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ABSTRACT
Based on a modified version of Abramov-Petkovšek reduc-
tion, a new algorithm to compute minimal telescopers for
bivariate hypergeometric terms was developed last year. We
investigate further in this paper and present a new argument
for the termination of this algorithm, which provides an
independent proof of the existence of telescopers and even
enables us to derive lower as well as upper bounds for the
order of telescopers for hypergeometric terms. Compared
to the known bounds in the literature, our bounds are
sometimes better, and never worse than the known ones.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algebraic Algorithms

General Terms
Algorithms, Theory

Keywords
Modified Abramov-Petkovšek reduction, Hypergeometric
term, Telescoper, Order bound

1. INTRODUCTION
This paper is about creative telescoping for hypergeomet-

ric terms. A hypergeometric term is an expression fx,y in,
say, two variables x, y such that the two shift quotients
fx+1,y/fx,y and fx,y+1/fx,y can be expressed as rational
functions in x and y. The prototypical example of a hyperge-
ometric term is the binomial coefficient fx,y =

(
x
y

)
. Creative

telescoping is the main tool for simplifying definite sums of
hypergeometric terms. The task consists in finding some
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nonzero recurrence operator L and another hypergeometric
term gx,y such that L·fx,y = gx,y+1−gx,y. It is required that
the operator L does not contain y or the shift operator σy,
i.e., it must have the form L = e0 + e1σx + · · · + eρσ

ρ
x for

some e0, . . . , eρ that only depend on x.
If L and gx,y are as above, we say that L is a telescoper

for fx,y, and gx,y is a certificate for L. Once a telescoper
for fx,y is known, we can extract useful information about
definite sums such as Fx =

∑x
y=0 fx,y from L. See [13,

14] for further information. These references also contain
classical algorithms for computing telescopers and certifi-
cates for given hypergeometric terms. During the past
25 years, the technique of creative telescoping has been
generalized and refined in various ways [12, 6, 7, 8, 9, 10,
11]. The latest trend in this development are so-called
reduction-based algorithms, first presented in [7]. One of
their features is that they can find a telescoper for a given
term f without also computing the corresponding certificate.
This is interesting because a certificate is not always needed,
and it is typically much larger (and thus computationally
more expensive) than the telescoper, so we may not want to
compute it if we don’t have to.

Reduction-based algorithms have been first developed in
the differential case, for various cases [7, 8, 9, 11]. The
basic idea, formulated for the shift case, is as follows.
Let C be a field of characteristic zero. Suppose we know
a function redy(·), called reduction, with the property
that for all f in the domain under consideration, say D,
containing C(x, y), there exists a g in the same domain
such that f − redy(f) = σy(g) − g, i.e., the difference
f − redy(f) is a summable term. We call redy(f) a
remainder of f with respect to the reduction redy(·).
Then in order to find a telescoper for f , we can compute
redy(f), redy(σx(f)), redy(σ2

x(f)), . . . until we find a linear
dependence over the field C(x). If such a dependence is
found, say e0 redy(f) + · · · + eρ redy(σρx(f)) = 0 for some
e0, . . . , eρ in C(x), then e0 + · · ·+ eρσ

ρ
x is a telescoper for f .

In order to show that this method terminates, one possible
approach is to show that the C(x)-vector space spanned by
redy(f), redy(σx(f)), redy(σ2

x(f)), . . . for f ∈ D has a finite
dimension. Then, as soon as ρ exceeds this dimension, we
can be sure that a telescoper will be found. This approach
was taken in [8, 9, 11]. As a nice side result, this approach
provides an independent proof of the existence of telescopers,
and even a bound on their order. In the paper from last
year [10], the authors used a different approach. Instead of
showing that the remainders form a finite-dimensional vector
space, they showed that for every summable term f , we have
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redy(f) = 0. This also ensures that the method terminates
(assuming that we already know for other reasons that a
telescoper exists), and in fact that it will find the smallest
possible telescoper, but it does not provide a bound on its
order.

This discrepancy in the approaches for the differential case
and the shift case is unpleasant. It is not clear why the shift
case should require a different argument. The goal of the
present paper is to show that it does not. We will continue
the development of last year’s theory to a point where we can
also show that the remainders belong to a finite-dimensional
vector space. As a result, we obtain new bounds for the
order of telescopers for hypergeometric terms. We obtain
lower as well as upper bounds. We do not find exactly
the same bounds that are already in the literature [12, 2].
Comparing our bounds to the known bounds, it appears that
for“generic” input, the values often agree (of course, because
the known bounds are already generically sharp). However,
there are some special examples in which our bounds are
better than the known bounds. On the other hand, our
bounds are never worse than the old bounds.

