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Abstract. In this work we investigate the interplay of almost sure and mean-square stability
for linear SDEs and the Monte Carlo method for estimating the second moment of the solution
process. In the situation where the zero solution of the SDE is asymptotically stable in the
almost sure sense but asymptotically mean-square unstable, the latter property is determined
by rarely occurring trajectories that are sufficiently far away from the origin. The standard
Monte Carlo approach for estimating higher moments essentially computes a finite number
of trajectories and is bound to miss those rare events. It thus fails to reproduce the correct
mean-square dynamics (under reasonable cost). A straightforward application of variance
reduction techniques will typically not resolve the situation unless these methods force the
rare, exploding trajectories to happen more frequently. Here we propose an appropriately
tuned importance sampling technique based on Girsanov’s theorem to deal with the rare
event simulation. In addition further variance reduction techniques, such as multilevel Monte
Carlo, can be applied to control the variance of the modified Monte Carlo estimators. As an
illustrative example we discuss the numerical treatment of the stochastic heat equation with
multiplicative noise and present simulation results.

1. Introduction

Let (Ω,F , (Ft)t∈[0,T ],P) be a complete probability space, where the filtration (Ft)t∈[0,T ]
satisfies the usual conditions. We consider d-dimensional systems of linear Itô stochastic dif-
ferential equations

dX(t) = AX(t) dt+

m∑
r=1

GrX(t) dβr(t), X(0) = X0, t ∈ [0, T ],(1)

where A,Gr ∈ Rd×d, βr are m independent, real-valued Wiener processes, and the initial
value X0 is in L2(Ω,F ,P). Under these assumptions Eq. (1) has a unique strong solution,
which, however, allows an explicit representation only for special cases such as for systems
with commuting matrices A,Gr, see [1, Section 8.5, Remark 8.5.9]. For the case of a zero
initial value X0 = 0, Eq. (1) admits the zero solution Xe(t) ≡ 0 for all t.

In this article we are interested in the numerical approximation of quantities of the type
Ef(X(t)) for some functional f : Rd → R, which has at least quadratic growth in |x|. We first
describe the setting of Monte Carlo techniques and error analysis in terms of interpreting
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EM [f(X̂(t)] :=
1

M

M∑
i=1

f(X̂(i)(t))(2)

as an estimator for Ef(X(t)). Here, X̂(i)(t) denotes an independent realisation of the ap-

proximated solution X̂(t), which we obtain by using a numerical integrator of weak order p.
The approximation of the trajectories produces a systematic error, which can be expressed
as ([19, 22])

E[f(X(t))] = E[f(X̂(t))] +O(hp).

Subsequently we will assume that the time step size is sufficiently small such that the sys-
tematic error is dominated by the Monte Carlo error, which can be expressed as ([19])

EM [f(X̂(t))] =
1

M

M∑
i=1

Ef(X̂(i)(t))± cVar[f(X̂(t)))]1/2

M1/2
.

Under the assumption that the variance of the approximated random variable f(X̂(t)) is close
to the variance of f(X(t)), the quality of the Monte Carlo estimator depends on the variance
of the underlying SDE. Thus for problems with large variances one needs either a large
number of realisations M , i.e. a very fine discretisation of the underlying probability space,
or estimators with a smaller variance than standard Monte Carlo estimators. This second
consideration directly leads to the field of variance reduction techniques, for an overview see
for example [8, 3].

In this work we analyse the impact of long time properties of linear systems of SDEs
on Monte Carlo estimators, in particular how different concepts of stochastic stability, i.e.
asymptotic stability in the almost sure and mean-square sense (see Definition 2.1), affect the
numerical results using the standard Monte Carlo estimator defined in Eq. (2).

Ignoring any systematic error for the moment, we choose the following trivial observation
as a starting point for our considerations: The estimator defined in Eq. (2) consists only
of finitely many realisations of the solution process, and therefore the long time evolution
is heavily influenced by the path-wise stability properties of the SDE. However, due to the
(at least) quadratic growth of f(x), Ef(X(t)) is governed by the corresponding mean-square
stability of the zero solution of (1). Hence, the characterisation of our problem can be
summarised by using the following observations:

I The zero solution of system (1) can be asymptotically stable in the almost sure sense
but at the same time asymptotically mean-square unstable. This situation is well
known in the literature, e.g. for the geometric Brownian motion (see [16] and Section
2).

II An immediate consequence of the above situation is that the exponential growth in
time of E|X(t)|2 is due to very rare exploding trajectories. This leads to a prohibitively
high number of realisations needed for the standard Monte Carlo estimation to obtain
a decent approximation of the second or higher moments of the solution process X(t).

III The problem is not purely academic: Space discretising diffusion-type SPDEs with
e.g. finite differences leads to high dimensional SODE systems of type (1). The solution
trajectories decrease rapidly due to the dissipative properties of the Laplacian and the
stabilising structure of the diffusion matrices Gr. At the same time, the equilibrium
solution will become asymptotically mean-square unstable for some, often moderate,
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value of noise intensity and increasing the noise intensity will amplify this effect.
Note that the computational cost for simulating such high-dimensional SDE systems
automatically prohibits a substantial increase of the number of trajectories.

