+i− h4)(+i + h1). Hence Qh4,h5,h6,h1(z) = 0.
So a bond gives rise to a common root of Qh1,h2,h3,h4

and Qh4,h5,h6,h1
. Also, a

bond with connection number two give rise to a common double root.
The second statement can be reduced to the first by replacing h4 by its

negative.

Remark 6. Of course there is an analogous statement for bonds with t1 = −i.
However, we do not need these, because these bonds are complex conjugate to
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bonds with t1 = +i. Indeed, it is straightforward to show that Q−h1,h2,h3,−h4 is
the complex conjugate of Qh1,h2,h3,h4 and Q−h1,h2,h3,h4 is the complex conjugate
of Qh1,h2,h3,−h4

. If we replace h2 or h3 by its negative, then the quad polynomial
remains the same.

Remark 7. The argument of the proof of Theorem 6 can be partially reversed:
a common root of the quad polynomials Qh1,h2,h3,h4 and Qh4,h5,h6,h1 implies a
common point of X1,2,3 and X6,5,4 with norm zero. Its preimage α ∈ (P1)6

satisfies the equation (t1−h1) . . . (t6−h6) = 0. But α is not necessarily a bond,
because it also could be an isolated intersection point of X1,2,3 and X6,5,4, and
then it is not an element in the Zariski closure of K.

When the linkage moves, then the position of the lines change, and therefore
also the quad polynomial changes. On the other hand, it is possible to describe
a linkage by its Denavit–Hartenberg parameters (see [6]). For i = 1, . . . , 6, φi
is defined as the angle of the direction vectors of the directed lines hi and hi+1.
Since this angle is determined up to sign, we require 0 ≤ φi < π. We also set

ci := cos(φ) and wi = cot(φi

2 ) = cos(φi)+1
sin(φi)

.

For i = 1, . . . , 6, di is defined as the orthogonal distance of the lines hi and
hi+1. The sign of di is not well-defined (it would depend on an orientation of the
common normal, which we do not like to choose); we will discuss the ambiguity
when it arises.

If the lines hi, hi+1 are not parallel, then we define the Bennett ratios as
bi := di

sin(φi)
. (We mean no conflict with the bond number introduced in the

Proof of Lemma 8; actually, we will not use these bond numbers from now on.)
The sign of these numbers is well-defined: if the scalar part of hihi+1 is written
as u+ vε ∈ D, then ci = −u and bi = −v

1−u2 .
If the lines hi, hi+1 are not parallel and hi, hi−1 are not parallel, then si

is defined as the distance of the intersections of hi and the common normals
of hi and hi±1 (this parameters are called offsets). The sign of the offset is
well-defined, because the two points lie on an oriented line induced by hi.

It is well-known that the invariant parameters c1, . . . , c6, b1, . . . , b6, s1, . . . , s6
form a complete system of invariants for all closed 6R linkages without adja-
cent parallel lines. In other words, if two such linkages share all parameters,
then there is a collection of rotations in the configuration of one of them that
transform it into the second. An extension to linkages with adjacent parallel
lines is also well-known, but more technical. In this paper, we will assume from
now on that there are no parallel adjacent lines. (As a consequence, the quad
polynomials are always quadratic.)

Changing the orientation of hi has the following effect on the parameters:
ci, bi, ci−1, bi−1, si are multiplied by −1, and all other parameters stay the same.

Remark 8. The condition l1,2,3 = 4 is equivalent to (b1 = b2 = 0 and s2 = 0),
which is equivalent to the statement that the lines h1, h2, h3 meet in a common
point. (If we had not exluded adjacent parallel lines, then c21 = c22 = 1 would be
a second possibility.)
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The condition l1,2,3 = 6 is equivalent to (b21 = b22 6= 0 and s2 = 0) (see [3],
Theorem 1). Indeed, (b21 = b22 and s2 = 0) is Bennett’s characterization [16] of
three skew lines for the existence of a fourth line forming a Bennett 4R linkage.
This is the reason why the numbers b1, . . . , b6 are called “Bennett ratios”.

