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Abstract

In this paper we present the formal, computer-supported verification of a functional
implementation of Buchberger’s critical-pair/completion algorithm for computing Gröbner
bases in reduction rings. We describe how the algorithm can be implemented and verified
within one single software system, which in our case is the Theorema system.

In contrast to existing formal correctness proofs of Buchberger’s algorithm in other sys-
tems, e. g. Coq and ACL2, our work is not confined to the classical setting of polynomial
rings over fields, but considers the much more general setting of reduction rings; this, natu-
rally, makes the algorithm more complicated and the verification more difficult.

The correctness proof is essentially based on some non-trivial results from the theory
of reduction rings, which we formalized and formally proved as well. This formalization
already consists of more than 800 interactively proved lemmas and theorems, making the
elaboration an extensive example of higher-order theory exploration in Theorema.

Keywords: Buchberger’s algorithm, Gröbner bases, reduction rings, Theorema

1 Introduction

Buchberger’s algorithm was first introduced in [1] for computing Gröbner bases of ideals in
polynomial rings over fields. Later, this setting was generalized to so-called reduction rings
[3, 10], which are essentially unital commutative rings, not necessarily free of zero divisors and
not necessarily possessing any polynomial structure. The algorithm the present investigations are
concerned with is a variant of Buchberger’s original critical-pair/completion algorithm adapted
to the reduction-ring setting. It should not come as a surprise that the increased generality of
the underlying domain makes the algorithm slightly more complicated, compared to the case of
polynomials over fields. The main differences will be explained in Section 2.

The theory of Gröbner bases, and in particular Buchberger’s algorithm, has already undergone
formal treatment of various kinds. For instance, the algorithm was proved correct, e. g., in Coq
[11] and ACL2 [9]. A formal analysis of its complexity in some special case was carried out by
the author of this paper in [8], and last but not least, the algorithm could even be synthesized
automatically from its specification in [6]. However, all of this was done only in the classical
setting1, and not in the far more general setting of reduction rings. The computational aspect of
reduction rings, without formal proofs and verification of any kind, was considered in [4].

∗This research was funded by the Austrian Science Fund (FWF): grant no. W1214-N15, project DK1
1In this paper, the phrase “classical setting” always refers to the case of polynomials over fields.
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The software system used both for implementing the algorithm, in a functional-programming
style involving pattern-matching and recursion, as well as verifying it, is the Theorema system
[5]. Theorema is a mathematical assistant system for all phases of theory exploration: intro-
ducing new notions, designing/verifying/executing algorithms, and creating nicely structured
documents.

The rest of the document is structured as follows: Section 2 first defines the most important
notions and then presents the algorithm in question. Section 3 outlines the main ideas behind
the computer-supported formal verification of the algorithm by means of interactive theorem
proving in Theorema. Section 4 puts the work described here in a broader context, reporting
on the underlying formal treatment of all of reduction ring theory in Theorema; readers only
interested in Buchberger’s algorithm may skip this section. Finally, Section 5 summarizes the
content of this paper and hints on possible extensions and future work.

2 The Algorithm

We now outline the algorithm under consideration. For this, let in the remainder of this paper
R be a reduction ring, i. e. a unital commutative ring, additionally endowed with a partial
Noetherian ordering � (among other things, which go beyond the frame of this paper). Before
we can state the algorithm, we need to define the concepts of reduction and Gröbner basis:

Definition 1. Let C ⊆ R and a, b ∈ R. Then a reduces to b modulo C, written a →C b, iff
b = a − m c for some c ∈ C and m ∈ R, and in addition b ≺ a. →∗

C and ↔∗
C denote the

reflexive-transitive and the reflexive-symmetric-transitive closure of →C , respectively.
C is called a Gröbner basis iff →C is confluent.

Algorithm 1 is Buchberger’s critical-pair/completion algorithm in reduction rings, given in
a functional-programming style with pattern-matching and recursion, and following precisely
its implementation in Theorema this paper is concerned with. Sticking to Theorema notation,
function application is denoted by square brackets, tuples are denoted by angle brackets, the
length of a tuple T is denoted by |T |, and the i-th element of T by Ti. Variables suffixed with
three dots are so-called sequence variables which may be instantiated by sequences of terms of
any length (including 0).

As can be seen, function GB only initiates the recursion by calling GBAux with suitable
arguments. GBAux, in contrast, is the main function, defined recursively according to the three
equations (2) (base case), (3) and (4). Please note that termination of GBAux is by no means
obvious, since its second argument, which eventually has to become the empty tuple in order for
the function to terminate, may be enlarged by function update in the second case of (4).