IV A straightforward application of multilevel Monte Carlo techniques for reducing the
variance will typically not resolve the situation, unless these methods force the rare
exploding trajectories to happen more frequently.

We propose the following modification of Monte Carlo estimation by importance sampling
techniques: We change the drift of the system in such a way that the trajectories explode
more often. This can be achieved by transforming the underlying probability measure due to
Girsanov’s theorem. Weighting the trajectories with the corresponding density process results
in an unbiased Monte Carlo estimator for the desired quantity. An important property of
the developed measure transformation is that it can be precomputed and does not change
the linearity of the system. Consequently, the computational cost of our proposed method is
the same as for the standard Monte Carlo estimation. Further, the variance of the modified
estimators can also be reduced by applying additional variance reduction techniques such as
multilevel Monte Carlo methods.

In Section 2 we will give a short review of necessary notions of stability theory of sto-
chastic differential equations and we discuss the points I and II by providing analytical and
numerical results for the geometric Brownian motion. In Section 2.1 we introduce a spatially
discretised stochastic heat equation as an illustrative and non-trivial example and discuss
the stability properties of the zero solution of the resulting system of SODEs. In Section
3 we discuss different variance reduction techniques (multilevel Monte Carlo methods and
importance sampling) for the spatially discretised stochastic heat equation and formulate our
proposed method. We will present numerical results in Section 4 and close this work with
conclusions in Section 5.

2. Stability theory

In this section we summarise the main definitions and notation from stochastic stability
theory and illustrate the differences between these stability concepts by considering geometric
Brownian motion.

We treat the following two types of (asymptotic) stochastic stability of the equilibrium
solution of Eq. (1), which is given by the zero solution Xe(t) ≡ 0 for all t, see [16, 13].

Definition 2.1. (i) The zero solution is called asymptotically almost sure stable
(a) if for any given 0 < ε < 1, ε′ > 0, there exists δ > 0 such that if |X0| < δ, then

P(|X(t)| > ε′) < ε for all t ≥ 0 and
(b) if there exists a δ′ > 0 such that for any X0, satisfying |X0| < δ′ a.s., it holds

that limt→∞ |X(t)| = 0 a.s.
(ii) The zero solution is called asymptotically mean-square stable

(a) if for E|X0|2 ≤ δ, then supt≥s E|X(t)|2 → 0 as δ → 0 and

(b) if there exists a δ′ > 0 such that for any X0, satisfying E|X0|2 < δ′, it holds that
limt→∞ E|X(t)|2 = 0.

In order to illustrate the difference between asymptotically almost sure stable and asymp-
totically mean-square stable equilibria, we recapitulate the well-known results for the geo-
metric Brownian motion (see [1, 15]). Let

dX(t) = λX(t) dt+ σX(t) dβ(t), X(0) = X0,(3)
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where λ, σ,X0 ∈ R. The explicit solution and the second moment of Eq. (3) are given by

X(t) = X0 exp

((
λ− σ2

2

)
t+ σβ(t)

)
,(4)

EX2(t) = X2
0 exp

((
2λ+ σ2

)
t
)
.(5)

Obviously the zero solution is asymptotically mean-square stable if and only if 2λ+ σ2 < 0.
Using the law of iterated logarithms, it can be seen that the zero solution is asymptotically
stable in the almost sure sense if and only if λ−σ2/2 < 0. As a consequence, the zero solution
of Eq. (3) becomes unavoidably asymptotically stable in the almost sure and asymptotically
unstable in the mean-square sense for sufficiently large σ (see also the discussion in [16,
Example 1.4.1]).

Suppose we want to approximate EX2(t) by standard Monte Carlo estimation, where we
use the exact solution (4) for simulating the paths, i.e. no systematic error arises. For a given
set of parameters we calculate the probability that X2(t) stays in an ε-neighbourhood of 0
with a certain probability 1− α. We get

P
[
X2(t) < ε

]
= 1− α⇐⇒ P

[
ξ <

ln(ε/X2
0 )− 2(λ− σ2/2)t

2σ
√
t

]
= 1− α for ξ ∼ N (0, 1).

Note that for a fixed probability 1−α the bound ε decreases exponentially for growing σ and
t, whereas the mean-square process (5) grows exponentially in σ and t. This compromises the
results of Monte Carlo estimation and we illustrate this with the following parameter setting:
Let λ = −2, σ = 3, and X0 = 1, so the zero solution is asymptotically mean-square unstable.
We further fix the time at T = 10 and obtain that the analytic solution of the mean-square
process (5) has order of magnitude

EX2(T ) ≈ 1021.

However, it is highly improbable to sample values substantially larger than zero. The prob-
ability that all paths of a standard Monte Carlo estimation with 104 trajectories are almost
zero within machine accuracy is 1− 10−4, since

P
[(
X(i)(T )

)2
< 10−14

]
≈ 1− 10−7 and

104∏
i=1

P
[(
X(i)(T )

)2
< 10−14

]
≈ 1− 10−3.