2. PRELIMINARIES
Using the same notations as in [10], we let F be a field of

characteristic zero, and F(y) be the field of rational functions
in y over F. Let σy be the automorphism that maps r(y)
to r(y + 1) for every r ∈ F(y). The pair (F(y), σy) is called
a difference field. A difference ring extension of (F(y), σy)
is a ring D containing F(y) together with a distinguished
endomorphism σy : D → D whose restriction to F(y) agrees
with the automorphism defined before. An element c ∈ D
is called a constant if σy(c) = c. We denote by degy(p) the
degree of a nonzero polynomial p ∈ F[y].

Definition 2.1. Let D be a difference ring extension of F(y).
A nonzero element T ∈ D is called a hypergeometric term
over F(y) if σy(T ) = rT for some r ∈ F(y). We call r the
shift quotient of T w.r.t. y.

A univariate hypergeometric term T is called hyperge-
ometric summable if there exists another hypergeometric
term G s.t. T = ∆y(G), where ∆y denotes the difference
of σy and the identity map. We abbreviate “hypergeometric
summable” as “summable” in this paper.

Recall [3, §1] that a nonzero polynomial in F[y] is said to
be shift-free if no two distinct roots differ by an integer. A
nonzero rational function in F(y) is said to be shift-reduced if
its numerator is co-prime with any shift of its denominator.

According to [3, 5], for a given hypergeometric term T
there always exists a rational function S ∈ F(y) and another
hypergeometric termH whose shift quotient is shift-reduced,
s.t. T = SH. This is called a multiplicative decomposition
of T . We call the shift quotient K = σy(H)/H a kernel of T
and S the corresponding shell.

Based on Abramov and Petkovšek’s work in [3, 5], the
authors of [10] presented a modified version of Abramov-
Petkovšek reduction, which determines summability without
solving any auxiliary difference equations. To describe it
concisely, we first recall some terminology.

Let T be a hypergeometric term whose kernel is K and
the corresponding shell is S. Then T = SH, where H is a
hypergeometric term whose shift quotient is K. Write K =
u/v, where u, v are polynomials in F[y] with gcd(u, v) = 1.

Definition 2.2. A nonzero polynomial p in F[y] is said to be
strongly prime with K if gcd

(
p, σ−iy (u)

)
= gcd

(
p, σiy(v)

)
=1

for all i ≥ 0.

Now define the F-linear map φK from F[y] to itself by
sending p to uσy(p) − vp for all p ∈ F[y]. We call φK the
map for polynomial reduction w.r.t. K. Let

WK = span{y` | ` ∈ N, ` 6= degy(p) for all p ∈ im(φK)}.

Then F[y] = im(φK) ⊕ WK , and thus we call WK the
standard complement of im(φK).

Definition 2.3. Let f be a rational function in F(y).
Another rational function r in F(y) is called a (discrete)
residual form of f w.r.t. K if there exists g ∈ F(y) and a, b, q
in F[y] s.t.

f = Kσy(g)− g + r and r =
a

b
+
q

v
,

where degy(a) < degy(b), gcd(a, b) = 1, b is shift-free and
strongly prime with K, and q belongs to WK . For brevity,
we just say that r is a residual form w.r.t. K if f is clear
from the context. We call b the significant denominator of r.

The modified Abramov-Petkovšek reduction [10, Theo-
rem 4.8] can be stated as follows.

Theorem 2.4. With the notations given above, the modified
version of the Abramov-Petkovšek reduction computes a
rational function g in F(y) and a residual form r w.r.t. K,
such that

T = ∆y(gH) + rH. (1)

Moreover, T is summable if and only if r = 0.

3. PROPERTIES OF RESIDUAL FORMS
In this section, we will explore important properties

of residual forms, which enables us to derive nontrivial
relationship among remainders in Section 5.

Unlike the differential case, a rational function may have
more than one residual form in shift case. However, these
residual forms are related to each other in some way. Before
describing it, let us recall some technology.

