
A partition-of-unity dual-weighted residual approach for

multi-objective goal functional error estimation applied to

elliptic problems

Bernhard Endtmayer1 and Thomas Wick2,3

1 Institute of Computational Mathematics, JKU Linz, Altenberger Str. 69, 4040
Linz, Austria, Endtmayer.Bernhard@gmx.at

2 Centre de Mathématiques Appliquées, École Polytechnique, 91128 Palaiseau,
France, thomas.wick@polytechnique.edu

3 RICAM Linz, Altenberger Str. 69, 4040 Linz, Austria

October 5, 2016

Abstract

In this work, we design a posteriori error estimation and mesh adaptivity for multiple
goal functionals. The method of choice is based on a variational dual-weighted residual
method in which localization is achieved with a partition-of-unity. The key advantage
is that we avoid evaluation of face integrals since the strong form of the equations is
not required. For treating multiple goal functionals we employ the dual-dual (i.e., a
discrete error problem) approach and suggest an alternative way for its computation.
Our algorithmic developments are substantiated for elliptic problems in terms of four
different numerical tests that cover various types of challenges, such as singularities,
different boundary conditions as well as different types of goal functionals. Moreover,
several computations with higher-order finite elements are performed.

Keywords. finite element method; mesh adaptivity; dual-weighted residual; partition-
of-unity; multi-objective goal functionals

1 Introduction

In many physical applications the target is to compute a quantity of interest up to a certain
accuracy rather than the entire solution. Moreover, fluid flow (Navier-Stokes) and aerody-
namics flow simulations as well as multiphysics problems such as fluid-structure interaction,
fracture problems, poroelastic problems, Maxwell equations, magnetohydrodynamics are of
importance. Here, several physical phenomena interact and consequently the accurate eval-
uation of more than one goal functional might be of interest. However, before we can address
such nonlinear coupled PDEs, we need a reliable framework that is tested and validated for
a single PDE, different boundary conditions, and different types of goal functionals.

1

In this study, accurate functional evaluations are based on adaptive mesh refinement.
The method of choice is based on dual-weighted residual (DWR) a posteriori error estimation
[8, 9]. In addition to the primal problem, a dual problem needs to be solved that provides
(local) sensitivity measures with respect to an error goal functional. In the early stages,
further extensions of the DWR method have been accomplished in [24, 2, 1, 23, 22, 16, 11, 7].
Most of these studies have in common that we need the strong formulation [9] for the error
localization. A weak form with patched meshes has been proposed in [11]. One advantage
of a weak localization of the DWR technique lies in its application to multiphysics problems
because the classical localization works with strong (second-order) operators that are costly
to evaluate and additionally (often several) face integration terms need to be evaluated.

Recently, in [26], another weakly-based localization technique has been suggested. It is
straightforward to employ and easy to implement. Here (similar to [11]), partial integration
back to the strong operator is not necessary. Therefore, no face terms need to be evaluated.
Rather, solution information about neighboring cells (which is very important in particular
for low-order finite elements [13]) is gathered by employing a partition-of-unity (PU) leading
to a nodal-based error indicator representation. To realize the PU, a lowest order finite
element is sufficient. We notice that a PU for strongly localized DWR error estimation has
been previously suggested in [21].

On the other hand, Hartmann and Houston [19] and Hartmann [18] considered multiple
target functionals. However, literature on this topic is rare and there exists a few other
studies [20, 14, 28] from which [28] is quite recent. One crucial difficulty is the computational
cost not only for single goal functional evaluations with the DWR method; namely a (linear)
dual problem needs to be solved, but which additionally must deliver ‘more’ information
than the primal problem and for this reason is usually more expensive than a linear primal
problem. Of course, for nonlinear problems, solving the dual problem does only correspond
to one additional Newton solve. Thus, the cost of the dual problem becomes much less
significant.

For multiple goal functionals, say N , a naive approach would means to solve N dual
problems, which makes the method not attractive at all. Therefore, the authors of [19, 18]
considered a dual-dual problem (which is equivalent to saying a discrete error problem),
which only requires two additional solutions and therefore significantly reduces the compu-
tational cost.

Based on this approach we suggest two modifications in this work. First, we apply the
PU-DWR method to multiple target functionals. Second, we propose an idea how to decou-
ple the two additional problems (associated with the dual-dual problem) such that they can
be performed in principle in parallel. These algorithmic developments are complemented
with a series of numerical examples using the finite element method in which different chal-
lenges are addressed. In particular several higher-order finite element computations are
provided, which have not yet been shown for such problems in existing literature.

This paper is organized as follows: In Section 2 the model problem is presented as well as
the basics of DWR mesh adaptivity. Then, in Section 3, the approach for treating multiple
goal functionals is presented. Next in Section 4 various numerical examples are presented
that cover different aspects of smooth solutions, singularities, L-shaped and slit domains.
For residual-based error estimates and adaptivity in form of graded-mesh refinement for L-
shaped domains (and domains with other corners) we refer to [4]. We also consider different

2

boundary conditions of homogeneous and nonhomogeneous Dirichlet type and homogeneous
Neumann type. Moreover, different types of goal functionals are taken into account such as
point values, line integration, and domain integrals. Finally in Section 5, we recapitulate
our findings and provide a few ideas for future work.

2 The DWR method for goal functional evaluations

In this section, we first provide the problem statement and spatial discretization. Then, we
briefly review the DWR method for single goal functionals and recapitulate the partition-
of-unity approach for goal functional evaluations.

2.1 The model problem

By Ω ⊂ Rd with d = 2 we denote a domain with polygonal or polyhedral domain. On Ω,
we denote by (·, ·) the L2-inner product and by ‖ · ‖ the corresponding L2-norm. By 〈·, ·〉
we denote as usual the pairing between H−1 and H1

0 functions [15]. By Hr+1(Ω) we denote
the space of Lebesgue functions with square integrable weak derivatives up to degree r+ 1.
In particular, by V := H1

0 (Ω) we denote the space of H1(Ω) functions with trace zero on
the boundary ∂Ω. The diffusion problem for given data f ∈ L2(Ω), gD and gN is defined as

−∇ · (α∇u) = f in Ω, (1)

u = gD on ΓD, (2)

α∇u · n = gN on ΓN , (3)

where α ∈ R is the diffusion coefficient, ΓD ∩ ΓN = ∅, ΓD ∪ ΓN = ∂Ω and n is the normal
vector. The non-homogeneous Dirichlet boundary condition gD is imposed on ∂Ω in the
trace sense of a H1 function. The corresponding weak problem on the continuous level
reads:

Formulation 2.1. Find u ∈ {gD + V }:

(a∇u,∇ϕ) = 〈f, ϕ〉 ∀ϕ ∈ V,

where

〈f, ϕ〉 :=

∫
Ω
f(x)ϕ(x)dx+

∫
ΓN

gN (x)ϕ(x)dsx.

The unknown solution u ∈ V is approximated in a finite dimensional function space Vh,
which is discussed in Section 2.2.

2.2 Spatial discretization

All formulations in this work are spatially discretized with a Galerkin finite element scheme,
introducing H1 conforming discrete spaces Vh ⊂ V consisting of functions Qcr of degree r.
Specifically, we use isoparametric tensor-product finite elements. The definition of the
discrete space reads:

Vh := {vh ∈ [C(Ω)]d, vh|K ∈ [Qcr(K)]d ∀K ∈ Th, vh|∂Ω = 0}

3

on quadrilateral elements K with hanging nodes [12]. The corresponding mesh is denoted
by Th. The discretization parameter is labeled by h. For convenience of the reader, we

often denote explicitly the degree r for the spaces V
(r)
h in order to avoid misunderstanding.

