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Abstract. In this paper we present the first-ever computer formaliza-
tion of the theory of Grobner bases in reduction rings in Theorema.
Not only the formalization, but also the formal verification of all key
results has already been fully completed by now; this, in particular, in-
cludes the generic implementation and correctness proof of Buchberger’s
algorithm in reduction rings. Thanks to the seamless integration of prov-
ing and computing in Theorema, this implementation can now be used
to compute Grobner bases in various different domains directly within
the system. Moreover, a substantial part of our formalization is made up
solely by “elementary theories” such as sets, numbers and tuples that are
themselves independent of reduction rings and may therefore be used as
the foundations of future theory explorations in Theorema.

In addition, we also report on two general-purpose Theorema tools we
developed for efficiently exploring mathematical theories: an interactive
proving strategy and a “theory analyzer” that already proved extremely
useful when creating large structured knowledge bases.
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1 Introduction

This paper reports on the formalization and formal verification of the theory of
reduction rings in Theorema that has recently been completed. Reduction rings,
introduced by Buchberger in [3], generalize the domains where Grobner bases
can be defined and algorithmically computed from polynomial rings over fields to
arbitrary commutative rings with identity, and may thus become more and more
an important tool in computational commutative algebra, just as Grébner bases
in the original setting already are. Since definitions, theorems and proofs tend
to be technical and lengthy, we are convinced that our formalization in a math-
ematical assistant system has the potential to facilitate the further development
of the theory in the future (e.g. to non-commutative reduction rings).

* This research was funded by the Austrian Science Fund (FWF): grant no. W1214-
N15, project DK1
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To the best of our knowledge, reduction rings have never been the subject
of formal theory exploratiorﬂ in any software system so far; Grobner bases in
polynomial rings over fields have already been formalized in ACL2 [9], Coq and
OCaml [6L|15] and Mizar [12], though. Moreover, a formalization in Isabelle by
the author of this paper is currently in progress, and the purely algorithmic
aspect (no theorems and proofs) of a variation of reduction rings has already
been implemented in Theorema in [4]. Theorema is also the software system
we chose for our formalization, or, more precisely, Theorema 2.0 (see [5,[L§]
for an overview and [5] for a brief comparison to other systems). Note that
Theorema 2.0 is quite new: it was released only two years ago, in summer 2014,
meaning that it still lacks a couple of useful features that are available in many
other proof assistants. This, however, was not a reason for not using the system
for our work, but just the converse is true: on the one hand, we wanted to
demonstrate what can be done with Theorema 2.0 already, and on the other
hand we wanted to find out what exactly is still missing for effectively and
efficiently formalizing mathematics in the system (some of these features have
already been implemented in the meantime, see Sect. . Besides that, another
motivation for using Theorema 2.0 was to formalize a handful of elementary
mathematical theories (about sets, numbers, tuples, ...) as well, that may form
the foundations of future theory explorations in the system.

The rest of this paper is organized as follows: Section [2] introduces the most
important concepts of reduction rings and states the Main Theorem of the the-
ory. Section [3] presents Buchberger’s algorithm for computing Grébner bases in
reduction rings as well as its implementation in Theorema, and briefly gives an
idea about its correctness proof. Section [] describes the overall formalization of
the theory and its individual components in a bit more detail, and Section
presents the interactive proving strategy and the TheoryAnalyzer tool that we
developed and already heavily used in the course of the formalization and that
will be useful also in future theory explorations. Section [f] finally, summarizes
our findings and contains an outlook on future work.

2 Grobner Bases and Reduction Rings

In this section we review the main concepts of the theory whose formal treatment
in Theorema is the content of this paper. To this end, we first give a short
motivation of Grobner bases and reduction rings, and then present the most
important definitions and results of the theory. A far more thorough introduction
can be found in the literature, e. g. in [1].