Recall [5, §2] that polynomials p1, p2 ∈ F[y] are said to
be shift-equivalent (w.r.t. y) if p1 = σ`y(p2) for some ` ∈ Z,
denoted by p1 ∼y p2. It is an equivalence relation.

Let f be a rational function in F(y). We call the rational
function pair (K,S) ∈ F(y)2 a rational normal form (RNF)
of f if f = K · σy(S)/S and K is shift-reduced. By [5,
Theorem 1], every rational function has at least one RNF.
Let T be a hypergeometric term over F(y). It is not hard to
see that (K,S) ∈ F(y)2 is an RNF of σy(T )/T if and only
if K and S are a kernel and the corresponding shell of T .

Definition 3.1. Two shift-free polynomials p, q ∈ F[y] are
called shift-related (w.r.t. y), denoted by p ≈y q, if for
any nontrivial monic irreducible factor f of p, there exists
a unique monic irreducible factor g of q with the same
multiplicity as f in p s.t. f ∼y g, and vice versa.

One can show that ≈y is an equivalence relation.

Proposition 3.2. Let K be a shift-reduced rational function
in F(y). Assume that r1, r2 ∈ F(y) are both residual forms
of the same rational function in F(y) w.r.t. K. Then the
significant denominators of r1 and r2 are shift-related to
each other.
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Proof. Assume that r1, r2 are of the forms

r1 =
a1
b1

+
q1
v

and r2 =
a2
b2

+
q2
v
,

where ai, bi ∈ F[y], deg(ai) < deg(bi), gcd(ai, bi) = 1, bi is
shift-free and strongly prime with K, qi ∈ WK for i = 1, 2,
and v is the denominator of K. Since r1, r2 are both residual
forms of the same rational function, there exists g ∈ F(y) s.t.

r2 = Kσy(g)− g + r1.

It follows that
a2v

b2
= uσy(g)− v(g) + (q1 − q2) +

a1v

b1
. (2)

Let f ∈ F[y] be a nontrivial monic irreducible factor of b1
with multiplicity α > 0. If fα divides b2, then we are
done. Otherwise, let gd be the denominator of g. Then fα

divides gd or σy(gd) as gcd(b1, a1v) = 1. If fα divides gd, let

m = max{` ∈ Z | σ`y(f)α divides gd}.

Then m ≥ 0 and σm+1
y (f)α | σy(gd). Since b1 is strongly

prime withK, gcd(σm+1
y (f)α, u) = 1. Apparently, neither b1

nor gd is divisible by σm+1
y (f)α as b1 is shift-free and m is

maximal. Hence (2) implies σm+1
y (f)α is the required factor

of b2. Similarly, we can show that σmy (f)α with

m = min{` ∈ Z | σ`y(f)α divides gd} ≤ −1,

is the required factor of b2, if fα divides σy(gd).
In summary, there always exists a monic irreducible factor

of b2 with multiplicity at least α s.t. it is shift-equivalent
to f . Due to the shift-freeness of b2, this factor is unique.
Conversely, the proof proceeds in a similar way as above.
According to the definition, b1 ≈y b2.

Given a hypergeometric term, it is readily seen that
the above proposition reveals the relationship between two
residual forms w.r.t. the same kernel. To study the case with
different kernels, we need to develop two lemmas.

Lemma 3.3. Let (K,S) be an RNF of a rational function f
in F(y) and r be a residual form of S w.r.t. K. Write

K =
u

v
with u, v ∈ F[y] and gcd(u, v) = 1.

Assume that p ∈ F[y] is a nontrivial monic irreducible factor
of v with multiplicity α > 0. Then

(K′, S′) =

(
u

v′σy(p)α
, pαS

)
is an RNF of f , in which v′ = v/pα. Moreover, there
exists a residual form r′ of S′ w.r.t. K′ whose significant
denominator is equal to that of r.

Proof. Since K is shift-reduced, so is K′. Then the first
assertion follows by noticing

K
σy(S)

S
=

u

v′pα
σy(S)

S
=

u

v′σy(p)α
σy(pαS)

pαS
= K′

σy(S′)

S′
.

Let r be of the form r = a/b + q/v where a, b ∈ F[y],
deg(a) < deg(b), gcd(a, b) = 1, b is shift-free and strongly
prime with K, and q ∈WK . Then there exists g ∈ F(y) s.t.