As a consequence, the standard Monte Carlo estimator EM [X2(T )] fails to approximate
EX2(T ) (see Figure 1).

This effect is also present in the case of higher dimensional SODE systems (see Figure
2). In the next section, we consider this situation by using a space-discretised version of a
stochastic heat equation with multiplicative noise.

2.1. Linear systems of SODEs. In this section we present the semi-discretised stochastic
heat equation as a benchmark problem for spatially discretised diffusion type SPDEs and
analyse the qualitative behaviour of the zero solution.

2.1.1. Stochastic heat equation. Let (Ω,F ,P) be a complete probability space with filtration
(Ft)t∈[0,T ]. We consider the one-dimensional stochastic heat equation on the spatial domain
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D = [0, 1] with homogenous Dirichlet conditions:

du(x, t) = ∆u(x, t) dt+ σu(x, t) dW (x, t),

u(0, ·) = u(1, ·) = 0,

u(x, 0) = u0(x) = sin(πx) for x ∈ D,
(6)

with a sufficiently smooth initial function, since u0 ∈ L2(D). The multiplicative noise is
interpreted in the sense of Nemytskii operators (see [17]). For the driving noise we assume
that W (x, t) is an Ft-adapted Q-Wiener process with a linear, non-negative and symmetric
covariance operator Q. Furthermore Q is of trace class and has an orthonormal basis of
eigenfunctions {χj , j ∈ N} with eigenvalues qj ≥ 0. Under these assumptions W (x, t) can be
represented in the following series expansion

(7) W (x, t) =
∞∑
j=1

√
qjχj(x)βj(t),

which converges in L2(Ω,F ,P) (see [5]). Here, βj(t) are independent one-dimensional Wiener
processes. The existence of a unique mild solution of (6) is guaranteed by the classical
framework of [5].

2.1.2. Space discretisation and model problem. For spatial discretisation we apply the stan-
dard finite difference scheme on an equidistant spatial mesh {x0, . . . , xN+1} with mesh width
h = 1/(N + 1). Then the spatially discretised version of Eq. (6) takes the form

du(xi, t) = (∆hu(t)) (xi) dt+ σu(xi, t) dW (xi, t),

where ∆h denotes the three-point discrete Laplacian. Using the eigenfunctions of the Lapla-
cian as a basis representation for W (x, t) we define the following truncation of the series (7)
(see [17]),

WN (x, t) :=

N∑
i=1

√
qiχi(x)βi(t)

with qi = 2i−(2r+1+ε) and χi(x) =
√

2 sin(πix) for all x ∈ D. Here ε > 0 and r controls the
regularity of the Wiener process in the sense that W (t) ∈ Hr

0(0, 1). Denoting the solution-
vector at the interior points of the spatial mesh as

X(t) = (X1(t), . . . XN (t))T = (u(x1, t), . . . , u(xN , t))
T ,

we obtain the following N -dimensional SODE-system

dX(t) = AhX(t) dt+
N∑
i=1

GhiX(t) dβi(t),(8)

X(0) = (sin(x1π), . . . , sin(xNπ))T ,

where

Ah =
1

h2
tridiag

(
1,−2, 1

)N
j=1

and Ghi = diag

{√
2qi sin

(
jπi

N + 1

)}N
j=1

.
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2.2. Linear stability analysis of Eq. (8). The mean-square stability of the zero solution
for linear SODE systems can be characterised via the mean-square stability matrix of the
system. Following [4], the process Y (t) = vec(X(t)X(t)T ) satisfies the deterministic ODE

dE(Y (t)) = SE(Y (t)) dt,(9)

where

S = Ah ⊗ IN + IN ⊗ Ah + σ2
N∑
r=1

Ghr ⊗ Ghr = Ah ⊕ Ah + σ2
N∑
r=1

Ghr ⊗ Ghr .

Here, ⊗ denotes the matrix Kronecker product, ⊕ denotes the Kronecker sum and IN denotes
the N -dimensional identity matrix.

Based on the following lemma, see e.g. [4], we can determine the mean-square stability
properties of the zero solution of Eq. (8) by considering the spectrum of the underlying mean-
square stability matrix S.

Lemma 2.2. Let α(S) be the spectral abscissa of S. The zero solution of Eq. (8) is asymp-
totically mean-square stable if and only if α(S) < 0.

Both Ah ⊕Ah and
∑
Ghi ⊗Ghi are symmetric, so we can apply Weyl’s theorem, see e.g. [9,

Theorem 4.3.1], to obtain a lower bound for α(S):

max
1≤j≤N2

[
λN2−j+1

(
Ah ⊕Ah

)
+ σ2λj

(
N∑
i=1

Ghi ⊗Ghi

)]
≤ α(S).

Here, λj(M) denotes the j-th largest eigenvalue of a matrix M . Due to basic properties of

the Kronecker product (see e.g. [21]) and the form of Ghi , the matrix
∑
Ghi ⊗Ghi has positive

eigenvalues. Consequently, the zero solution of Eq. (6) is asymptotically mean-square unstable
for large enough σ.