Originally, the theory of Grébner bases was invented for multivariate polyno-
mial rings over fields. There, it can be employed to decide the ideal membership
problem, to solve systems of algebraic equations, and many more, and hence is
of great importance in computer algebra and many other areas of mathematics,
computer science, engineering, etc.

1 As one reviewer pointed out, theory exploration can be understood in several ways. In
this paper, we use it as a mere synonym for formalization of mathematical theories.



Because of their ability to solve non-trivial, frequently occurring problems in
mathematics, it is only natural to try to generalize Grébner bases from polyno-
mial rings over fields to other algebraic structures. And indeed, nowadays quite
some generalizations exist: to non-commutative polynomial rings, to polynomial
rings over the integers and other Euclidean- or integral domains, and many more.
Reduction rings are a generalization as well, but in a slightly different spirit: in
contrast to the other generalizations, reduction rings do not require the domain
of discourse to have any polynomial structure. Instead, arbitrary commutative
rings with identity element may in principle be turned into reduction rings, only
by endowing them with some additional structure (see below). It must be noted,
however, that not every commutative ring with identity can be made a reduc-
tion ring; known examples of reduction rings are all fields, the integers, quotient
rings of integers modulo arbitrary n € IN (which may contain zero-divisors!),
and polynomial rings over reduction rings.

2.1 Reduction Rings

Reduction rings were first introduced by Buchberger in 1984 [3] and later further
generalized by Stifter in the late-1980s [13}[14]; our formalization is mainly based
on [14]. Here, we only recall the key ideas and main definitions and results of
the theory. For this, let in the sequel R be a commutative ring with identity
(possibly containing zero-divisors).

In order to turn R into a reduction ring, it first and foremost has to be en-
dowed by two additional entities: a function M : R — P(R) that maps every
ring element ¢ to a set of ring elements (denoted by M,) called the set of multi-
pliers of ¢, and a partial Noetherian (i.e. well-founded) order relation <. With
these ingredients it is possible to introduce the crucial notion of reduction rings,
namely that of reduction:

Definition 1 (Reduction). Let C C R. The reduction relation modulo C, de-
noted by —¢, is a binary relation on R such that a —¢ b iff b < a and there
exists some ¢ € C' and some m € M, such thatb=a — mec.

As usual, =¢ and <7, denote the reflexive-transitive- and the symmetric-reflexive-
transitive closure of — ¢, respectively. Moreover, for a given z € R, a and b are
said to be connectible below z, denoted by a <+57 b, iff a <3& b and all elements
in the chain between a and b are strictly less than z (w.r.t. <).

Of course, the function M and the relation < cannot be chosen arbitrarily
but, together with the usual ring operations, have to satisfy certain non-trivial
constraints, the so-called reduction ring axioms. In total, there are 14 of them,
with some being quite simple (0 must be the least element w. r. t. <, for instance),
others are extremely technical. The complete list underlying our formalization
is omitted here because of space limitations but can be found in [7].

Ezample 1. In a field K, suitable definitions of M, and =< are M. := K\{0}
and ¢ Ry &= ¢ =0 In Z, = Z/nZ, represented as {[0],,...,[n — 1]},



we have Mg, = {[1]n,...,[k]n,[n — K]pn,...,[n — 1]}, where k is the least
positive integer such that [c (k + 1)],, = [0],; the ordering is simply defined as
ol < [l 1 7 <.

In polynomial rings, finally, matters are a bit more complicated. There, the
sets M. and the ordering < not only depend on the respective objects in the
coefficient ring, but also on an admissible term order |11] on the set of all power-
products.

Note that in reduction rings <+¢. coincides with the congruence relation mod-
ulo the ideal generated by C. Hence, if it is possible to decide <3¢, then the
ideal membership problem could effectively be solved—and this is where Gréb-
ner bases come into play.

2.2 Grobner Bases

We can start with the definition of Grébner bases in reduction rings right away:

Definition 2 (Grobner basis). Let G C R. Then G is called a Grobner basis
iff G is finite and —¢ is Church-Rosser, i. e. whenever a ¢, b there exists a
common successor s with a —¢ s and b =7 s.