It is well-known that the closure equation can be expressed in terms of the
Denavit-Hartenberg parameters:

(t1 − i)g1(t2 − i)g2 · · · (t6 − i)g6 ∈ R∗, (4)

where

gi =
(

1− si
2
εi
)

(wi − k)

(
1− di

2
εk

)
, (5)

for i = 1, . . . , 6. If one compares with (Equation 1), one recognizes constant
middle factors g1, . . . , g6 that correspond to changes of coordinate systems. Each
link has an own coordinate systems where one of the axis is equal to the first
coordinate axis.

It is not difficult to adapt the theory of bonds and quad polynomials to
this formulation by inserting the middle factors at their proper places. For
instance, the invariant quad polynomial Q+

1 is the unique normed generator of
the elimination ideal C[x] ∩ I, where I ⊂ C[x, y, t2, t3] is the ideal generated by
the coordinates of (t1 − i)g1(t2 − i)g2(t3 − i)g3(t4 − h4) and of (t1 − i)g1(t2 −
i)g2(t3 − i)− y(1 + xε)(j + ik). Using the computer algebra system Maple and
resultants for eliminating t1 and t2, we obtain

Q+
1 (x) =

(
x+

b3c3 − b1c1
2

− s1
2

i

)2

+

i

2
(b1s2 + b3s3 + s2b3c2 + s3b1c2)−

b1b3c2 − s2s3c2
2

+
s22 + s23 − b21 + b22 − b23 − b22c22

4
.

For i = 2, . . . , 6, we define the quad polynomial Q+
i (x) by a cyclic shift of

indices that shifts 1 to i. Finally, we define Q−i (x) by replacing the parameters
c1, . . . , c6, b1, . . . , b6 and s2, s4, s6 by their negatives, and leaving s1, s3, s5 as
they are. For instance,

Q−1 (x) =

(
x+

b3c3 − b1c1
2

− s1
2

i

)2

+

i

2
(b1s2 − b3s3 − s2b3c2 + s3b1c2)−

−b1b3c2 − s2s3c2
2

+
s22 + s23 − b21 + b22 − b23 − b22c22

4
.

The full computation can be downloaded for checking from http://people.

ricam.oeaw.ac.at/z.li/softwares/quadpolynomials.html.
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The proof of Theorem 6 is still valid with middle factors inserted. Hence
we get the following formulation of Theorem 6 in terms of Denavit/Hartenberg
parameters.

Theorem 7. Let k ∈ {1, . . . , 6}. The number of bonds connecting hk and hk+3

with tk = +i and tk+3 = +i, counted with multiplicity, is less than or equal to the
degree of the greatest common divisor of Q+

k and Q+
k+3. Similarily, the number

of bonds connecting hk and hk+3 with tk = +i and tk+3 = −i, counted with
multiplicity, is less than or equal to the degree of the greatest common divisor
of Q−k and Q−k+3.

Using Theorem 7, we can formulate a necessary condition for the existence
of a bond connecting h1 and h4: either the resultant of Q+

1 and Q+
4 or the

resultant of Q−1 and Q−4 has to vanish. Both resultants can be expressed as
polynomials in b1, . . . , s6, but this polynomial turns out to be relatively compli-
cated. Fortunately one obtains an easier system of equations when the maximal
number of bonds is assumed.

6. Linkages with Maximal Genus

In this section we give a classification of all closed 6R linkages with a con-
figuration curve of genus at least four that do not have links with parallel joint
axes, in terms of their Denavit–Hartenberg parameters. It turns out there are
four irreducible families; two of them are well-known, the other two are new.

As in the previous section, we use the angle cosines c1, . . . , c6, the Bennett
ratios b1, . . . , b6 and the offsets s1, . . . , s6. In addition, we also use the f-values
fk = ckbk, k = 1, . . . , 6; this leads to shorter formulas.