In analogy to the one dimensional case we expect that there exist values of σ for which
the zero solution is asymptotic a.s. stable but asymptotic mean-square unstable. In fact, the
authors in [15] showed that for linear SODE systems the asymptotic almost sure stability
can be interpreted as the limiting case of p-th moment stability for p → 0. However the
computation of this limit is not straightforward and the p-th moments for p < 1 are hard to
interpret. An alternative way for showing asymptotic almost sure stability of the zero solution
is the analysis of the corresponding Lyapunov exponents. The top Lyapunov exponent is
defined as

Λ = lim
t→∞

1

t
log |X(t)| .

As in the deterministic case, the path-wise stability of an SODE system is completely de-
scribed by Λ: the zero solution of Eq. (6) is asymptotically almost sure stable iff Λ < 0
(see [1]). The actual computation of Λ requires a thorough understanding of the exact so-
lution X(t), which is typically not available, consequently analytic results are only known
for low dimensional systems (see [10, 12]). For higher dimensions the analysis of the top
Lyapunov exponent is still tractable if one assumes non-degeneracy of the driving noise
(see [13, 2, 18] and for numerical approximations of Λ based on path simulation [22]). Let

D(λ) =
∑N

i=1G
h
i λλ

TGhi ∈ RN×N for λ ∈ RN . We say the noise is non-degenerate if there is
a C > 0 such that

〈D(λ)ζ, ζ〉 ≥ C|λ|2|ζ|2 ∀λ, ζ ∈ RN(10)



AN IMPORTANCE SAMPLING TECHNIQUE IN MONTE CARLO METHODS FOR SDES 7

or equivalently, that the dimension of the linear hull of {Gh1x, . . . , GhNx} is equal to N (see
[13, Appendix A]). Under Condition (10) the top Lyapunov exponent can be represented as
(see [13, Theorem 6.11])

Λ =

∫
SN−1

K(λ)ν(dλ) with K(λ) =
〈
Ahλ, λ

〉
+

1

2
trace [D(λ)]− 〈D(λ)λ, λ〉 .(11)

Here SN−1 denotes the (N − 1)-dimensional unit sphere and ν denotes the invariant measure
of the process X(t)/|X(t)|. The advantage of representation (11) is that even if the integral
can not be calculated explicitly, one can analyse the kernel K(λ) to obtain sufficient conditions
for asymptotic a.s. (in-)stability of the zero solution.

To use this representation we have to ensure that condition (10) is fulfilled. The diffusion
matrices Ghk are defined via the basis representation of the Laplacian. Consequently the
noise is non-degenerate if the number of independent Wiener processes is at least equal to
the dimension of the system, which is the case for Eq. (8). As the diffusion matrices Ghi are
diagonal and since

trace [D(λ)] = σ2

〈
N∑
k=1

(
Ghk

)2
λ, λ

〉
,

we can write the kernel K(λ) as K(λ) = 〈K(λ)λ, λ〉 with

(12) K(λ) = Ah +
σ2

2

N∑
k=1

(Ghk)2 −D(λ).

By careful inspection of the eigenvalues of K(λ), we expect K(λ) to be negative on SN−1
independently of σ. Therefore the zero solution of Eq. (8) is asymptotically a.s. stable, whereas
it becomes asymptotically mean-square unstable for σ large enough. Then again the explosion
of E|X(t)|2 depends on very rare trajectories and standard Monte Carlo estimation has the
same difficulties to approximate E|X(t)|2 as in the one dimensional case, see Figure 2. In the
next section we will treat the question if the mean-square stability behaviour can be recovered
in Monte Carlo simulations by using variance reduction techniques.

3. Variance reduction techniques and rare event simulations

As we have already mentioned in Section 1, the Monte Carlo error can be controlled by
either increasing the number of samples or by using variance reduction techniques to obtain
estimators with smaller variances compared to standard Monte Carlo methods. The first
approach, i.e. increasing the number of trajectories, faces the following severe limitations:

(1) A typical indicator that the number of simulated random variables might be insuffi-
cient is a substantial empirical variance of the standard Monte Carlo estimator. How-
ever, in our setting the rapid decay of the paths leads to a nearly vanishing empirical
variance. Hence any estimation for the necessary number of simulated trajectories has
to rely on the a priori knowledge of the rareness of the exploding trajectories. In gen-
eral, the probability of these rare events is not known. Moreover, in situations where
one can calculate the probability of these rare events, see e.g. geometric Brownian
motion in Section 2, the probability of the occurrence of these trajectories is so low
that the number of required trajectories is unreasonably high.
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(2) A natural bound on the number of trajectories is imposed by the computational cost
of the time integration method. This limits the possibility of increasing the number
of numerical trajectories for high dimensional SODE systems.