For C C R, G is called a Grobner basis of C iff it is a Grébner basis and (G)
(i. e. the ideal generated by G over R) is the same (C).

If reduction can effectively be carried out, i. e. whenever a is reducible modulo
C then some b with a —¢ b can be computed, and for any given C' C R a
Grobner basis G of C exists and can be computed, then the problem of deciding
membership in (C) can be solved: a given candidate a simply has to be totally
reduced modulo G until an irreducible element A is obtained; then a € (C) iff
h =0.

The axioms of reduction rings ensure that for every C' C R a Grobner basis
does not only exist, but can even be effectively computed (see Section . This
key result is based on the following

Theorem 1 (Buchberger’s Criterion). Let G C R finite. Then G is a Grob-
ner basis iff for all g1,92 € G (not necessarily distinct) and all minimal non-
trivial common reducibles z of g1 and g2, we have a1 <>g* a2, where z —{g;} @i
fori=1,2. (a1,a2) is called a critical pair of g1 and g2 w. 7. t. 2.

The precise definition of minimal non-trivial common reducible (mntcr) is slightly
technical and omitted here; the interested reader may find it in the referenced
literature. Intuitively, a mntcr of g; and g2 is an element that can be reduced
both modulo {g1} and modulo {g2} in a non-trivial way.

Ezample 2. In a field K, the set of mntcrs of any two non-zero field elements
is just K\{0}. In ZZ,,, the only mntcr of two non-zero elements [c],, and [d],, is
[max{gcd(c, n), ged(d, n)}],. In R[X], the mnters of two non-zero polynomials
p and ¢ are all monomials of the form c¢7, where ¢ is a mntcr of the leading
coefficients of p and ¢ in R and 7 is the least common multiple of the leading
power-products of p and ¢, w.r.t. the chosen term order.



Ezample 3. Let us consider ZZo4[x, y] and the singleton C' := {p := 16zy+2} (we
write 16 and 2 instead of [16]24 and [2]a4, respectively, for the sake of brevity).
No matter which term order we choose, the leading power-product of p is zy
and its leading coefficient is 16, meaning that the only mntcr of p and p is
ged (16, 24)xy = 8xy. Reducing 8zy modulo p once (in two different ways) yields
the critical pair (8zy—2(16zy+2), 8zy — 17(162y+2)) = ([20]24, [14]24). Neither
of the two constituents of the critical pair can be reduced further modulo C,
meaning that the critical pair cannot be connected below 8zy, and hence C' is
no Grobner basis.

2.3 Contributions to the Theory

Before moving on to Buchberger’s algorithm, we want to point out two contri-
butions we managed to make to the theory of reduction rings itself. Namely,
during the formalization, when turning to the computer-assisted verification of
the results, we discovered two problems in the literature on reduction rings. The
first of these problems is related to the notion of irrelativity as introduced in [14]:
without going into details here, irrelativity basically is a binary relation on the
set of all elements of a reduction ring, which clearly ought to be symmetric.
Irrelativity according to [14], however, is not symmetric, and a close look at the
proofs of the main results revealed that they contain a very subtle error mainly
because of that reason. Therefore, the definition of irrelativity had to be adjusted
in order to proceed with the formal verification, which we finally managed to
do. More details can be found in [7].

The second problem concerns fields as reduction rings: in an infinite field, two
elements have infinitely many mntcrs (see Ex. , although for an algorithmic
treatment one axiom of reduction rings requires the number of mntcrs to be finite.
Although this problem was already known in [3], no attempts have been made
to fix it so far. We solved it by introducing an equivalence relation in reduction
rings and weakening said axiom to require only the number of equivalence classes
of mnters to be finite.