Algorithm 1 Buchberger’s algorithm in reduction rings

GB[C] := GBAux[C, pairs[|C|], 1, 1, 〈〉] (1)

GBAux[C, 〈〉, i, j, 〈〉] := C (2)

GBAux[C, 〈〈k, l〉, r . . .〉, i, j, 〈〉] := GBAux[C, 〈r . . .〉, k, l, cp[Ck, Cl]] (3)

GBAux[C, P, i, j, 〈〈b, b〉, t . . .〉] := (4)

let
h=cpd[b,b,i,j,C]

{

GBAux[C, P, i, j, 〈t . . .〉] ⇐ h = 0
GBAux[app[C, h], update[P, |C| + 1], i, j, 〈t . . .〉] ⇐ h 6= 0
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The five arguments of function GBAux have the following meaning:

• The first argument, denoted by C, is the basis constructed so far, i. e. it serves as the
accumulator of the tail-recursive algorithm. As such, it is a tuple of elements of R that
is initialized by the original input-tuple in equation (1) and returned as the final result in
equation (2). Please note that the only place where it is modified is in the second case of
(4), where a new element h is added to it (function app).

• The second argument is a tuple of pairs of indices of the accumulator C. It contains precisely
those indices corresponding to pairs of elements of C that still have to be considered; hence,
it is initialized by all possible pairs of element-indices in (1), using pairs, and updated
whenever a new element is added to C in (4) using update.

• The third and fourth arguments, denoted by i and j, are the indices of the pair of elements
of C whose critical pairs are currently under investigation.

• The last argument is the tuple containing the critical pairs of Ci and Cj that have not
been considered so far. Once initialized by function cp in (3), it is simply traversed from
beginning to end without being enlarged by any new pairs.

The most important auxiliary function appearing in Algorithm 1 is function cpd in equation
(4). cpd[b, b, i, j, C] returns a ring-element h, which is constructed by first finding g, g with
b →∗

C g, b →∗
C g and both g and g irreducible modulo C, and then setting h := g − g. Note that

g and g are not unique in general, but their concrete choice is irrelevant for the correctness of
GBAux.

Please note that “let” is a Theorema-built-in binder used for abbreviating terms in expres-
sions. In equation (4) cpd[b, b, i, j, C] is abbreviated by h.

Readers familiar with the classical setting might have noticed the following three differences
between GBAux and the classical Buchberger algorithm: Firstly, not only pairs of distinct
elements Ci, Cj have to be considered, but also pairs of identical constituents; this, in particular,
implies that in reduction rings one-element sets are not automatically Gröbner bases. Secondly,
one single pair Ci, Cj may give rise to more than one critical pair; this is why cp returns a
tuple of critical pairs. Thirdly, in function cpd it is not possible to reduce the difference b − b to
normal form, even though this would be more efficient.

The algorithm as presented in this paper is not the most efficient one: as in the classical
setting there are some improvements that could be applied. For instance, the so-called chain
criterion [2] could be used to detect “useless” critical pairs, i. e. critical pairs for which h in
equality (4) will certainly be 0, without having to apply the (in general computation-intensive)
function cpd. Although the chain criterion was introduced only for the case of polynomials over
fields, it readily extends to reduction rings, too. Another possible improvement originating from
the classical setting consists of immediately auto-reducing each element of the current basis C

modulo h in the second case of equality (4); however, it is not yet clear whether employing this
improvement will always lead to correct results in the general case of arbitrary reduction rings –
this still requires further investigations.

3 The Verification

Function GB has to satisfy four requirements for being totally correct: For a given tuple C of
elements of R:

1. the function must terminate,
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2. GB[C] has to be a tuple of elements of R,

3. the ideal (over R) generated by the elements of GB[C] has to be the same as the ideal
generated by the elements of C, and

4. GB[C] has to be a Gröbner basis.

The whole verification has been carried out in Theorema, using the proving capabilities of the
system. More precisely, each of the four proof obligations, as well as a range of auxiliary lemmata
(approx. 160; see Table 1), have been proved interactively in a GUI-dialog-based manner: for this,
one first needs to initiate a proof attempt by setting up the initial “proof situation”, composed
of the formula one wants to prove (“proof goal”) and the list of assumptions one wants to use
(“knowledge base”). The system then tries to perform some simple and obvious inference steps
(e. g. proving implications by assuming their premises and proving their conclusions), until no
more of these simple inferences are possible. Then, the user is asked to decide how to continue,
i. e. which of the more advanced (and maybe “unsafe”) inferences to apply, how to apply them in
case there are several possibilities (e. g. providing suitable terms when instantiating a universally
quantified assumption), and where to continue in the proof search in case the current alternative
does not look promising. This process is iterated until a proof is found or the proof search is
aborted. Summarizing, it is really the human user who conducts the proof, but under extensive
assistance by the system, which in particular ensures that all inference steps are really correct.
In the remainder of this paper, the term “Theorema-generated proof” always refers to precisely
this type of proof.