The discretized version reads:

Formulation 2.2. Find uh ∈ {gD + Vh}:

a(uh, ϕh) = 〈f, ϕh〉 ∀ϕh ∈ Vh,

where
a(uh, ϕh) := (α∇uh,∇ϕh).

2.3 A brief review for single goal functionals

In the following we describe the DWR method for linear goal functionals and linear primal
problems. The aim is to compute a certain quantity of interest J(u) with a desired accuracy
at low computational cost. Possible examples are mean values, line integration or point
values:

J(u) =

∫
Ω
u dx, J(u) =

∫
Γ
∂nu dx, J(u) = u(x0, y0).

However, such a goal functional is computed with a numerical method leading to a discrete
version J(uh). Thus the key question is whether we can bound the error J(u)− J(uh). To
address this question, we assign a dual problem: Find z ∈ V :

a(ψ, z) = J(ψ) ∀ψ ∈ V.

Specifically, the dual bilinear form is defined as

a(ψ, z) = (α∇ψ,∇z).

The boundary conditions on ΓD are build into V and are of homogeneous Dirichlet type.
Existence and uniqueness of this adjoint solution follows by standard arguments. The

regularity of z ∈ V depends on the regularity of the functional J . For J ∈ H−1(Ω) it holds
z ∈ H1(Ω). Given a more regular functional like the L2-error J(ϕ) = ‖eh‖−1(eh, ϕ) with
J ∈ L2(Ω)∗, it holds z ∈ H2(Ω) on suitable domains (convex polygonal or smooth boundary
with C2-parameterization).

Inserting as special test function ψ := u− uh yields:

a(u− uh, z) = J(u− uh),

and therefore we have now a representation for the error in the goal functional.
In order to derive an error estimator, we use Galerkin orthogonality and insert the test

function ψh:
a(u− uh, z − ψh) = J(u− uh).

Since ψh is an arbitrary discrete test function, we can for example use a projection ψh := ihz:

a(u− uh, z − ihz) = J(u− uh). (4)

4

Since z is an unknown itself, we cannot yet simply evaluate the error estimator because z is
only known analytically in very special cases. Consequently in order to obtain a computable
error representation, z is approximated through a discrete function zh ∈ Vh, that is (as the
primal problem itself) obtained from

a(ψh, zh) = J(ψh) ∀ψh ∈ Vh. (5)

Then:
a(u− uh, zh − ihzh) = J(u− uh). (6)

The difficulty is that if we compute the dual problem with the same polynomial degree as
the primal problem, then zh − ihzh ≡ 0, and thus the whole error identity defined in (6)
would vanish:

J(u− uh) ≡ 0.

To overcome this point, either a global-higher order approximation (using a higher order
finite element), a solution on a finer mesh, or local higher-order approximation using a
patch-wise higher-order interpolation can be adopted [9, 7]. Clearly, the last possibility is
the cheapest. In this work, however, for simplicity, we simply used a global-higher order
finite element of degree r + 1 (in case that the primal problem has been computed with
degree r).

We finally end up with the (primal) error estimator:

a(u− uh, z
(r+1)
h − ihz

(r+1)
h) ≈ J(u− uh).

Thus, the error in the functional J(u− uh) can be expressed in terms of a residual, that is
weighted by (the local) adjoint sensitivity information z − ihz.

As quality measure we use the effectivity index Ieff :

Ieff (uh, zh) =
a(u− uh, z

(r+1)
h − ihz

(r+1)
h)

J(u)− J(uh)
→ 1 (h→ 0). (7)

For the localization of the error on each cell or each degree of freedom, we forward the
reader to the next two sections.

2.4 The classical way

We briefly recapitulate the classical way and then explain a variational technique that uses
a partition-of-unity (PU). Both techniques have in common that they start from

J(u− uh) = a(u− uh, z − ihz).

In the classical way, the error identity (4) is treated with integration by parts on every mesh
element K ∈ Th, which yields:

J(u− uh) =
∑
K∈Th

〈f +∇ · (α∇uh), z − ihz〉K +

∫
∂K

α∂nuh · (z − ihz) ds. (8)

This primal error estimator needs to be evaluated in the dual space. Here, we proceed
as follows:

5

• Prolongate the primal solution uh into the dual space;

• Next, we compute the interpolation ihz
(r+1)
h ∈ Qr w.r.t. to the primal space;

• Then, we compute z
(r+1)
h − ihz

(r+1)
h (here, ihz

(r+1)
h is prolongated to Qr+1 in order to

compute the difference);

• Evaluate the duality product 〈·, ·〉 and face terms.

Now we have all ingredients to evaluate the error estimator. Following the usual proce-
dure for residual based error estimators [29], we combine each two boundary integrals over
element edges to a normal jump and proceed with Cauchy Schwarz to get

|J(u)− J(uh)| ≤ η :=
∑
K∈Th

ρKωK , (9)

with

ρK := ‖f +∇ · (α∇uh)‖K +
1

2
h
− 1

2
K ‖[α∂nuh]‖∂K (10)

ωK := ‖z − ihz‖K + h
1
2
k ‖z − ihz‖∂K , (11)

where by [α∂nuh] we denote the jump of the uh derivative in normal direction. On the
outer Dirichlet boundary ΓD, we set [α∂nuh] = 0 and on the Neumann part we evaluate
α∂nuh = gN . The residual part ρK only contains the discrete solution uh and the problem
data.

2.5 A variational error estimator with PU localization

In this section, we recapitulate an alternative way and use a localization approach based
on the variational formulation [26]. This idea combines the simplicity of the approach
proposed in [11] (as it is given in terms of variational residuals) with a very simple structure.
Localization is based on introducing a partition of unity (PU) {ψ1, . . . , ψM} =: VPU with
dim(VPU) = M and the property

∑
ψi ≡ 1 and insert these functions into the global error

identity (4):

Proposition 2.3. For the finite element approximation of Formulation 2.1, we have the a
posteriori error estimate:

|J(u)− J(uh)| ≤ η :=

M∑
i=1

|ηi| (12)

where
ηi =

{
− a(u− uh, (z

(r+1)
h − ihz

(r+1)
h)ψi)

}
,

and more specifically for our diffusion problem:

ηi =
{
〈f, (z(r+1)

h − ihz
(r+1)
h)ψi〉 − (α∇uh,∇(z

(r+1)
h − ihz

(r+1)
h)ψi)

}
. (13)

To set-up the PU, one can simply work with lowest-order finite elements, i.e., a bilinear
function on quadrilaterals in two dimensions. Thus, as finite element space we can choose

VPU := V
(1)
h .

6

The previous error indicators ηi are node-wise contributions of the error. Mesh adap-
tivity can be carried out in two ways:

• in a node-wise fashion: if a node i is picked for refinement, all elements touching this
node will be refined.

• alternatively, one could also first assemble element wise for each K ∈ Th indicators
by summing up all indicators belonging to nodes of this element and then carry out
adaptivity in the usual element-wise way.