3 Buchberger’s Algorithm

Theorem|[I]not only yields a finite criterion for checking whether a given set G is a
Grdébner basis or not, but it even gives rise to an algorithm for actually computing
Grobner bases. This algorithm, presented in Fig. [1] is a critical-pair/completion
algorithm that, given an input set C C R, basically checks the criterion of
Thm. [1] for all pairs of elements of C, and if it fails for a pair (C;, C;), then C
is completed by a new element h that makes the criterion hold for (C;, C;). Of
course, afterward all pairs involving the new element h have to be considered as
well.

Figure[I] presents the algorithm as implemented in a functional style in The-
orema. Function GB is the main function that takes as input the tupleﬂ C a

2 GB is implemented for tuples rather than sets, for practical reasons.



DEFINITION: BUCHBERGER'S ALGORITHM B
W
R
v
c,i,j.i0,.jo0,=,p...,m...,P
GB[C] := GBAux[C, allPairs[|C|], 1, 1, (3]
R R
GBAux[C, (), i, j, (3] :=C
R
GBi.ux[C, (€10, JOY, p...%, i, 3, (3] :=
GBAux[C, {r ...), i0, jO, mnterTuple[Ciy, Cyg]
R R

GBAux[C, P, i, j, (2, m...}] :=
R

let
h=t£d[$1[z,ci] ,C]q—qt;ﬂlﬂi[zrcj] ,u:]

{ GB%U.X[C, E, i,j, (R...}] ch::g

GBAux[C+h, up[P, |C}], i, J, (R...}] = True
R

Fig. 1. Buchberger’s algorithm in Theorema.

Groébner basis shall be computed for. It then calls GBAux with suitable initial
arguments, whose first argument serves as the accumulator of the tail-recursive
function. Its second argument is the tuple of all pairs of indices of C that have
not been dealt with yet, and its third and fourth arguments are the indices i
and j of the elements currently under consideration. The last argument, finally,
is the tuple of all mntcrs of C; and C; that still have to be checked. Formula
(GBAux 3) is the crucial one: The constituents of the critical pair originating
from C; and C; and mntcr z are totally reduced modulo the current basis C,
and the difference is assigned to h. If h = 0, the critical pair can be connected
below z according to the condition in Thm. |I} so nothing else has to be done
in this case. Otherwise, h is added to C, ensuring connectibility below the new
basis, and the index-pair-tuple is updated to include also the pairs involving the
new element h.

Buchberger’s algorithm, or, more precisely, function GB, can be proved to
behave according to the following specification:

If R is a reduction ring and C is a tuple of elements of R, GB terminates
and returns again a tuple G of elements of R. G is a Grobner basis of C.



A one-element set is not necessarily a Grobner basis:

> GB ( << [16xy+2””
DomainTuples [ T24xy] “GFZ24xy b \Z24xy

|=_2 .16 x vy, 18, 22 + 2 x ¥}

» X

Fig. 2. A sample computation in Theorema. The “<<” and “>>” are only responsible
for the in- and output of polynomials and do not affect the actual computation.

The proof of this claim was carried out formally in Theorema. It heavily depends
on Thm. [} of course, but also quite some other technicalities (concerning the
indices, for instance) have to be taken into account. Furthermore, termination
of GBAux is by no means obvious: its second argument, which must eventually
become empty, is enlarged in the second case of (GBAux 3), meaning that this
case must be shown to occur only finitely often. A separate reduction ring axiom
is needed to ensure this.

Function GB is not only of theoretical interest for our formalization, but
can also be executed on concrete input to actually compute Grobner bases,
provided that the underlying domain R is a reduction ring and implements a
couple of auxiliary functions GB depends upon (most importantly, the usual ring
operations). At the moment, the following domains included in the formalization
meet these requirements; the proofs thereof are part of the formalization, of

course (see also Sect. 4.2)):

all fields, in particular the Theorema built-in fields @, IR and C,
-z,

7, for arbitrary n € IN,

multivariate polynomial rings over the aforementioned domains.