In the following subsections we address the four proof obligations in more detail.

3.1 Termination

As mentioned already in Section 2, termination is by no means obvious. In fact, if R were not
a reduction ring, termination could not even be proved, since one of the axioms characterizing
reduction rings is needed only for guaranteeing termination of Algorithm 1. The crucial point is
that the second case of (4) can occur only finitely often: this is guaranteed by requiring that in
reduction rings there are no infinite sequences of sets D1, D2, . . . with red[Di] ⊂ red[Di+1] for all
i ≥ 1, where red[D] denotes the set of reducible elements modulo the set D. In the second case
of (4) it is easy to see that red[C] ⊂ red[app[C, h]], meaning that this may happen only finitely
many times.

Eventually, termination is proved by finding a Noetherian ordering on the set of all possible
argument-quintuples that is shown to decrease in each recursive call of the function. In fact, this
ordering is a lexicographic combination of the following two orderings:

1. “E1” is defined for subsets of R as A⊳1 B :⇔ red[B] ⊂ red[A]. This ordering is Noetherian
because of the non-existence of certain infinite sequences in reduction rings, as sketched
above.

2. “E2” is defined for arbitrary tuples as S ⊳2 T :⇔ |S| < |T |. Since the length of a tuple is
a natural number, this ordering is clearly Noetherian.

For comparing two argument-quintuples (C1, P1, i1, j1, T1) and (C2, P2, i2, j2, T2), first C1 and
C2 are compared w. r. t. E1; if they are equal, P1 and P2 are compared w. r. t. E2; if they are
equal as well, T1 and T2 are also compared w. r. t. E2 (the indices i and j do not play any role
for termination and hence are ignored in the comparison). As one can easily see, the arguments
of every recursive call of GBAux always decrease w. r. t. this lexicographic ordering, which
furthermore is Noetherian because its constituents are.
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Please note that the formal, Theorema-generated proofs of the remaining three obligations
proceed by Noetherian (or “well-founded”) induction on the set of argument-quintuples, based
on the Noetherian ordering.

3.2 Type and Ideal

The fact that GB[C] is a tuple of elements of R is obvious, since the accumulator C is only
modified by adding one new ring-element in the recursive call in the second case of (4). Apart
from that, it always remains unchanged. Furthermore, even the third requirement can be seen
to be fulfilled rather easily: The element h added to C in the second case of (4) is clearly an
R-linear combination of elements of C, and hence is contained in the ideal generated by C. This
further implies that the ideal does not change when adding h to C.

3.3 Gröbner Basis

The most important requirement is the fourth one. It describes the essential property the output
should have, namely being a Gröbner basis – that is why the function is called GB. Gröbner bases
play a very important role in computational ideal theory, since many non-trivial ideal-theoretic
questions can be answered easily as soon as Gröbner bases for the ideals in question are known.
Most importantly, ideal membership and ideal equality can simply be decided by reducing some
elements to their unique normal forms modulo the given Gröbner bases.

For proving the fourth requirement we need one of the main results of reduction ring theory,
containing a finite criterion for checking whether reduction modulo a given set, or tuple, is
confluent. This result was proved formally in Theorema.

Theorem 1 (Main Theorem of Reduction Ring Theory). Let C ⊆ R. Then reduction modulo
C is confluent iff for all c, c ∈ C (not necessarily distinct) and all minimal non-trivial common
reducibles a of c and c there exists a critical pair 〈b, b〉, with a →{c} b and a →{c} b, that can be
connected below a modulo C.

The statement of Theorem 1 is somewhat vague. For the precise definition of minimal non-
trivial common reducible we have to refer the interested reader to [3, 10] or to our recent technical
report [7]. Only note that in the classical setting the minimal non-trivial common reducible of
two polynomials p and q is precisely the least common multiple of the leading monomials of p and
q. Finally, two elements b, b ∈ R are connectible below another element a modulo C iff b ↔∗

C b

and every intermediate element in the chain of reductions is strictly smaller than a w. r. t. �.
Now we can outline how function GB can be shown to satisfy the fourth requirement: In (4),

if the element h constructed by cpd is 0 then the critical pair 〈b, b〉 can be connected (modulo
C) below the minimal non-trivial common reducible a of Ci and Cj it corresponds to; otherwise,
b and b can certainly be connected below a modulo the enlarged tuple app[C, h] (second case).
Hence, in either case the critical situation corresponding to 〈b, b〉 is resolved, and the algorithm
proceeds with the next critical pair of Ci and Cj , unless all of them have already been dealt with;
in that case, the next pair of elements of C is considered (equation (3)). Termination guarantees
that at some point all pairs of elements of C have been dealt with (even those added in (4)), such
that in the end the criterion of Theorem 1 is fulfilled and the output returned by the algorithm
is indeed a Gröbner basis.