On adaptive meshes with hanging nodes, the evaluation of the PU indicator is straight-
forward: First, the partition of unity is assembled in (13) employing the basis functions
ψi ∈ VPU for i = 1, . . . ,M . In a second step, the contributions belonging to hanging nodes
are condensed in the usual way by distribution to the neighboring indicators. This localiza-
tion technique can be readily applied to general meshes in two and three dimensions. As it
has been already demonstrated for the similar approach (for a single goal functional) from
[11], for instance for variational inequalities in solid mechanics [27] or fluid-structure inter-
action [25], a major advantage of a weak localization is the easy application to nonlinear
coupled PDE systems, where the evaluation of strong residuals can be cumbersome, such
as for instance in fluid-structure interaction [25, 31]. Specifically, a first application of PU-
DWR to nonlinear-coupled PDE problems has been recently undertaken in [30]. Finally, we
want to comment that it is well-known that for dual-weighted residual goal-oriented adap-
tivity we have no theoretical justification for convergence and optimality of the adaptive
algorithm, but only excellent practical observations.

3 PU-DWR for multiple goal functionals

In the previous section we recapitulated the DWR method for computing a single goal
functional. Now we assume that there are N linear functionals where N ∈ N. Let J be
defined as J := {J0, . . . , JN−1}. We can use (12) for each Ji ∈ J where i ∈ {0, . . . , N − 1}
to compute the node-wise contributions of the error. But to do so we have to solve N dual
problems. Therefore we seek a method to avoid these computations. We follow the idea of
combining the functionals in J from [19, 18]. We create a linear combination of the goal
functionals to one functional J̃c where

J̃c(ψ) :=
N−1∑
i=0

wiJi(ψ) ∀ψ ∈ V, (14)

where wi ∈ R. We call J̃c the combined functional. Now we have to find out how to choose
wi. One crucial aspect is the sign of wi, because it may lead to error canceling. Furthermore
we are interested in having similar relative errors in our functional evaluations. One idea is
to choose wi as

wi :=
sign(Ji(u)− Ji(uh))ωi

|J(uh)|
, (15)

where ωi describes some self-chosen but positive weights. This choice leads to no error
canceling and also the relative errors we obtain are similar (if the weights ωi are almost

7

equal). But unfortunately we do not know Ji(u). Hence we have to find a way to get
sign(Ji(u)− Ji(uh)). To do so we consider the dual-dual problem [19, 18]:

Formulation 3.1 (Dual-dual problem). Find the error function e such that

a(e, ψ) = 〈Ruh , ψ〉 ∀ψ ∈ V, (16)

where 〈Ruh , ψ〉 := 〈f, ψ〉 − a(uh, ψ).

By solving this problem we obtain e where e = u − uh and therefore we can compute
Ji(u) − Ji(uh). The dual-dual problem provides information with respect to the error in
the goal functionals Ji(u), but it does not yield local error information that are required
for mesh refinement. Thus the solution is to solve both the dual-dual problem and a dual
problem leading to two additional problems. In summary, using this approach for multiple
goal functionals, three problems need to be solved: primal, dual, dual-dual.

For treating the dual-dual problem we again have to solve a PDE discretized by finite

elements. For this problem we have to use a discrete subspace V
(r+1)
h ⊂ V which fulfills

Vh (V
(r+1)
h because otherwise 〈Ruh , ψh〉 = 0 for all ψh ∈ Vh, which we need to avoid.

Moreover, we have to solve the primal problem to compute uh and then compute e as
solution of the dual-dual problem, so we have to solve two systems sequentially.

The dependence of the dual and dual-dual problem slightly limits the possibility to
further reduce the computational cost. Therefore, we suggest the following alternative in

case we approximate the solution in our discrete subspace V
(r+1)
h , (r ≥ 1):

Proposition 3.2. Let a : V × V → R be a bilinear form, f ∈ V ∗, where V ∗ is the dual

space of V , fulfilling the assumptions of Lax-Milgram (e.g., [15, 17]) and let uh, u
(2)
h , e

(2)
h be

the solutions of the problems, respectively: Find uh ∈ Vh, e
(2)
h , u

(2)
h ∈ V

(2)
h such that

a(uh, ψh) = 〈f, ψh〉 ∀ψh ∈ Vh, (17)

a(u
(2)
h , ψ

(2)
h) = 〈f, ψ(2)

h 〉 ∀ψ
(2)
h ∈ V

(2)
h , (18)

and
a(e

(2)
h , ψ

(2)
h) = 〈Ruh , ψ

(2)
h 〉 ∀ψ

(2)
h ∈ V

(2)
h , (19)

where,Vh ⊂ V, V
(2)
h ⊂ V and 〈Ruh , ψ

(2)
h 〉 is defined as in Formulation 3.1. Then there exists

a projection P
[V

(2)
h]

: V → V
(2)
h such that

e
(2)
h = u

(2)
h − P[V

(2)
h]

uh. (20)

Specifically, if Vh ⊆ V
(2)
h , it holds

e
(2)
h = u

(2)
h − uh. (21)

Proof. Let uh be the solution of (17), then there exists a unique fuh ∈ V ∗ such that

a(uh, ψ) = 〈fuh , ψ〉 ∀ψ ∈ V. (22)

8

If we want to approximate the solution of (22) on the finite element space V
(2)
h we obtain

the approximation uuh of uh which is given by the unique solution of the problem: Find

u
(2)
uh ∈ V

(2)
h such that

a(uuh , ψ
(2)
h) = 〈fuh , ψ

(2)
h 〉 ∀ψ

(2)
h ∈ V

(2)
h .

It can be shown that the mapping uh 7→ uuh is a projection which will be denoted by P
[V

(2)
h]

.

For this projection holds:

a(uh − P[V
(2)
h]

uh︸ ︷︷ ︸
uuh

, ψ
(2)
h) = 〈fuh , ψ

(2)
h 〉 − 〈fuh , ψ

(2)
h 〉 = 0 ∀ψ(2)

h ∈ V
(2)
h .

Now a simple calculation shows

a(e
(2)
h , ψ

(2)
h) = 〈Ruh , ψ

(2)
h 〉 = 〈f, ψ(2)

h 〉 − a(uh, ψ
(2)
h)

= a(u
(2)
h , ψ

(2)
h)− a(P

[V
(2)
h]

uh, ψ
(2)
h)

= a(u
(2)
h − P[V

(2)
h]

uh, ψ
(2)
h) ∀ψ(2)

h ∈ V
(2)
h .

With the Lax-Milgram lemma we know that there is a unique solution in V
(2)
h we can

conclude that e
(2)
h = u

(2)
h − P[V

(2)
h]

uh hence

a(e
(2)
h , ψ

(2)
h) = 〈Ruh , ψ

(2)
h 〉 = a(u

(2)
h − P[V

(2)
h]

uh, ψ
(2)
h) ∀ψ(2)

h ∈ V
(2)
h .

And this shows the first statement (20). If Vh ⊆ V
(2)
h holds then P

[V
(2)
h]

uh = uh because

uh ∈ V
(2)
h and henceforth (21) has been shown.

Remark 3.1. The assumptions of the Lax-Milgram lemma can be relaxed by any condition
which guarantees only that a(u, ψ) = 〈f, ψ〉 for all ψ ∈ V , (17), (18) and (19) have unique
solutions for all f ∈ V ∗.

Remark 3.2. Furthermore, we notice that our previous theory does hold not only for V
(1)
h ⊂

V
(r+1)
h but for general spaces which are not necessarily subspaces of V

(r+1)
h .