Function GB always returns provenly correct results when used in these do-
mains. Figure [2[ shows a sample computation in Zo4[z,y|, carried out directly
within Theorema 2.0: as discussed in Ex. [3] {162y + 2} is no Grobuer basis,
because the constituents of the critical pair ([20]a4, [14]24) cannot be connected.
Therefore, their difference [14 — 20]a4 = [18]24 must be added to the basis in
a first step. Figure [ reveals that this is still not sufficient, since one further
element must be added afterward.

For the sake of completeness we have to point out that Buchberger’s algo-
rithm and Thm. [I] as presented here were simplified a bit compared to our actual
formalization. For one thing, the sets of multipliers M, have to be split into sev-
eral (finitely many) indexed subsets M, and the notion of mntcr depends on
these indices; mntcrs for all pairs of indices have to be considered separately,
both in the theorem and in the algorithm. Also, the actual implementation of GB
employs the so-called chain criterion for avoiding useless reductions; this crite-
rion, hence, increases efficiency and works in reduction rings in pretty much the



same way as in the original setting of polynomials over fields, see 2. The inter-
ested reader is referred to [7] for an unsimplified statement of Thm. [1} and to [8]
for a more detailed discussion of Buchberger’s algorithm in our formalization.

4 Structure of the Formalization

In this section we have a closer look at the formalization of all of reduction ring
theory in Theorema. In particular, the emphasis is on how the theory is split into
smaller sub-theories, what these sub-theories consist of, how they are related to
each other, and how big they are in terms of formulas and proofs.

Before, however, some remarks on theory exploration in Theorema 2.0 in
general are in place. Theorema theories are essentially Mathematica notebooks
consisting of both formal (mathematical formulas) and informal (explanatory
text, diagrams, tables, etc.) content. Users are free to compose such notebooks
in whatever way they want, making use of Mathematica’s rich typesetting capa-
bilities, yielding nicely-formatted documents. Proving proceeds by first setting
up proof tasks and then either calling an automatic prover or an interactive proof
strategy (see Sect. . In any case, the resulting proofs are stored as abstract
proof objects in external files; they can be inspected in automatically generated
proof documents displaying the proofs in a human-readable form that closely
resembles the way how proofs are usually presented in mathematical text-books
(again, heavily relying on Mathematica’s typesetting capabilities). Since this
paper does not aim at presenting Theorema 2.0, and in particular how theory
exploration in the system proceeds, in detail, the interested reader is referred to
our recent article [5] instead.

Although the paper has only been about reduction rings so far, it must be
noted that a substantial part of our formalization is actually concerned with
rather basic concepts, such as sets, algebraic structures, numbers, tuples (or
lists) and sequences that are themselves independent of reduction ring theory and
merely serve as its logical backbone. In this respect, our formalization can also
be regarded a major contribution to a structured knowledge base of elementary
mathematical theories in Theorema 2.0 that can be reused in future theory
explorations. Such a knowledge base did not exist in Theorema 2.0 before, which
justifies, in our opinion, presenting it just alongside the formal treatment of
reduction rings in this section (only superficially, though).

Figure [3]shows the dependencies of the individual sub-theories on each other.
Each node represents a sub-theory, contained in a separate Theorema notebook,
and a directed edge from theory A to theory B means that B logically depends
on A in the sense that formulas (i. e. definitions or theorems) contained in A were
used in the proof of a theorem in B. Theories corresponding to framed nodes
are directly related to reduction rings (see Sect. , whereas all other theories
belong to the knowledge base of elementary theories (see Sect. . Note also
that transitive edges are omitted for better readability, e.g. theory Numbers.nb
not only depends indirectly on theory LogicSets.nb (via AlgebraicStructures.nb),
but also directly; this fact is not reflected in Fig. [3]



LogicsSets.nb —— AlgebraicStructures.nb ——> Numbers.nb —> NatlInt.nb

|

Sequences.nb «——— Tuples.nb «——— NatlIntExtended.nb

| T

Fields.nb <—— ReductionRings.nb ——— GroebnerRings.nb <—— Functors.nb

PN |

Integers.nb IntegerQuotientRings.nb Polynomials.nb ——| PolyTuples.nb

Fig. 3. The theory dependency graph.