S = Kσy(g)− g +
a

b
+

q

v′pα
,

which implies that

S′ = pαS = pαKσy(g)− pαg +
apα

b
+
q

v′

=
u

v′σy(p)α
σy(pαg)− pαg +

apα

b
+
qσy(p)α

v′σy(p)α

= K′σy(pαg)− pαg +
apα

b
+
qσy(p)α

v′σy(p)α

Since b is strongly prime with K and gcd(a, b) = 1, we
have gcd(apα, b) = 1. According to Lemma 4.2 and
Remark 4.3 in [10], there exist g′ ∈ F(y), a′, q′ ∈ F[y] with
degy(a′) < degy(b) and gcd(a′, b) = 1, and q′ ∈WK′ s.t.

S′ = K′σy(g′)− g′ +
(
a′

b
+

q′

v′σy(p)α

)
.

Note that b is strongly prime with K, so b is also strongly
prime with K′. By the shift-freeness of b,

a′

b
+

q′

v′σy(p)α

is a residual form of S′ w.r.t. K′. The lemma follows.

Lemma 3.4. Let (K,S) be an RNF of a rational function f
in F(y) and r be a residual form of S w.r.t. K. Write

K =
u

v
with u, v ∈ F[y] and gcd(u, v) = 1.

Assume that p ∈ F[y] is a nontrivial monic irreducible factor
of u with multiplicity α > 0. Then

(K′, S′) =

(
u′σ−1

y (p)α

v
, σ−1
y (p)αS

)
is an RNF of f , in which u′ = u/pα. Moreover, there
exists a residual form r′ of S′ w.r.t. K′ whose significant
denominator is equal to that of r.

Proof. Similar to Lemma 3.3.

Proposition 3.5. Let (K,S) be an RNF of a rational
function f in F(y) and r be a residual form of S w.r.t. K.

Then there exists another RNF (K̃, S̃) of f such that

1. K̃ has shift-free numerator and shift-free denominator;

2. there exists a residual form r̃ of S̃ w.r.t. K̃ whose
significant denominator is equal to that of r.

Proof. Let K = u/v with u, v ∈ F[y] and gcd(u, v) = 1,
and b be the significant denominator of r.

Assume that v is not shift-free. Then there exist two
nontrivial monic irreducible factors p and σmy (p) (m > 0) of v
with multiplicity α > 0 and β > 0, respectively. W.L.O.G.,
suppose further that σ`y(p) is not a factor of v for all ` < 0
and ` > m. By Lemma 3.3, f has an RNF (K′, S′), in
which K′ has a denominator v′ = ṽσy(p)α, where ṽ = v/pα,
and the numerator remains to be u. Moreover, there exists a
residual form of S′ w.r.t. K′ whose significant denominator
is b. If m = 1, σy(p) is an irreducible factor of v′ with
multiplicity α+β. Otherwise, it is an irreducible factor of v′

with multiplicity α. More importantly, σ`y(p) is not a factor
of v′ for all ` < 1. Iteratively using the argument, we arrive
at an RNF of f such that σmy (p) divides the denominator of

the new kernel with certain multiplicity but σiy(p) does not
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whenever i 6= m. Moreover, there exists a residual form of
the new shell with respect to the new kernel whose significant
denominator is equal to b. Applying the same argument to
each irreducible factor, we can obtain an RNF of f whose
kernel has a shift-free denominator and whose shell has a
residual form with significant denominator b.

With Lemma 3.4, one can obtain an RNF of f whose
kernel has a shift free numerator whose shell has a residual
form with significant denominator b.

A nonzero rational function is said to be shift-free if it is
shift-reduced and its denominator and numerator are both
shift-free. The main result is given below.

Proposition 3.6. Let (K,S) and (K′, S′) be two RNF’s
of a rational function f in F(y), r and r′ be residual forms
of S (w.r.t. K) and S′ (w.r.t. K′), respectively. Then the
significant denominators of r and r′ are shift-related.

Proof. Let b and b′ be the significant denominators of r
and r′, respectively. By the above proposition, there exist
two RNF’s (K̃, S̃) and (K̃′, S̃′) of f such that their kernels
are shift-free and their shells have residual forms whose
significant denominators are b and b′, respectively.