Corollary 3.3. From Proposition 3.2 we obtain that if we work on the spaces Vh and

V
(r+1)
h the error can be simply computed as:

e
(r+1)
h = u

(r+1)
h − uh.

In particular, the two subproblems for obtaining u
(r+1)
h and uh can be computed in parallel

without communication using the spaces Vh and V
(r+1)
h .

9

Furthermore to avoid problems with prolongation operators in programming we can
compute immediately Ji(uh) and just communicate this value. With the help of Proposition
3.2, the combined functional J̃c is approximated by Jc with

Jc(ψ) :=
N−1∑
i=0

Ji(ψ)
sign(Ji(u

(r+1)
h)− Ji(uh))ωi
|Ji(uh)|

∀ψ ∈ V, (23)

for some self-chosen but positive weights ωi ∈ R. Now we can use the PU approach for the
functional Jc in a similar way as discussed in [26], which results in

Proposition 3.4. For the finite element approximation of Formulation 2.1, and considering
N goal functionals we have the a posteriori error estimate:

|Jc(u)− Jc(uh)| ≤ η :=

M∑
i=1

|ηi| (24)

where

ηi =
{
〈f, (z(r+1)

h − ihz
(r+1)
h)ψi〉 − (α∇uh,∇(z

(r+1)
h − ihz

(r+1)
h)ψi)

}
. (25)

Specifically, the dual problem is given by: Find zh ∈ V r+1
h such that

a(ψh, zh) = Jc(ψh) ∀ψh ∈ V r+1
h ,

for which Jc has been constructed by (23).

Remark 3.3. An advantage of this approach is that we have to solve (as in [19, 18]) only 2
linear systems instead of N and furthermore we do not lose the possibility of parallelization.

Remark 3.4. If we use the same finite element space for the second primal problem and the
dual problem then we just have to assemble one matrix instead of the two system matrices
Aprimal, Adual since it holds Adual = ATprimal.

3.1 The adaptive algorithm

Let error tolerances TOLi be given for each Ji ∈ J and i ∈ {0, . . . , N − 1} where N is
the number of functionals of interest. Mesh adaptation is realized by extracting local error
indicators from the a posteriori error estimate in Proposition 3.4. To this end, we can adapt
the mesh using the following strategy:

1. Solve two primal problems: Compute the primal solutions uh and u
(r+1)
h for two

finite element spaces, respectively. This can be done completely in parallel.

2. Construct combined functional: Construct Jc as in (23)

3. Solve dual problem: Compute the dual solution z
(r+1)
h by solving the dual problem

a(ψh, zh) = Jc(ψh) on a larger FE-space than for uh.

4. Estimate:

10

• Determine the indicator ηi at each node i by (25).

• Compute the sum of all indicators η :=
∑

i ηi.

• Check, if the stopping criterion is satisfied:

|Jc(u)− Jc(uh)| ≤ η < TOLc

where TOLc := infi∈{0,...,N−1}{ωiTOLi
|Ji(uh)| }. If this criterion is satisfied, stop compu-

tation since Jc(uh) has been computed with desired accuracy. Otherwise, proceed
to the following step.

5. Mark all cells Ki that touch nodes that have values ηi above the average αη
N (where

N denotes the total number of cells of the mesh Th and α ≈ 1).

6. Refine the mesh.

7. Go back to 1.

Remark 3.5. The reason for the special choice of TOLc is to ensure that for all functionals
Ji holds that |Ji(u)− Ji(uh)| < TOLi.

Remark 3.6. Despite that we formulated our algorithm for r and r + 1, we notice that we
could also have worked with the same polynomial degree but locally using finer meshes
to obtain the second space. This is very similar to the various options that we have to
approximate the dual problem itself as described in Section 2.3.

4 Numerical tests

In this section, we consider several numerical tests to substantiate our algorithmic develop-
ments. More specifically, the algorithm was tested for the Poisson equation. Furthermore,
we used always ωi = 1 for the weights in Jc (as in (23)) and for simplicity α = 1 (as in
section 2.1) for the diffusion coefficient. In more detail, we analyze our algorithm for the
following examples:

• Example 1a,b: smooth and discontinuous right hand sides on an L-shaped domain.

• Example 2a,b: eigenvalue of the Laplacian as right hand side on the unit square.
In Example 2a, we particularly focus on whether global refinement can deliver better
results that local refinement for one functional. In Example 2b, we use again the

L-shaped domain and we are especially interested if the sign, i.e., sign(Ji(u
(r+1)
h) −

Ji(uh)), needs to be computed in every step.

• Example 3: singular right hand side f for which f 6∈ L2(Ω) but f ∈ L2−ε(Ω) for all
ε > 0 on an L-shaped domain. Here, we also perform comparisons with higher-order
finite elements.

• Example 4a,b: zero right hand side on a slit domain with non-homogeneous Dirichlet
and homogeneous Neumann conditions. In Example 4b, we focus again on higher-
order computations.

11

For all examples in this section we always consider the error in J as the relative error
|J(uh)−J(u)|
|J(uh)| . Furthermore we consider one refinement step for global refinement as refining

every single element and one refinement step for DWR as one step of algorithm 3.1. The
corresponding programming code is based on the open-source finite element package deal.II
[6, 5].

4.1 Example 1

4.1.1 Example 1a

Configuration In the first example we considered the Poisson equation on an L-shaped
domain Ω = (−1, 1)× (−1, 1) \ (−1, 0)× (−1, 0) with smooth right hand side.

−∆u(x, y) = f(x, y) ∀(x, y) ∈ Ω, (26)

u(x, y) = 0 ∀(x, y) ∈ ∂Ω, (27)

where

f(x, y) = x(8− 2x2 − 6y2 + e3y(1− 3y(4 + y) + x2(−7 + 3y(4 + 3y))). (28)

Here the exact solution u is given by

u(x, y) = x(y2 − 1)(x2 − 1)(e3y − 1). (29)

Goal functionals of interest We consider the following three goal functionals:

J0(u) := u(0.5, 0.5), J1(u) :=

∫
Ω1

u(x, y)d(x, y), J2(u) :=

∫
Γ1

∇u(x, y).n d(x, y),

where Ω1 = (−0.5, 0)× (0.5, 1) and Γ1 = {1} × (0, 1).

Details on discretization To solve the first primal problem (to obtain uh as discussed
in section 3) we used the Galerkin finite element scheme with the discrete space Vh ⊂ V .
Here r = 1, which results in the space of bilinear functions Qc1 on quadrilateral elements
with hanging nodes. For hanging nodes we refer to [12]. For the second primal problem

(to obtain u
(2)
h as discussed in section 3) and the dual problem we used the discrete space

V
(2)
h ⊂ V which is the space of Qc2 functions on the same quadrilateral elements as in Vh.

Discussion of our findings First of all we take a look at the Ieff (as in (7)) for Jc
which measures how good we estimate the true error of Jc with our error estimator. In
Figure 1 we observe that for this problem we obtain Ieff ≈ 1 which shows that we almost
approximate the real error with our error estimator.

12

Figure 1: Example 1a: Ieff for Jc vs. refine-
ment steps.

Figure 2: Example 1a: Comparison of
relative errors.

In the following, let us have a look at the errors in the goal functionals Ji. In Figure 2
we observe that the error in Jc nearly approximates the functional with the largest error.
Furthermore we recognize that the error in the other functionals behaves more inconsistent
with more than 1000 DOFs. We compare the error using local mesh refinement with the
error using global refinement for the single goal functionals.