The total number of proved theorems in the whole formalization in 2464,
the total number of unproved definitions and axioms is 484. Hence, the total
number of formulas is 2948. The complete formalization is available online from
http://www.risc. jku.at/people/amaletzk/Formalizations.html.

4.1 Elementary Theories

Most of the sub-theories in this category have rather self-explanatory names,
and we will not go into details regarding their contents. Some remarks are still
in place, though.

Theories Numbers.nb, NatInt.nb and NatIntExtended.nb are all about natural
numbers and integers: the very definition of natural numbers by purely set-
theoretic means, as well as the definition of integers as some quotient domain of
pairs of natural numbers are contained in Numbers.nb, and the other two theories
basically consist of hundreds of results about linear and non-linear arithmetic,
division with quotient and remainder, the greatest common divisor, finite sums
and mappings from IN to IN (needed for infinite sequences).

Theory Functors.nb contains a couple of general Theorema functors, mainly
for constructing product domains from given onesﬂ The most important func-
tor in this theory, LexOrder, maps two ordered domains to their lexicographic
product; this functor was needed for proving termination of function GB (see
Sect. . Functors.nb also proves that the order in the new domain is still par-
tial/total/Noetherian if the orders in the original domains are.

4.2 Reduction Ring Theory

ReductionRings.nb contains the definitions of several auxiliary notions in reduc-
tion rings, like reducibility, the reduction relation (and its various closures) and
properties of binary relations (confluence, local confluence, Church-Rosser), as

3 For information on functors and domains in Theorema, see [44[17
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well as the definitions of reduction rings and Grébner bases. Reduction rings are
defined through a unary predicate, isReductionRing, that is simply the con-
junction of all reduction ring axioms together with the axioms of commutative
rings with identity.

Besides these definitions, the main contents of ReductionRings.nb are the
Main Theorem of reduction ring theory, Thm. [I] and the theorem that states
that the symmetric-reflexive-transitive closure of the reduction relation modulo
a set C coincides with ideal congruence modulo the same set C, together with
their proofs. The proof of Thm. [1} is non-trivial and lengthy, which is reflected
by the fact that many auxiliary lemmas were needed before it could finally
be completed, and one of these lemmas in fact deserves special attention: the
Generalized Newman Lemma. The Generalized Newman Lemma is a general
result about sufficient conditions for binary relations to be confluent (and thus
Church-Rosser) that was first introduced in [19].

Please note that everything in this theory is non-algorithmic in the sense that
no single algorithm is implemented or specified. All algorithmic aspects of our
formal reduction ring theory, in particular Buchberger’s algorithm for computing
Grobner bases, are part of GroebnerRings.nb.

GroebnerRings.nb contains all the algorithmic aspects of the formalization, like
the implementation and specification of Buchberger’s algorithm. More precisely,
the theory contains a functor called GroebnerRing that extends a given input
domain D by the function GB that implements Buchberger’s algorithm and can
thus be used for computing Grobner bases. GB is defined in terms of auxiliary
functions provided by the underlying domain D, such as the basic ring operations
and the partial Noetherian ordering in reduction rings. However, following a
general principle of functors and domains in Theorema, D can be completely
arbitrary: it does not need to be a reduction ring, nor even a ring, meaning
that some operations used in function GB are possibly undefined — and this is
perfectly fine, except that one cannot expect to obtain a Grébner basis when
calling the function. But if D is a reduction ring, i.e. isReductionRing[D]
holds, then the function really behaves according to its specification. The proof
of this claim is non-trivial, even if Thm. [I}is already known, and also contained
in GroebnerRings.nb.

In addition to the implementation, specification and correctness proof of
Buchberger’s algorithm, various sample computations of Grébner bases in dif-
ferent domains (Za4, Zaslz,y], Q[z,y, 2], for instance) are included in Groebn-
erRings.nb as well.