More formally, the crucial property of GBAux is the following:

Theorem 2. For all tuples C of elements in R, all index-pair tuples P , all indices i and j, and
all critical-pair tuples M : The result G of GBAux[C, P, i, j, M ] is again a tuple of elements of R

such that all critical pairs of all Ck, Cl, for 〈k, l〉 ∈ P , can be connected below their corresponding

5



minimal non-trivial common reducibles modulo G, and the same is true also for the critical pairs
in M .

As mentioned at the end of Section 3.1, the interactively generated Theorema-proof of The-
orem 2 proceeds by Noetherian induction on the set of all input-quintuples, distinguishing four
cases based on the shape of the input arguments, according to the left-hand-sides of the three
equalities (2), (3) and (4) (where the case corresponding to (4) is split into two subcases depend-
ing on whether h = 0 or not).

The total effort for first formalizing and then verifying Algorthm 1, already knowing Theo-
rem 1, was approximately 70 working hours. As can be seen in Table 1 of the next section, the
number of formulas that had to be proved for that purpose is 165.

4 The Formal Treatment of Reduction Ring Theory

What has been presented in the previous sections of this paper actually only constitutes a
small fragment of a much larger endeavor: The formalization and formal verification of the
theory of reduction rings in Theorema. This project was started two years ago with the aim of
representing all aspects of the theory, both theoretic and algorithmic, in a unified and – most
importantly – certified way in a computer system. At the moment the whole formalization
consists of eight individual components, each being a separate Theorema notebook containing
definitions, theorems and algorithms of a particular part of reduction ring theory. Figure 1, which
is taken from [7], shows the entire theory graph with all components and their dependencies on
each other. The algorithm this paper is concerned with, as well as its correctness proof as
described in the previous section, is contained in theory GroebnerRings, whereas Theorem 1
together with its proof are contained in theory ReductionRings. For more information on the
formalization the interested reader is referred to [7]; however, note that there the correctness-
proof of Buchberger’s algorithm is still labelled as “future work”, because the proof has been
completed only after writing the report.

As can be seen from the dashed arrows in Figure 1, the formal verification of some parts
of the theory still awaits its completion: the proofs that certain basic domains, namely fields,
the integers, integer quotient rings, and polynomials represented as tuples of monomials, are
reduction rings have not been carried out yet. This is not because these proofs turned out
to be extraordinarily difficult, but rather the opposite: we do not expect any major difficulties
there and instead focused on the far more involved proofs (in ReductionRings, Polynomials and
GroebnerRings) first, just to be sure that everything works out as it is supposed to. After all, the
correctness of Buchberger’s algorithm is absolutely independent of theories Fields, Integers,
etc.

Table 1 lists the sizes of the individual components of the formalization in terms of the
numbers of formulas, the numbers of proofs, and the average and maximum proof sizes. Summing
things up one arrives at almost 1700 formulas and more than 1100 interactively-generated proofs
in the formalization, making it an extensive piece of computerized mathematics.

5 Conclusion

On the preceding pages we described the implementation and formal verification of a non-trivial
algorithm of high relevance in computational ideal theory. Although the work is of interest
on its own, it also serves as a major case study in how program verification, including the
formal development of the underlying theories, can effectively be carried out in the Theorema
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ElementaryTheories

ReductionRings

Polynomials

Fields

Integers

IntegerQuotientRings

PolyTuples

GroebnerRings

Figure 1: The structure of the formalization. An arrow from A to B denotes dependency of B on A,
in the sense that formulas from A are used in B in proofs (gray) or computations (red). Dashed arrows
denote future dependencies.

Theory Formulas Proofs Proof Size (avg./max.)
ElementaryTheories 630 390 21.9 / 137
ReductionRings 315 253 38.1 / 198
Polynomials 397 341 45.8 / 322
GroebnerRings 226 165 37.0 / 154
Fields 17 0
Integers 20 0
IntegerQuotientRings 19 0
PolyTuples 66 0

1690 1149 34.7 / 322

Table 1: Number of formulas and proofs in the formalization. The proof size refers to the number of
inference steps.

system. In addition, most of the elementary mathematical concepts formalized for the present
verification, like tuples, (lexicographic) orders and infinite sequences, can be reused for the
Theorema-verification of algorithms and programs in completely different areas in the future.

The work described in this paper also revealed a potential improvement of Theorema: Correct-
ness proofs of functional programs are typically achieved following a fixed set of steps, consisting
of finding termination orders, proving specialized induction schemas, and using these schemas
to prove that certain properties hold for the function, provided they hold for each recursive call.
At present, these steps have to be carried out manually, but it is clearly possible to automate
the process at least in some way – just as in the well-known Isabelle system [12].
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discussions about Gröbner bases and Theorema, and I also thank the anonymous referees for their
valuable comments and suggestions.
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