Figure 3: Example 1a: Comparison of rela-
tive errors for different refinements for J0.

Figure 4: Example 1a: Comparison of rela-
tive errors for different refinements for J1.

The relative error for the refinement for Jc shown in Figure 3 decreases almost as well as
if we just use DWR for J0. The relative error is less than 10−5 with approximately 7× 104

DOFs (degrees of freedom) for DWR for Jc, 5 × 104 DOFs for DWR for J0 and 25 × 104

DOFs for global refinement. Therefore both refinements deliver better results than global
refinement. The same behavior also appears for the error in J1 shown in Figure 4. But the
most interesting part is the error in J2 shown in Figure 5.

From the observation in Figure 2, we deduce that Jc shows similar behavior as the
functional with the largest error. At the beginning of the algorithm we observe that we
have worse convergence for refinement with respect to Jc than for the refinement versus
J2, but later we achieve a very similar rate because the weight w2 is the dominating one.
For the error in J2 we obtain a big advantage. To get an error below 10−2 we just need
approximately 5000 DOFs instead of 5 × 104 and to get an error below 10−3 we need for
global refinement more than 106 DOFs and we just need about 5×104, so we obtain an error

13

of 10−3 instead of 10−2 for the same number of DOFs. However, the results we obtained
are not as good as when using DWR just for J2 through the effect at the beginning, but we
also get the reduction in the other functionals of interest.

Figure 5: Example 1a: Comparison of relative errors for different refinements for J2.

Finally we take a look at the refined meshes in Figures 6 - 9. The corresponding initial
mesh is displayed in Figure 14. We observe that the mesh created by refinement with
respect to Jc looks like a combination of the meshes where refinement for one functional is
used. We monitor that J2 is again the dominating part in Jc.

Figure 6: Example 1a: Mesh for DWR for J0

after 7 refinement steps.
Figure 7: Example 1a: Mesh for DWR for J1

after 7 refinement steps.

14

Figure 8: Example 1a: Mesh for DWR for J2

after 9 refinement steps.
Figure 9: Example 1a: Mesh for DWR for Jc
after 9 refinement steps.

4.1.2 Example 1b

In this part, we work with the same domain and same discretization as before, but consider
a discontinuous right hand side

f(x, y) =

{ √
|x|+

√
|y| if x2 + y2 < 1

−x2 + y else.

Here no exact solution u is known.

Goal functionals of interest We consider the following three goal functionals:

J0(u) := u(0.5, 0.5), J1(u) :=

∫
Ω2

u(x, y)d(x, y), J2(u) :=

∫
Γ2

∇u(x, y).n d(x, y), (30)

where Ω2 = (−1,−0.5) × (0, 0.5) and Γ2 = {1} × (0, 1). Since the exact solution is not
known, we approximate the exact functional values by:

• J0(u) ≈ 0.15389345606,

• J1(u) ≈ −0.012801283700,

• J2(u) ≈ −0.36864857768.

Discretization As in Example 1a.

15

Discussion of our findings The effectivity index Ieff in this case is shown in Figure 10.
It is not as close to 1 as for Example 1a. This may happen through the loss of regularity.

Figure 10: Example 1b: Ieff for Jc vs. refinement steps.

Hence we do not always get the optimal refinement. As before, the interesting part is
the error in the functionals which is analyzed in Figure 11. We detect that the decrease
of the error in Jc is again similar to the decrease of the functional with the largest error.
Hence Jc changes the behavior after the error of J2 starts to dominate. As it can been seen
in Figure 12, the refinement with respect to Jc even delivers worse results for J0 than for
global refinement at the beginning, but we get a better decrease in the error afterwards.
This raises the question whether it can happen that the refinement with respect to Jc does
deliver a worse error than global refinement with the same number of DOFs for a single
functional. This question will be answered in Example 2a. In J2 we again monitor a similar
behavior as in Example 1a. To achieve an error less than 10−3 we have to use approximately
106 DOFs and for the refinement with respect to Jc we just need approximately 3 × 104

DOFs. However we see that the error in J2 even increases for one refinement step and this
occurs in the global and the refinement for Jc.

Figure 11: Comparison of relative errors.

16

Figure 12: Example 1b: Comparison of rela-
tive errors for different refinements for J0.

Figure 13: Example 1b: Comparison of rela-
tive errors for different refinements for J2.

If we take a look at the mesh we can also see that the DWR method captures low
regularity areas like the vertex (0, 0) in the corner of the L-shaped domain.

Figure 14: Initial mesh used in Example 1,
2a, and 3.

Figure 15: Example 1b: Mesh for DWR for
Jc after 9 refinement steps.

4.2 Example 2

In this example we consider an eigenfunction of the Laplacian as right hand side on the unit
square Ω = (0, 1) × (0, 1) and L-shaped domain Ω = (−1, 1) × (−1, 1) \ (−1, 0) × (−1, 0),
respectively, with homogeneous Dirichlet boundary condition. The discretization is the
same as in Section 4.1.

17

4.2.1 Example 2a

Configuration Find u such that

−∆u(x, y) = f(x, y) ∀(x, y) ∈ Ω, (31)

u(x, y) = 0 ∀(x, y) ∈ ∂Ω, (32)

where
f(x, y) = 10sin(πx)sin(3πy). (33)

The exact solution u is given by

u(x, y) =
sin(πx)sin(3πy)

π2
. (34)

Goal functionals of interest We consider the following three goal functionals:

J0(u) := u(0.5, 0.5), J1(u) := u(0.75, 0.25), J2(u) :=

∫
Γ3

∇u(x, y).n d(x, y), (35)

where and Γ3 = {1} × (0, 1).

Discretization As in Example 1a.

Discussion of our findings The effectivity index Ieff has values in (1.06, 1.45), which
is better than in Example 1b but worse than in Example 1a.

Figure 16: Comparison of relative errors for Example 2a. We note that the error in J0 and
J1 for global refinement coincides.

With regard to the error, we make the following observations. In Figure 16 it is observed
that we hardly achieve an advantage at the beginning for J2, but at one specific refinement
step we get a much better decrease in the error than in the other steps. But in this step
we also get a worse error reduction in the other functionals and in J0 even an increase.

18

We also observe that we do not necessarily obtain a better result for one functional (here
J0) if we use DWR with respect to Jc than for global refinement. An interesting fact is
that the errors of J0 and J1 exactly coincide for global refinement but for the refinement
using Jc they do not. One reason could be that the errors accumulate and therefore some
of the refinement areas for the single functionals are geometrically connected (as visualized
in Figure 18).

Figure 17: Initial mesh used for Example 2a. Figure 18: Mesh after 7 refinement steps for
Example 2a.

4.2.2 Example 2b

In the second part of Example 2, we compute now on an L-shaped domain with other
functionals of interest and we investigate the sign of the combined functional Jc.

Goal functionals of interest We consider the following three goal functionals:

J0(u) := u(0.5, 0.5), J1(u) :=

∫
Ω4

u(x, y)d(x, y), J2(u) :=

∫
Γ4

∇u(x, y).n d(x, y), (36)

where Ω4 = (0.75, 1)× (0, 0.25) and Γ4 = {1} × (0, 1).

Discretization As in Example 1a.