Fields.nb contains a Theorema functor, ReductionField, that takes an input
domain K and extends it by those objects (function M and relation <) that
turn K into a reduction ring. These new objects are defined in such a way that
if K is a field, then the extension really is a reduction ring — otherwise nothing
can be said about it. The proof of this claim is of course also contained in
Fields.nb, and actually it is quite straight-forward.



Integers.nb contains a Theorema functor, ReductionIntegers, that does not
take any input domains but simply constructs a new domain whose carrier is ZZ
and that provides the additional objects for turning ZZ into a reduction ring,
following [3]. The proof of this claim is included in the theory as well.

IntegerQuotientRings.nb contains a Theorema functor, ReductionIQR, that takes
a positive integer n and constructs a new domain whose carrier is the set
{0,...,n — 1} and that provides the additional objects for turning Z,, rep-
resented by {0,...,n— 1}, into a reduction ring, following [13]. The proof of this
claim is of course included in the theory as well. Surprisingly, although turning
ZZ ., into a reduction ring is more involved than ZEL fewer auxiliary results were
needed in IntegerQuotientRings.nb than in Integers.nb. This is due to the fact that
the reduction ring ordering < in Z7,, is much simpler than in Z.

Polynomials.nb contains the general result that the n-variate polynomial ring
over a reduction ring is again a reduction ring, if the sets of multipliers and the
order relation are defined appropriately. This is accomplished by first introducing
the class of reduction polynomial domains over a coefficient domain R and a
power-product domain 7. A domain P belongs to this class iff it provides the
usual ring operations, a coefficient function that maps each power-product from
T to a coefficient in R, a set of multipliers for each element in P (i. e. the function
M), and an order relation =, and all these objects satisfy certain constraints
(e.g. the coefficient function must have finite support and must interact with
+ and - in the usual way, the sets of multipliers must be of a particular form,
and the ordering must be defined in a certain way). These constraints, whose
precise formulations can be found in [3], ensure that if R is a reduction ring
and 7 is a domain of commutative power-products, then P is a reduction ring
as well. This is one of the fundamental results of reduction ring theory, and its
proof is very complicated and tedious (even more complicated than the proof of
Thm. . Nevertheless, it has been entirely completed already and is also part
of Polynomials.nb.

Note that all definitions and results in this theory are on a very abstract
level: no concrete representation of multivariate polynomials, be it as tuples of
monomials, as iterated univariate polynomials, or whatsoever, is ever mentioned
in the whole theory, but instead polynomials are essentially viewed as functions
from 7 to R with finite support. This approach has the advantage that the
results can easily be specialized to many different representations of polynomials,
if necessary, and this is just what is made use of in theory PolyTuples.nb.

PolyTuples.nb contains a functor, PolyTuples, that takes two domains R and
T as input and constructs the domain P of reduction-polynomials over coeffi-
cient domain R and power-product domain 7 represented as ordered (w.r.t.
the ordering on T) tuples of monomials. Monomials, in turn, are represented as
pairs of coefficients and power-products. P provides the additional functions and

* The first attempt in [3] was erroneous.



relations needed to prove that it belongs to the class of reduction polynomial
domains, and thus is a reduction ring thanks to the key result in Polynomials.nbﬂ
The proof of this claim is part of the theory, of course.

Besides functor PolyTuples, three additional functors for constructing do-
mains of commutative power-products are also contained in PolyTuples.nb: one
for a purely lexicographic term order, one for a degree-lexicographic term order,
and one for a degree-reverse-lexicographic term order. In either case, power-
products are represented as tuples of natural numbers.

5 New Tools

In this section we present two useful tools that we developed in the course of
the formalization of reduction rings: an interactive proof strategy and a mech-
anism for analyzing the logical structure of Theorema theories. As will be seen
in the following two subsections, the tools are general-purpose tools and thus
completely independent of our concrete formalization, and hence may be used
in any other theory exploration in Theorema as well. For that reason, they are
planned to be integrated into the official version of the system in the near future.