According to [5, Theorem 2], the respective denomina-

tors ṽ and ṽ′ of K̃ and K̃′ are shift-related. Thus, for a
nontrivial monic irreducible factor p of ṽ with multiplic-
ity α > 0, there exists a unique factor σ`y(p) of ṽ′ with
the same multiplicity. W.L.O.G., we may assume ` ≤ 0.
Otherwise, we can switch the roles of (K̃, S̃) and (K̃′, S̃′).
If ` < 0, a repeated use of Lemma 3.3 leads to a new
RNF (K̃′′, S̃′′) from (K̃′, S̃′) such that K̃′′ is shift-free, p is a

factor of the denominator of K̃′′ with the same multiplicity.
Applying the above argument to each irreducible factor

and using Lemma 3.4 for numerators in the same fashion,
we can obtain two new RNF’s whose kernels are equal and
whose shells have respective residual forms with significant
denominators b and b′. It follows that b and b′ are shift-
related by Proposition 3.2.

4. TELESCOPING VIA REDUCTIONS
We now translate terminology concerning univariate hy-

pergeometric terms to bivariate ones. Let C be a field
of characteristic zero, and C(x, y) be the field of rational
functions in x and y over C. Let σx, σy be the shift operators
w.r.t. x and y, respectively, defined by,

σx(f(x, y)) = f(x+ 1, y) and σy(f(x, y)) = f(x, y + 1),

for any f in C(x, y). Then the pair (C(x, y), {σx, σy}) forms
a partial difference field.

Definition 4.1. Let D be a partial difference ring extension
of C(x, y). A nonzero element T ∈ D is called a hyper-
geometric term over C(x, y) if there exist f, g ∈ C(x, y)
s.t. σx(T ) = fT and σy(T ) = gT . We call f and g the
x-shift quotient and y-shift quotient of T , respectively.

An irreducible polynomial p in C[x, y] is called integer-
linear over C if there exists a univariate polynomial P ∈ C[z]
and two integers λ, µ s.t. p = P (λx + µy). A polynomial
in C[x, y] is called integer-linear over C if all its irreducible
factors are integer-linear. A rational function in C(x, y) is
called integer-linear over C if its denominator and numerator
are both integer-linear.

Let C(x)〈Sx〉 be the ring of linear recurrence operators
in x, in which the commutation rule is that Sxr = σx(r)Sx
for all r ∈ C(x). The application of an operator L =∑ρ
i=0 eiS

i
x ∈ C(x)〈Sx〉 to a hypergeometric term T is defined

as L(T ) =
∑ρ
i=0 eiσ

i
x(T ).

Given a hypergeometric term T over C(x, y), the com-
putational problem of creative telescoping is to construct a
nonzero operator L ∈ C(x)〈Sx〉 s.t.

L(T ) = ∆y(G),

for some hypergeometric term G. We call L a telescoper
for T w.r.t. y and G a certificate for L. To avoid unnecessary
duplication, we make a convention.

Convention 4.2. Let T be a hypergeometric term over
C(x, y) with a multiplicative decomposition SH, where S is
in C(x, y) and H is a hypergeometric term whose y-shift
quotient K is shift-reduced w.r.t. y. By [4, Theorem 8],
we know K is integer-linear over C. Write K = u/v
where u, v ∈ C(x)[y] and gcd(u, v) = 1.

For hypergeometric terms, telescopers do not always exist.
Abramov presented a criterion for determining the existence
of telescopers in [1, Theorem 10]. With Convention 4.2,
applying the modified Abramov-Petkovšek reduction to T
w.r.t. y yields (1). By Abramov’s criterion, T has a
telescoper if and only if the significant denominator of r
in (1) is integer-linear over C. Based on this criterion and
the modified reduction, the authors of [10] developed a
reduction-based telescoping algorithm, named ReductionCT,
which either finds a minimal telescoper for T , or proves that
no telescoper exists. The key advantage of this algorithm is
that it separates the computation of telescopers from that of
certificates. This is desirable in the typical situation where
we are only interested in the telescopers and their size is
much smaller than that of certificates.

When the existence of telescopers for T is guaranteed, we
summarize below the idea of the algorithm ReductionCT.