Discussion of our findings The relevant effectivity index Ieff is always in (1.03, 1.08)
except on the coarsest mesh in step 0 where Ieff = 0.75 . In the examples before we were
mostly concerned about the error. But if we construct Jc as in (23) we have (as explained in
section 3.1) to solve a bigger linear system just to get a sign for each weight. The question
is whether this is really necessary. Therefore we investigate the dual solution in more detail.

19

Figure 19: Example 2b: Dual solution after
6 refinement steps.

Figure 20: Example 2b: Dual solution after
7 refinement steps.

If we compare the Figures 19 and 20 we monitor there is indeed a change of the sign of
w0 (as defined in (15)) during the computation. Hence the computation of the sign cannot
be avoided in the Algorithm presented in Section 3.1.

4.3 Example 3

In this numerical test we consider a nonhomogeneous Dirichlet boundary condition on the
L-shaped. The right hand side is non-homogeneous and has a pole at (0, 0). Moreover, we
perform computations with higher-order finite elements.

Configuration Find u such that:

−∆u(x, y) = − 1

‖(x, y)‖l2
∀(x, y) ∈ Ω, (37)

u(x, y) = ‖(x, y)‖l2 ∀(x, y) ∈ ∂Ω, (38)

where
Ω = (−1, 1)× (−1, 1) \ (−1, 0)× (−1, 0). (39)

The exact solution u is given by

u(x, y) = ‖(x, y)‖l2 . (40)

Goal functionals of interest We consider the following three goal functionals:

J0(u) := u(0.5,−0.5), J1(u) := u(0.5, 0.5), J2(u) :=

∫
Γ5

∇u(x, y).n d(x, y), (41)

where and Γ5 = (0, 1)× {−1}. The exact solution u yields

J0(u) =
√

0.5, J1(u) =
√

0.5, and J2(u) = log(1 +
√

2).

20

Discretization Here we use higher-order finite elements for discretization. We denote
the configuration, where we used Qcr for the first primal problem and Qcr+1 for the second
primal problem and the dual problem, by Qr/Qr+1 finite elements. We used

• Q1/Q2 finite elements.

• Q4/Q5 finite elements.

• Q8/Q9 finite elements.

Remark 4.1. In our numerical test we do not see any afford when using Qr/Qs finite ele-
ments, where s > r + 1 in comparison to Qr/Qr+1. Since the latter is less computational
work, we always use this FE combination.

Discussion of our findings In this example we do have a singularity in the right hand
side and we are interested in the behavior of our algorithm if we use different finite element
methods. For the Ieff we obtain the following results:

• Ieff ∈ (0.5, 1.6) for Q1/Q2 finite elements.

• Ieff ∈ (0.07, 0.65) for Q4/Q5 finite elements.

• Ieff ∈ (0.15, 13.5) for Q8/Q9 finite elements.

Observing our findings, we get an error estimator that works quite well if we use Q1/Q2

finite elements, but it also seems that for a higher polynomial degree the error estimator
gets worse. However if we take a look at Figure 21 we can see that the high and low values
for higher polynomial degrees appear just at the beginning and the end of our algorithm.
This may happen through the worse approximation due the coarse grid at the beginning and
numerical errors at the end of our computation, because our error estimator just estimates
the discretization error and not the numerical error. Nevertheless in the steps between, our
error estimator is still better for Q1/Q2 finite elements than for higher order.

As in the previous examples, we are also interested how the error is affected in the
functionals of interest. For Q1/Q2 finite elements we monitor in Figure 22 that we have a
high inconsistency in the decrease of error and we even get some increases in both point
evaluations. If we use higher polynomial degrees we nearly always have a similar reduction
in all errors (except the end where the error for J2 increase because of numerical errors).
Comparing the errors themselves we do get much better results if we use Q4/Q5 finite
elements or Q8/Q9 finite elements. On the other hand, once we work with higher order we
do not conclude an advantage of using very high polynomial degrees. Consequently, there
is a big advantage of going from Q1/Q2 to Q4/Q5. But even higher polynomial degrees do
not pay off.

21

Figure 21: Ieff for example 3. Figure 22: Example 3: Error using Q1/Q2 fi-
nite elements.

Figure 23: Example 3: Error using Q4/Q5

finite elements.
Figure 24: Example 3: Error using Q8/Q9

finite elements.

We note that the error increase towards the maximal refinement steps in Figure 23 and
Figure 24 results from numerical inaccuracies towards low tolerances, e.g., from solving the
linear system or more likely that the flux evaluation, since we deal with a derivative, is not
accurate enough. If we take a look at our refined meshes shown in Figure 26 - 28 we see
that we always obtain refinements at the position of the singularity of the right hand side.
This effect becomes stronger if we use polynomials with higher degree. Here, very localized
mesh refinement is observed.

22

Figure 25: Initial mesh for example 3 (solu-
tion for Q1/Q2 finite elements).

Figure 26: Example 3: Mesh for Q1/Q2 fi-
nite elements after 9 refinement steps (71565
DOFs).

Figure 27: Example 3: Mesh for Q4/Q5 finite
elements after 10 refinement steps (65463
DOFs).

Figure 28: Example 3: Mesh for Q8/Q9 fi-
nite elements after 8 refinement steps (59639
DOFs).

4.4 Example 4a: a slit domain

In this final example we consider a slit domain with displacement discontinuity (which can
be interpreted as a crack) as pictured in Figure 29. On the slit, homogeneous Neumann
boundary conditions are prescribed. In Example 4a, nonhomogeneous Dirichlet and ho-
mogeneous Neumann conditions are prescribed on the outer boundary. In Example 4b,
nonhomogeneous Dirichlet on the entire outer boundary are used for which, on the other
hand, a manufactured solution can be constructed.

Configuration We consider the Laplace equation on a slit domain:

23

−∆u(x, y) = 0 ∀(x, y) ∈ Ω, (42)

u(x, y) = g(x, y) ∀(x, y) ∈ ΓD, (43)

∇u(x, y) · n(x, y) = 0 ∀(x, y) ∈ ΓN , (44)

where
Ω = (−1, 1)× (−1, 1) \ {(x, 0)| − 1 ≤ x ≤ 0}. (45)

The boundary parts are given as:

ΓD = {(−1, y)| − 1 ≤ y ≤ 1}, (46)

ΓN = ∂Ω \ ΓN , (47)

and g(x, y) as

g(x, y) := sign(y)
λGc√

2

√√
x2 + y2 − x, (48)

and λGc = 1. This coefficient is material parameter and related to the fracture toughness.
These conditions introduce a discontinuity on the boundary at (−1, 0) and consequently

a crack with displacement discontinuity as displayed in Figure 29.

Figure 29: Example 4a: Discontinuity location (in red; left figure) and related numeri-
cal solution in a 3D plot (right) to Example 4b, which additionally highlights the non-
homogeneous Dirichlet boundary conditions and the jump of displacements across the crack.

Goal functionals of interest We compute the following four goal functionals (but we
notice that not always all goal functionals are simultaneously considered):

24

J0(u) := u(0.75, 0.75), J1(u) := u(−0.5,−0.25), (49)

J2(u) :=

∫
Γ6

∇u(x, y).n d(x, y), J3(u) :=

∫
Ω6

u(x, y) d(x, y), (50)

where and Γ6 = {−1} × (−1,−0.25) and Ω6 = (0, 1)× (−1, 0).
However no exact solution is known therefore we approximate the exact functionals by
values that obtained from a very fine mesh:

• J0(u) ≈ 0.18949212064

• J1(u) ≈ −0.66061009755

• J2(u) ≈ −0.54411579542

• J3(u) ≈ −0.18268521784

Discretization As in Example 1a.