Concerning variance reduction techniques we distinguish two types of methods. First, there
are methods, such as Control Variates and multilevel Monte Carlo approaches, that reduce
the variance by adding suitable control quantities to the standard estimators. The probability
space and the distribution of the simulated random variables are unchanged. Thus problem II
of the standard Monte Carlo estimator, i.e. the absence of rare events, is still present for this
type of techniques. To see this, we examine the multilevel Monte Carlo estimator in Section
3.1 and analyse its disadvantages for our setting.

Second, there are methods, such as importance sampling, that change the underlying prob-
ability measure and therefore the distribution of the simulated trajectories. By being appro-
priately tuned, these methods are able to enforce the rare event of exploding trajectories. In
Section 3.2, we present an importance sampling technique based on Girsanov’s theorem where
we modify the drift such that we simulate realisations of SODE systems with slower decaying
trajectories. With the choice of constant weight functions in the Girsanov transformation,
the resulting system is still linear and the computational cost to obtain a single realisation is
of the same order as for the original system. Note that we can also apply additional variance
reduction techniques of the first type to the modified estimator. In the numerical illustra-
tions at the end of Section 4, we choose a combination of the proposed importance sampling
technique (for rare event simulation purposes) and a multilevel Monte Carlo approach (for
additional variance reduction).

3.1. Multilevel Monte Carlo methods (and their failure to solve Problem II).
In this section, we consider the multilevel Monte Carlo (MLMC) estimator introduced by

[11, 6] as a variance reduction technique. For this, we denote by f(X̂`(t)), ` = 0, . . . , L,
an approximation of f(X(t)) using a numerical time integration method on a geometrical
hierarchy of time grids with time step sizes ∆` = 2−l−κ. Here, we use the parameter κ to

ensure that the numerical method is stable on the coarsest level. Furthermore, let f(X̂−1(t)) =
0.

Then, the multilevel Monte Carlo estimator is defined (see e.g. [6, 7])

EL[f(X̂L(t))] :=

L∑
`=0

EN`
[f(X̂`(t))− f(X̂`−1(t))],

where N` independent realisations of f(X̂`(t))− f(X̂`−1(t)) are used for the standard Monte
Carlo estimator on each level.

There is a large literature on problems to which the MLMC approach has successfully been
applied, see e.g. [7] for a survey. In many of these applications, a remarkable reduction of
computational complexity compared to the standard Monte Carlo estimation is observed and
a variance reduction of the underlying estimator is achieved.

In [6], a result on the optimal choice of levels L and of numbers of realisations N`, ` =
0, . . . , L, used on each of these levels is given for the multilevel Monte Carlo estimator. How-
ever, the number of realisations depends on the variance of the standard Monte Carlo esti-
mators on each level, i.e. N` depends on the constant C` > 0 in the estimate

(13) Var

[
EN`

[f(X̂`(t))− f(X̂`−1(t))]

]
≤ C`2−`
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for all ` = 0, . . . , L. By considering the variance of the Monte Carlo estimator on level 0, we
obtain

Var(EN0 [f(X̂0(t))]) =
1

N2
0

N0∑
i=1

Var(f(X̂
(i)
0 (t))) =

1

N0
Var(f(X̂

(1)
0 (t))).

Given an appropriately chosen initial time step size ∆t0, Var(f(X̂0(t))) can be assumed to
be close to Var(f(X0(t))). Consequently, for SODEs where the zero solution is stable in the
almost sure sense but mean-square unstable, we can deduce that the constant C0 becomes
unreasonably large by the same considerations as for the standard Monte Carlo estimator.
Thus, we also have for the multilevel Monte Carlo estimator the performance problem that
we need prohibitively many realisations (at least on the coarsest level) to obtain a certain
accuracy. Although a reduction of computational cost is achieved by using the coarser time
grids compared to the standard Monte Carlo approach, it is still not possible to simulate so
many realisations that the rare trajectories for reproducing the mean-square instability occur
with sufficient frequency.

In the standard MLMC algorithm proposed in [6, 7], the number of realisations on each
level is computed by using the optimal choice of N` based on empirical estimators for the

variance of f(X̂`(t)) − f(X̂`−1(t)). However, the empirical estimators for the variance are
essentially zero due to the gap between almost sure and mean-square dynamics. Thus a
straightforward application of multilevel Monte Carlo techniques without focusing on rare
event simulation is not an appropriate approach in our setting. For this reason, we propose
below a rare event simulation procedure based on importance sampling where we force the
exploding trajectories to happen more frequently. Afterwards we can improve the modified
estimator by further variance reduction techniques, e.g. by multilevel Monte Carlo methods
as above.

3.2. Importance sampling. The main idea of importance sampling (see e.g. [8, 3, 14]) is to
change the underlying probability measure (and therefore the distribution of X(t)) in order
to either reduce the variance of the random variable f(X(t)) or in rare event simulations, to
increase the frequency of rare events in the Monte Carlo simulation.

Here we concentrate on the second aspect and transform the underlying probability measure
in a delicate way such that the exploding trajectories happen more often, but the zero solution
is still asymptotically a.s. stable.