5.1 Interactive Proof Strategy

In contrast to most other proof assistants, the interactive proof strategy in The-
orema 2.0 described below is not text-based, but dialog-oriented (similar to the
one in Theorema 1 [10]): whenever a new proof situation that cannot be handled
automaticallyﬁ arises during the proof search, a dialog window pops up. This
window displays the current proof situation, characterized by the current proof
goal and the current set of assumptions, and asks the user how to proceed. He
may now either

— choose an inference rule to apply,

— choose a different pending proof situation where to continue with the proof
search,

— inspect the proof so far, in a nicely-formatted proof document,

— inspect the internal representation of the proof object for debugging,

— save the current status of the proof in an external file,

— adjust the configuration of the prover (maybe even switching from the inter-
active mode to a fully automatic one), or

— abort the proof attempt.

When choosing an inference rule that shall be applied (or, more precisely, tried),
the user even has the possibility to indicate the formula(s) to be considered by
the rule (for instance, if one of several universally quantified assumptions is to

® Once again, this is only true if R is a reduction ring and 7 is a domain of commu-
tative power-products.
5 So, there is still some automation of very trivial tasks.
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Fig. 4. A “Proof Commander” dialog window for interactive proving.

be instantiated). Furthermore, he may then be asked to provide further infor-
mation about the concrete application of the rule (like specifying the concrete
term a formula shall be instantiated with); this, however, solely depends on the
implementation of the inference rule and is thus not affected by our interactive
proof strategy.

Figure [4] shows a screen-shot of the interactive dialog window. In the mid-
dle, the current goal (top) and the current assumptions (bottom) are displayed.
Above, the inference rule to be applied next, as chosen by the user, is indicated,
and the menu bar is located at the very top.

5.2 TheoryAnalyzer

The TheoryAnalyzer is a Mathematica package that provides a collection of func-
tions for analyzing the logical structure of Theorema theories and the logical
dependencies of formulas on each other. If theories grow big, as in our case, it
becomes more and more difficult to keep track of which formulas were used in
the proofs of which other formulas, which formulas are affected when another
formula is modified, and whether the order of formulas in a notebook agrees with
their logical order. It is clear, however, that these questions are of utmost impor-
tance for a consistent, coherent and systematic development of a mathematical
theory; after all, if a formula ¢ is modified, then all of its consequences (that is,
the theorems that use ¢ as an assumption in their proofs) must be re-proved,
and so one needs to know what these consequences are in the first place—and
this was the main motivation for the development of the TheoryAnalyzer.
Summarizing, the TheoryAnalyzer allows to automatically

— inspect all direct or indirect assumptions of a given theorem,
— inspect all direct or indirect consequences of a given formula,



— ensure that theories do not contain circular arguments,

— check whether the order of formulas in a notebook agrees with their logical
order, and

— draw nicely-formatted theory-dependency-graphs (as the one in Fig. [3]) and
formula-statistics-diagrams.

6 Conclusion

The work described in this paper is expected to have, and already had, various
positive effects on theory explorations in Theorema 2.0 and on reduction ring
theory: the existing formalization, in particular of the elementary mathematical
theories, may serve as the basis of future theory explorations, perhaps even in
completely different areas of mathematics. The tools presented in Sect. 5| proved
extremely useful already and will definitely be of use for other users as well,
once they are integrated into the system. And, finally, the contributions to the
theory of reduction rings mentioned in Sect. [2.3] give evidence to the claim that
mathematics profits from being treated formally in computer systems.

There are many possibilities for future work. On the theory level, other as-
pects of, and approaches to, Grobner bases (again in the original setting) could
be formalized, for instance the computation of Grébner bases by matrix tri-
angularizations [16]. For this, the further improvement of the tools described
in Sect. [5| and the development of new tools might be necessary (more flexible
interactive proving strategy, proof checker, ... ).
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