Discussion of our findings First, we consider detailed studies for a single goal func-
tional. The reason is that this test might serve as kind of benchmark for testing algorithms
which compute fractures. Even for single goal functionals the existing literature is rare.
A fracture is nothing else than a discontinuity along a line in the primal solution. Thus
the slit domain is a limiting case for a fracture setting. After having revisited a single
goal functional, we add as in the previous examples more quantities of interest. We use 4
different configurations for our goal functionals:

• Config. 1 : Evaluating J0(u).

• Config. 2 : Evaluating J0(u) and J1(u).

• Config. 3 : Evaluating J0(u), J1(u) and J2(u).

• Config. 4 : Evaluating J0(u), J1(u), J2(u) and J3(u).

In Figure 30 we see that in all configurations we underestimate the error in Jc, but we
cannot expect to have Ieff = 1 for this problem due to the loss of regularity. Furthermore
the Ieff seems not to differ that much for the different configurations. In the Figures 31 - 34
we can observe that for all configurations we get a much better reduction for our refinement
if we compare it to global refinement. An interesting aspect is that in this example all errors
are of similar order and we also have a similar reduction in the error.

25

Figure 30: Example 4a: Ieff for Configura-
tion 1-4.

Figure 31: Example 4a: Error for Configura-
tion 1.

Figure 32: Example 4a: Error for Config. 2. Figure 33: Example 4a: Error for Config. 3.

Figure 34: Example 4a: Error for Config.
4.

Figure 35: Example 4a: Error for J0 for Config.
1-4.

Another interesting observation can be made in Figure 35 where we even obtain better
results if we refine for Jc instead for J0. Usually we would expect a worse result if we try
to refine for more than one functional at the same time. But unfortunately we do not have
that in general as it can be monitored in Figure 5 for J2. Nevertheless we observe that
the results are also good for less regular problems even if the error estimator is not that

26

accurate. But we find that our refinement scheme also takes care of low regularity domains
for all our configurations as displayed in Figure 36-39 for which the initial mesh is shown
in Figure 49.

Figure 36: Example 4a: Mesh for Config. 1
after 7 refinement steps (56809 DOFs).

Figure 37: Example 4a: Mesh for Config. 2
after 7 refinement steps (49883 DOFs).

Figure 38: Example 4a: Mesh for Config. 3
after 8 refinement steps (68809 DOFs).

Figure 39: Example 4a: Mesh for Config. 4
after 8 refinement steps (58425 DOFs).

4.4.1 Example 4b: a slit domain

As in Example 4a we consider the Laplace equation on a slit domain with displacement
discontinuity (i.e., the crack) as pictured in Figure 29. The domain and location of the crack
are chosen in such a way that we can work with the manufactured solution constructed in
[10, 3]:

u(x, y) = λGcr
1/2 sin(ϕ/2),

where λGc = 1 in polar coordinates and Cartesian coordinates:

u(x, y) = sign(y)
λGc√

2

√√
x2 + y2 − x.

27

Now we prescribe

g(x, y) := sign(y)
λGc√

2

√√
x2 + y2 − x, (51)

on the entire outer boundary.

Goal functionals of interest We consider the following four goal functionals (here we
are not always interested in all goal functionals):

J0(u) := u(0.75, 0.75), J1(u) := u(−0.5,−0.25), (52)

J2(u) :=

∫
Γ7

∇u(x, y).n d(x, y), J3(u) :=

∫
Ω7

u(x, y) d(x, y), (53)

where and Γ7 = {−1} × (−1,−0.25) and Ω6 = (0, 1)× (−1, 0).

Discretization Here we use different FE for discretization (as in Example 3). We denote
the configuration, where we used Qcr for the first primal problem and Qcr+1 for the second
primal problem and the dual problem, by Qr/Qr+1 finite elements. We used

• Q1/Q2 finite elements.

• Q2/Q3 finite elements.

• Q3/Q4 finite elements.

• Q4/Q5 finite elements.

Discussion of our findings In this example, we also perform studies for different poly-
nomial degrees. Furthermore we are interested in how the error decreases with respect to
the number of refinement steps. Here we observe that for all tested polynomial degrees we
achieve a similar decrease as O(h) for global refinement, i.e. the error of every functional for
both refinement methods and all tested polynomial degrees is approximately halved in very
refinement step as we detect in Figure 40-43. Therefore we almost get the same behavior
as global refinement in the errors if we just compare it to the refinement steps. However as
we monitor in Figure 44 we save many DOFs for our refinement scheme in comparison to
global refinement (behaves like O(h−2)) for almost the same accuracy. If we now compare
the different polynomial degrees we observe that for a higher polynomial degree we start
with a higher number of DOFs but we do get a less increase than for lower polynomial
degree such that we get less DOFs for a higher polynomial degree after a certain number of
refinement steps. With regard to the maximal number of DOFs, we remark that the plot
curves for global refinement stop because we did not solve linear systems with more than
1 100 000 unknowns. The behavior of the latter refinement steps shown in Figure 42 and
Figure 43 results from numerical errors.

28

Figure 40: Example 4b: Error versus re-
finement steps for Q1/Q2 finite elements.

Figure 41: Example 4b: Error versus refine-
ment steps for Q2/Q3 finite elements.

Figure 42: Example 4b: Error versus refine-
ment steps for Q3/Q4 finite elements.

Figure 43: Example 4b: Error versus refine-
ment steps for Q4/Q5 finite elements.

29

Figure 44: Example 4b: Increase in DOFs for different finite elements and refinement
schemes.

Figure 45: Example 4b: Error in J0 for different finite elements and refinement schemes.

But as we visualize in Figure 44 the advantage of Q4/Q5 finite elements compared to
Q3/Q4 finite elements is not as big as if we compare Q3/Q4 and Q2/Q3 finite elements.
Since all errors for all polynomial degrees show a similar behavior we just take a look at the
error in J0 in this example. If we plot the error in J0 against the DOFs as shown in Figure
45 we can see the advantage of Algorithm 3.1. Here we can again see the advantage of
using higher polynomial degrees. To reach an error less than 10−6 we need for Q1/Q2 finite
elements of about 5×105 DOFs and for Q4/Q5 finite elements of about 9000 DOFs. But also
the findings for Q1/Q2 finite elements are satisfying in comparison to global refinement for
all tested polynomial degrees. By taking a look at the meshes constructed by our algorithm

30

(Figure 46-48), one can observe that for higher polynomial degrees more refinements in low
regularity regions than in specific functional areas take place. This is in agreement with
our findings in Example 3.

Figure 46: Example 4b: Mesh and solution
for Q1/Q2 finite elements after 8 refinement
steps (60119 DOFs).

Figure 47: Example 4b: Mesh and solution
for Q2/Q3 finite elements after 18 refinement
steps (58289 DOFs).

Figure 48: Example 4b: Mesh and solution
for Q4/Q5 finite elements after 18 refinement
steps (63403 DOFs).

Figure 49: Example 4b: Initial mesh for Ex-
ample 4a (Q4/Q5 solution for example 7).