A convenient way to transform the underlying probability measure is given by Girsanov’s
theorem (see [20]) which allows us to change the drift of the system. Let

dX̃(t) = ÃhX̃(t) dt+ σ

N∑
i=1

Ghi X̃(t) dβi(t)(14)

be a (possibly non-linear) system of SODEs with modified drift

Ãh = Ah − σ
N∑
i=1

di(t, X̃(t))Ghi
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for a set of real-valued functions dj : [0, T ] × Rd → R. We define a new probability measure

P̃ via the density process

dΘ(t) =

N∑
j=1

dj(t, X̃(t)) Θ(t) dβj(t).(15)

Under certain conditions on the functions dj , e.g. they fulfill Novikov’s condition (see [20])

we can apply Girsanov’s theorem, see e.g. [20, Theorem 46], which states that P and P̃ are
equivalent and the processes

γi(t) =

t∫
0

di(s, X̃(s)) ds+ βi(t)

are Wiener processes under P̃. Consequently we have

E [f(X(t))] = E
[
f(X̃(t))Θ(t)

]
and we can use trajectories of Eq. (14) to estimate the quantity E [f(X(t))].
Concerning the choice of the weight functions dj we stipulate the following conditions:

• The rare events of exploding trajectories should happen more frequently.
• The computational effort for simulating Eq. (14) should not be larger than that for

simulating Eq. (8).

It is well-known in the literature (see [19]) that there exists an optimal choice d∗j (t, X̃(t)) for the

weight functions for which the quantity f(X̃(t))Θ(t) becomes deterministic and consequently
the Monte Carlo estimator has variance 0. Of course the optimal value is typically not
known, and approximated solutions of the corresponding Kolmogorov backward equation (as

proposed in [19]) are non-trivial to obtain. Additionally any choice of dj(t, X̃(t)) which is
not constant results in a possibly high-dimensional system of non-linear SODEs leading to
additional numerical challenges as e.g. to ensure the non-negativity of the density process
Θ(t). To circumvent this problem we propose using only constant weight functions dj , which
implies that the system (14) is linear and the density process Θ(t) can be calculated explicitly.

Remark 3.1. In special cases, the optimal choice of weight functions d∗j (t, X̃(t)) for the second

moment are constants, e.g. for the geometric Brownian motion (3), where

X̃2(t)Θ(t) = X2
0 exp

[
2

(
λ− dσ − σ2

2

)
t− d2

2
t+ (2σ + d)β(t)

]
(16)

is deterministic for d∗ = −2σ.

For multi-dimensional linear systems of SODEs with non-commuting drift and diffusion
matrices, a suitable choice of the weight functions is generally more challenging.

Our idea is the following: the asymptotic stability of the zero solution of the transformed
system (14) can be determined by its Lyapunov exponent Λ represented by (11) where the

kernel K̃(·) now takes the form

K̃(λ) =

〈(
Ah − σ

N∑
i=1

diG
h
i

)
λ, λ

〉
+

1

2
trace [D(λ)]− 〈D(λ)λ, λ〉 .
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As before, see Eq. (12) in Section 2.2, the definiteness of K̃(·) is determined by the definiteness
of the matrix

K̃(λ) := Ah − σ
N∑
i=1

diG
h
i −D(λ) +

σ2

2

N∑
k=1

(
Ghk

)2
on SN−1. In fact for K̃(λ) (strictly) positive or negative definite, the function K̃(λ) is (strictly)
positive or negative definite and in consequence the top Lyapunov exponent is positive or
negative. As such, obtaining a positive top Lyapunov exponent is not desirable, as then
almost all the trajectories of the transformed system (14) would explode, which would result

in a wildly varying Monte Carlo estimator. However, the matrix K̃(λ) can also be indefinite,

which essentially means K̃(λ) ≥ 0 on some subset of SN−1, possibly yielding a larger Lyapunov

exponent than in the case of strictly negative definite K̃(λ). As the (negative) Lyapunov
exponent Λ measures the rate of exponential decay of the trajectories of system (14), such
an increase of Λ implies a slower decay of the solution trajectories. The main idea now is
to establish exactly this situation with judicious choices of the di. We propose to choose

the weights di in such a way that the largest eigenvalue of the matrix K̃(λ) is positive on

SN−1. As the term
∑N

i=1 diG
h
i is a diagonal matrix, we cannot modify off-diagonal entries.

Therefore we use the weights di to compensate the influence of the diagonal entries of −D(λ)+
σ2

2

∑N
k=1

(
Ghk
)2

which are given by(
−D(λ) +

σ2

2

N∑
k=1

(
Ghk

)2)
ii

= σ2(
1

2
− λ2i )

(
N∑
k=1

(Ghk,ii)
2

)
.

Measuring the distance between the diagonals with a least-squares approach we define the
optimisation problem

argmin
d1,...,dN∈R

trace

(p̃ N∑
i=1

σ2(Ghi )2 + σ
N∑
i=1

diG
h
i

)2
 .(17)

The parameter p̃ > 0 allows us to control the definiteness of K̃, in principle one could choose
p̃ sufficiently large such that the Lyapunov exponent Λ gets positive.