Let L be a linkage such that no adjacent axes are parallel, and assume that
the genus of its configuration curve at least four. By Theorem 5, its bond
diagram is Figure 2(a), (b), or (d). Cases (a) and (b) are well-known and have
been described in the Lemmas 4 and 5: these are the Hooke linkage and the
Dietmaier linkage, respectively.

Remark 9. Just for the sake of completeness, here is the description in terms
of the Denavit–Hartenberg parameters (see [14]).

Hooke linkage: b1 = b2 = b4 = b5 = s2 = s5 = 0, d23 + s23 + s24 − 2c3s2s4 =
d26 + s22 + s25 − 2c6s1s5.

Dietmaier linkage: b1 = b2, b4 = b5, b3 = b6, c3 = c6, f1 + f2 = f4 + f5, s1 =
s3, s4 = s6, s2 = s5 = 0 up to orientation of the axes.

From now on, we assume that lk,k+1,k+2 = 8 for k = 1, . . . , 6; consequently,
the bond diagram is Figure 2(d). The number of bonds is maximal, for k =
1, 2, 3, and for any choice of tk, tk+3 in {+i,−i}, there exist 2 bonds connecting
hk and hk+3. By Theorem 7, we get the following equalities of polynomials in
C[x]:

Q+
1 = Q+

4 , Q
+
2 = Q+

5 , Q
+
3 = Q+

6 , Q
−
1 = Q−4 , Q

−
2 = Q−5 , Q

−
3 = Q−6 . (6)
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Each equality of polynomials gives rise to four scalar equations, namely the real
and imaginary part of the linear and the constant coefficient.

Lemma 8. The zero set of the 24 equations above is the union of two irreducible
components. For both, we have s1 = · · · = s6 = 0 and the three equations

b1c2b3 = b4c5b6, b2c3b4 = b5c6b1, b3c4b5 = b6c1b2. (7)

The two components are

1. f1 = f4, f2 = f5, f3 = f6, b1b3b5 = b2b4b6,
b21 + b23 + b25 = b22 + b24 + b26

2. f1 = f3 = f5, f2 = f4 = f6, b1b3b5f2 = b2b4b6f1,
b21 + b23 + b25 + f22 = b22 + b24 + b26 + f21 .

If no Bennett ratio is zero, then the three equations (7) are redundant.

Proof. By comparing the imaginary parts of the linear coefficients, it follows
immediately that s1 = · · · = s6 = 0. For the simplified system, we obtained the
decomposition above by Gröbner basis computation using the computer algebra
system Maple.

Theorem 8. There are two irreducible families of 6R linkages with coupling
dimensions 8 such that the configuration curve has genus 5 generically. They
are characterized by cases 1 and 2 in Lemma 8.

Proof. The validity of the equations (6) implies the existence of 24 points in the
intersection of X1,2,3 and X6,5,4, by Remark 7. Intersection theory predicts an
intersection of only 16 points (see [7, Section 11.5.1]), therefore the intersection
is infinite and the linkage moves.

Since the genus is a lower semicontinuous function in a family of curves,
and 5 is the largest possible value, it suffices to exhibit a single example with
a configuration curve of genus 5 for each of the two families in order to prove
that the genus is 5 in the generic case. Here is an example that works for both,
because it is in the intersection of the two families:

b1 = 0, b2 = 40, b3 = 32, b4 = 0, b5 = 25, b6 = 7, c1 = · · · = c6 = 0.

Remark 10. A special case of the second family is Bricard’s orthogonal linkage
(see [17]). It can be characterized by the condition s1 = · · · = s6 = c1 = · · · =
c6 = 0 and b21 + b23 + b25 = b22 + b24 + b26. The example in the proof of Theorem 7 is
actually an instance of Bricard’s orthogonal linkage. Therefore we can conclude
that the genus of the configuration curve of Bricard’s orthogonal linkage is 5
generically.

Remark 11. The linkages with a configuration curve of genus 4 are contained
in the 4 families described in this section as special cases. A concrete example
is the Bricard orthogonal linkage with (b1, . . . , b6) = (4, 3, 5, 7, 9, 8).
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