31

5 Conclusions

In this work, we further developed dual-weighted residual error estimation for multiple goal
functionals applied to elliptic problems. First, we addressed a weak localization of the
error estimator using a partition-of-unity. Next, we proposed an alternative way to solve
the dual-dual problem. In the last section, we provided extensive numerical computations
for various domains, different types of goal functionals, and different boundary conditions
as well as higher-order finite element calculations. From our observations we can deduce
that the functional Jc (introduced in (23)) delivers a similar behavior than the functional,
contained in J, with the highest relative error if the self-chosen weights ωi from (23) are
equal. This leads to a better decrease in the error of this functional but not necessarily for
the other functionals (as shown in Example 2a). However we do obtain a better decrease in
the maximal relative error than global refinement, which was subject of our investigation in
Section 3. If the errors in the different functionals are of similar order than we observe that
we achieve a decrease in every functional as the Figures 23 and 24 and Figures 32-34 show.
Example 2b demonstrates that the computation of the sign of the procedure described
in Section 3.1 can unfortunately not be avoided. We found out that there can be a big
advantage using a higher polynomial degree, even we may get a worse error estimator (as
shown in Example 3). Furthermore we also obtained very good findings for a problem on a
low regularity domain (as shown in Example 4a). Also for singular right hand sides we obtain
satisfying results and we found that for higher polynomial degrees we do more refinement
steps at the low regularity regions (as shown in Example 3). We briefly comment that we
also observed the general benefit of using an adaptive algorithm: using global refinement
limits significantly to reach low tolerances because the linear systems are simply too big
and memory-consuming. For instance, in Example 4b we could only reach a tolerance of
10−5 using global mesh refinement. Finally, we notice that the last test, namely Example
4, might serve as basis for developing mesh adaptivity for sophisticated computational
methods for treating fracture (or damage) settings (in which the crack is not nicely aligned
with the mesh) such as extended/generalized finite elements or phase-field methods. Thus
the provided methodology has an immediate potential to be extended for current practical
applications.

Acknowledgments

We want to thank Professor Ulrich Langer for supporting this work at the Institute of
Computational Mathematics at JKU Linz.

References

[1] M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element analysis.
Computer Methods in Applied Mechanics and Engineering, 142(1-2):1–88, 1997.

[2] M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element
Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley
& Sons], New York, 2000.

32

[3] J. Andersson and H. Mikayelyan. The asymptotics of the curvature of the free discon-
tinuity set near the cracktip for the minimizers of the Mumford-Shah functional in the
plain. a revision. arXiv: 1205.5328v2, 2015.

[4] T. Apel, A.-M. Saendig, and J. R. Whiteman. Graded mesh refinement and error
estimates for finite element solutions of elliptic boundary value problems in non-smooth
domains. Mathematical Methods in the Applied Sciences, 19(1):63–85, 1996.

[5] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II – a general purpose object
oriented finite element library. ACM Trans. Math. Softw., 33(4):24/1–24/27, 2007.

[6] W. Bangerth, T. Heister, and G. Kanschat. Differential Equations Analysis Library,
2012.

[7] W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for Differential
Equations. Birkhäuser, Lectures in Mathematics, ETH Zürich, 2003.

[8] R. Becker and R. Rannacher. Weighted a posteriori error control in FE methods. In
e. a. H. G. Bock, editor, ENUMATH’97. World Sci. Publ., Singapore, 1995.

[9] R. Becker and R. Rannacher. An optimal control approach to error control and mesh
adaptation in finite element methods, pages 1–102. Acta Numerica 2001, Cambridge
University Press, a. iserles edition, 2001.

[10] A. Bonnet and G. David. Cracktip is a global Mumford-Shah minimizer. Asterisque
No. 274, 2001.

[11] M. Braack and A. Ern. A posteriori control of modeling errors and discretization errors.
Multiscale Model. Simul., 1(2):221–238, 2003.

[12] G. F. Carey and J. T. Oden. Finite Elements. Volume III. Compuational Aspects. The
Texas Finite Element Series, Prentice-Hall, Inc., Englewood Cliffs, 1984.

[13] C. Carstensen and R. Verfürth. Edge residuals dominate a posteriori error estimates
for low order finite element methods. SIAM J. Numer. Anal., 36(5):1571–1587, 1999.

[14] D. Estep, M. Holst, and M. Larson. Generalized green’s functions and the effective
domain of influence. SIAM Journal on Scientific Computing, 26(4):1314–1339, 2005.

[15] L. C. Evans. Partial differential equations. American Mathematical Society, 2010.

[16] M. Giles and E. Süli. Adjoint methods for pdes: a posteriori error analysis and post-
processing by duality. Acta Numerica 2002, pages 145–236, 2002. A. Iserles, ed.

[17] C. Großmann, H.-G. Roos, and M. Stynes. Numerical Treatment of Partial Differential
Equations. Springer, 2007.

[18] R. Hartmann. Multitarget error estimation and adaptivity in aerodynamic flow simu-
lations. SIAM Journal on Scientific Computing, 31(1):708–731, 2008.

33

[19] R. Hartmann and P. Houston. Goal-oriented a posteriori error estimation for multiple
target functionals. In T. Hou and E. Tadmor, editors, Hyperbolic Problems: Theory,
Numerics, Applications, pages 579–588. Springer Berlin Heidelberg, 2003.

[20] P. Houston, B. Senior, and E. Sueli. hp-discontinuous galerkin finite element meth-
ods for hyperbolic problems: error analysis and adaptivity. International Journal for
Numerical Methods in Fluids, 40(1-2):153–169, 2002.

[21] D. Kuzmin and S. Korotov. Goal-oriented a posteriori error estimates for transport
problems. Math. Comp. Sim., 80(8):1674 – 1683, 2010.

[22] J. Oden and S. Prudhomme. On goal-oriented error estimation for elliptic problems:
Application to the control of pointwise errors. Comput. Methods Appl. Mech. Engrg.,
176:313–331, 1999.

[23] J. Peraire and A. Patera. Bounds for linear-functional outputs of coercive partial
differential equations: local indicators and adaptive refinement. In P. Ladeveze and
J. Oden, editors, Advances in Adaptive Computational Methods in Mechanics, pages
199–215. Elsevier, Amsterdam, 1998.

[24] R. Rannacher and F.-T. Suttmeier. A feed-back approach to error control in finite
element methods: application to linear elasticity. Computational Mechanics, 19(5):434–
446, 1997.

[25] T. Richter. Goal-oriented error estimation for fluid-structure interaction problems.
Comp. Methods Appl. Mech. Engrg., 223-224:38–42, 2012.

[26] T. Richter and T. Wick. Variational localizations of the dual weighted residual esti-
mator. Journal of Computational and Applied Mathematics, 279(0):192 – 208, 2015.

[27] A. Schroeder and A. Rademacher. Goal-oriented error control in adaptive mixed
{FEM} for signorinis problem. Computer Methods in Applied Mechanics and Engi-
neering, 200(14):345 – 355, 2011.

[28] E. van Brummelen, S. Zhuk, and G. van Zwieten. Worst-case multi-objective error
estimation and adaptivity. arXiv:1604.04541v1, 2016.

[29] R. Verfürth. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement
Techniques. Wiley/Teubner, New York-Stuttgart, 1996.

[30] T. Wick. Goal functional evaluations for phase-field fracture using pu-based dwr mesh
adaptivity. Computational Mechanics, pages 1–19, 2016.

[31] K. Zee, E. Brummelen, I. Akkerman, and R. Borst. Goal-oriented error estimation
and adaptivity for fluid-structure interaction using exact linearized adjoints. CMAME,
200:2738–2757, 2011.

34