The optimisation problem (17) requires us to solve a linear system of dimension N . Alter-
natively we can decompose (17) into N optimisation problems of the form

argmin
di∈R

[
trace

[(
p̃σ2(Ghi )2 + σdiG

h
i

)2]]
= −p̃σ

∑N
k=1(G

h
i,kk)

3∑N
k=1(G

h
i,kk)

2
1 ≤ i ≤ N,(18)

which can be solved analytically. For both cases the weights di with even indices i are
essentially zero, whereas for odd indices the values of |di| decrease with growing i, see Table
1 in Section 4 for the values di, where N = 10. The corresponding density process can be
calculated explicitly and is given by

Θ(t) = exp

[(
−

N∑
i=1

d2i

)
t

2
+

N∑
i=1

diβi(t)

]
.(19)

Note that for the stability analysis of the discretised stochastic heat equation (8), we
required that the noise is non-degenerate in the sense of Condition (10) to obtain the repre-
sentation (11) for the top Lyapunov exponent. Therefore, the number of Wiener processes



12 M. ABLEIDINGER, E. BUCKWAR, AND A. THALHAMMER

was required to be greater or equal N . However, the importance sampling technique proposed
above (and thus the optimisation problems (17) and (18)) can also be modified for Eq. (8),
when the number J of Wiener processes is smaller than the dimension N by appropriately
truncating the corresponding sums after the first J elements.

4. Numerical results

4.1. Monte Carlo estimators. Using the measure transformations from Section 3.2, we
define the Monte Carlo estimator

ẼN [f(X̂(T )] =
1

N

N∑
i=1

f(X̂(i)(T ))Θ(i)(T ),(20)

where X̂(i)(T ) are numerical trajectories of the transformed system (14) and Θ(i)(T ) are the
corresponding trajectories of the density process given by (19). For calculating the numer-
ical trajectories we use the Euler-Maruyama method with a suitable time step size for the
geometric Brownian motion (3), whereas for the stochastic heat equation (6) we employ the
stochastic trapezoidal rule

X̂(tn+1) = X̂(tn) +
∆t

2
ÃhX̂(tn+1) +

∆t

2
ÃhX̂(tn) + σ

N∑
r=1

GrX̂n∆βnr ,

with βnr
iid∼ N (0,

√
tn+1 − tn), since the numerical treatment of the discretised stochastic heat

equation (8) requires us to use a numerical method with suitable stability properties. It is
straightforward to extend (20) to a multilevel Monte Carlo estimator which we denote by

ẼL[f(X̂(T )]. We want to estimate the quantity E|X(T )|2 and compare our estimators with
single and multilevel Monte Carlo estimators without modification.

A reference solution can be obtained by using results from Section 2.2. For this, let
EY (T ) = (EY1(T ), . . . ,EYN2(T )) be the solution of the deterministic system (9) used for
the mean-square stability analysis of the semi-discretised stochastic heat equation. Since
Y (t) = vec(X(t)X(t)T ), we obtain a reference solution by

E|X(T )|2 =

N∑
i=1

EX2
i (T ) =

N−1∑
i=0

EY(i·N)+1(T ).(21)

4.2. Geometric Brownian motion. In Figure 1, we compare the performance of the stan-
dard Monte Carlo estimator and the estimator defined in Eq. (20) applied to the geometric
Brownian motion (3) with respect to different diffusion parameter σ. For these numerical ex-
periments, we fix the drift parameter λ = −1 and the end time points T = 5 and T = 10. The
time step size for the Euler-Maruyama scheme, ∆t = 2−8, is chosen such that the stability
of the numerical method is guaranteed for all considered test cases. Furthermore, all Monte
Carlo simulations are based on M = 107 independent realisations.

As we can see in Figure 1, the standard Monte Carlo estimator fails to reproduce the
correct dynamics of the mean-square process. Note that there is hardly any difference in the
qualitative behaviour of the standard Monte Carlo estimator using the exact solution or the
numerical approximation based on the Euler-Maruyama scheme.

For the Girsanov transformation, we compare different choices of the parameter p̃. Here
the solution of the optimisation problem (17) takes the form d = −σp̃. First, the choice
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Figure 1. Monte Carlo simulations for the geometric Brownian motion (3) for
λ = −1, and varying σ. All Monte Carlo simulations use M = 107 trajectories.

p̃ = − λ
σ2 + 1

2 (note that −λ > 0 and d = λ/σ − σ/2) eliminates the deterministic part in the
exact solution of the transformed system, i.e.

X̃(t) = x0 exp (σβ(t))

and for this reason, the zero solution is neither asymptotically a.s. stable nor unstable. The
resulting estimation is already a substantial improvement compared to standard Monte Carlo
estimators, however the mean-square process is still underestimated. Second, corresponding
to our considerations in Section 3.2 increasing the parameter p̃ leads to a larger Lyapunov
exponent. Since for large values of σ, it holds that − λ

σ2 + 1
2 < 1, we choose d = −σ,

i.e. p̃ = 1. For this choice the modified Monte Carlo estimator provides a better approximation
of E

[
X2(T )

]
. Finally, the case p̃ = 2 results in the optimal choice d∗ = −2σ (see Remark

3.1).

4.3. Stochastic heat equation. In Figure 2 and 3, we compare the qualitative behaviour
of the standard and multilevel Monte Carlo estimators with and without measure transfor-
mation. We want to estimate the quantity E|X(T )|2 for different σ and time points T . For
the Q-Wiener process, we choose the regularity parameter r = 1. To obtain reference solu-
tions we carefully integrate the deterministic Equation (9) and use the representation (21).
For the standard Monte Carlo simulations we use M = 211 realisations and a constant time
step size ∆t = 2−11. For the multilevel Monte Carlo simulations we use 5 levels, where we
calculate M` = 211−` trajectories with time step sizes ∆t` = 2−(7+`) on the corresponding
refinement level ` = 1, . . . , 5. The Monte Carlo estimations after measure transformation
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(denoted by MC + ImpS and MLMC + ImpS in the plots) are computed with the same set
of parameters. Depending on the optimisation criteria of Section 3.2 we distinguish between
OPT1, where we minimised Eq. (17), and OPT2, where we used Eq. (18). In Table 1 below,
the computed weights di, i = 1, . . . , N, are given for N = 10 for both optimisation problems.
In Figures 2 and 3 we see that the standard as well as the multilevel Monte Carlo estimator
fail to approximate E|X(T )|2 correctly for σ > 2. Note that for 2 ≤ σ ≤ 3.4 the zero solution
of system (6) is still asymptotically mean-square stable, however the estimator substantially
underestimates E|X(T )|2 due to the rapid decrease of the solution paths. For the estimators
after measure transformation we see that the quality of the approximation strongly depends
on the choice of the parameter p̃ as we have discussed in Section 3.2. For p̃ = 1/2 the matrix

K̃(λ) is still negative definite. The results are obviously better than for the untransformed
estimators, nevertheless the approximations are not satisfying, especially for the larger time

horizon T = 5. Increasing the parameter (p̃ = 1, 32) leads to an indefinite matrix K̃(λ). For

both choices, we obtain good approximations of the qualitative behaviour of E|X(T )|2.

Table 1. List of computed non-zero weights di, i = 1, 3, 5, 7, 9, based on opti-
misation problems OPT1 (17) and OPT2 (18). All weights with even indices
are essentially zero.

non-zero
weights OPT1 OPT2
d1 −1.201e− 02 −1.385e− 02
d3 −3.877e− 04 3.325e− 03
d5 −1.255e− 04 2.316e− 03
d7 9.046e− 05 1.469e− 03
d9 4.452e− 07 5.832e− 04

5. Conclusions

In this paper we analysed the Monte Carlo error for estimating the second moment of the
solution process of a linear system of SODEs with asymptotically a.s. stable but mean-square
unstable zero solution. The mean-square instability of the equilibrium of such systems is due
to very rare, exploding trajectories. Since the standard Monte Carlo estimator essentially
computes the average over a finite number of realisations, the path-wise behaviour of the
numerical trajectories compromises the estimation and the Monte Carlo error for estimating
Ef(X(t)), where f(x) is a function with (at least) quadratic growth in |x|, is huge.

We further remark that this situation also causes difficulties in numerical experiments
testing the weak convergence properties of numerical methods for SDEs. Such numerical il-

lustrations can be performed by simulations of the quantity |EM [X̂2(T )]−EX2(T )|. However,
for problems where the path-wise behaviour of the numerical realisation is totally different to
the dynamics of the mean-square process, the Monte Carlo error dominates the systematic
error by several orders of magnitude. Reducing the time step size will not lead to the expected
error reduction in numerical simulations.

As we showed in Section 3.1, with the straightforward application of standard variance
reduction techniques it is not possible to overcome these difficulties in our setting unless
they focus on rare event simulation. For this reason, we proposed an appropriately tuned
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importance sampling technique which allows the trajectories to explode more frequently. We
want to emphasise that the developed measure transformation does not change the linearity of
the SDE system and can be precomputed. Thus, the proposed method does not increase the
computational complexity of simulating a realisation of the quantity of interest. Furthermore,
it is also possible to apply additional variance reduction methods to the modified estimator
for further reducing its variance.

In this work we also compared standard and multilevel Monte Carlo methods with and
without the proposed importance sampling technique and illustrated the improvement by the
proposed method in numerical experiments for a spatially discretised stochastic heat equation.
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Figure 2. Monte Carlo methods for the spatially discretised stochastic heat
equation (8) for N = 10 and varying σ. The reference solution is computed
by Eq. (21).
Left column: Importance sampling with differently penalised weights at T = 1.
Right column: Importance sampling with differently penalised weights at T =
5.
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Figure 3. Multilevel Monte Carlo methods for the spatially discretised sto-
chastic heat equation (8) for N = 10 and varying σ. The reference solution is
computed by Eq. (21).
Left column: Importance sampling with differently penalised weights at T = 1.
Right column: Importance sampling with differently penalised weights at
T = 5.
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