We begin by fixing the order of a telescoper for T , say ρ,
and then look for a telescoper of that order. If none exists,
we look for one of the next higher order. We make an ansatz

L = e0 + e1Sx + · · ·+ eρS
ρ
x

with undetermined coefficients e0, . . . , eρ ∈ C(x). For i
from 0 to ρ, iteratively applying the modified reduction
to σix(T ) and manipulating the resulting residual forms
according to Theorem 5.6 in [10] lead to

σix(T ) = ∆y(giH) +

(
ai
bi

+
qi
v

)
H, (3)

where gi ∈ C(x, y), ai, bi ∈ C(x)[y] with degy(ai) < degy(bi),
gcd(ai, bi) = 1, bi is shift-free w.r.t. y and strongly prime
with K, and qi belongs to WK . Moreover, the least common
multiple Bρ of b0, . . . , bρ is shift-free w.r.t. y. Let

Aρ =

ρ∑
i=0

eiai
Bρ
bi

and Qρ =

ρ∑
i=0

eiqi.

Then degy(Aρ) < degy(Bρ), Bρ is shift-free w.r.t. y and
strongly prime with K. Moreover, WK is a linear space
over C(x), so Q is in WK . A direct calculation shows that

L(T ) = ∆y

(
ρ∑
i=0

eigiH

)
+

(
Aρ
Bρ

+
Qρ
v

)
H.
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According to Theorem 2.4, L(T ) is summable w.r.t. y if and
only if Aρ/Bρ + Qρ/v = 0. Equivalently, L is a telescoper
for T if and only if the linear system{

Aρ = e0a0
Bρ
b0

+ e1a1
Bρ
b1

+ · · · + eρaρ
Bρ
bρ

= 0

Qρ = e0q0 + e1q1 + · · · + eρqρ = 0
(4)

has a nontrivial solution in C(x)ρ+1. A linear dependence
among these residual forms {ai/bi+qi/v}ρi=0, for minimal ρ,
gives rise to a minimal telescoper for T .

The termination of the algorithm ReductionCT is guar-
anteed by Abramov’s criterion, see Theorem 6.3 in [10] for
more details. However, instead of using Abramov’s criterion,
one could prove the algorithm ReductionCT terminates by
showing that the residual forms {ai/bi + qi/v}i≥0 from (3)
form a finite-dimensional vector space over C(x). This is
exactly what we are going to do in the next section.

5. FINITE-DIMENSIONAL REMAINDERS
In this section, we will show that some sequence of {bi}i≥0

satisfying (3) has a common multiple B, provided that T has
a telescoper. Moreover, B is shift-free and strongly prime
with K. The existence of this common multiple implies that
the corresponding {ai/bi + qi/v}i≥0 from (3) span a finite-
dimensional vector space over C(x), and lead to upper and
lower bounds on the order of minimal telescopers. To this
end, we need some preparations.

5.1 Shift-homogeneous decomposition
Recall [3] that irreducible polynomials p, q in C[x, y] are

said to be shift-equivalent w.r.t. x, y, denoted by p ∼x,y q,
if there exist two integers m,n such that q = σmx σ

n
y (p).

Clearly ∼x,y is an equivalence relation. Choosing the pure
lexicographic order x ≺ y, we say a polynomial is monic if
its highest term has coefficient 1. A rational function is said
to be shift-homogeneous if all non-constant monic irreducible
factors of its denominator and numerator belong to the same
shift-equivalence class.

By grouping together the factors in the same shift-
equivalence class, every rational function r ∈ C(x, y) can
be decomposed into the form

r = c r1 . . . rs (5)

where c ∈ C, s ∈ N, each ri is a shift-homogeneous rational
function, and any two non-constant monic irreducible factors
of ri and rj are pairwise shift-inequivalent whenever i 6= j.
We call (5) a shift-homogeneous decomposition of r. The
shift-homogeneous decomposition is unique up to the order
of the factors and multiplication by nonzero constants.

Let p ∈ C[x, y] be an irreducible integer-linear polynomial.
Then p = P (λx+ µy) for P ∈ C[z] and λ, µ ∈ Z. W.L.O.G.,
we further assume that µ ≥ 0 and gcd(λ, µ) = 1. By
Bézout’s relation, there exist unique integers α, β with |α| <
|µ| and |β| < |λ| such that αλ + βµ = 1. Define δ(λ,µ)

to be σαxσ
β
y . For brevity, we just write δ if (λ, µ) is clear

from the context. Note that δ(P (z)) = P (z + 1) with z =
λx+µy, which allows us to treat integer-linear polynomials
as univariate ones. For a Laurent polynomial ξ =

∑ρ
i=`miδ

i

in Z[δ, δ−1] with `, ρ,mi ∈ Z and ` ≤ ρ, define

pξ = δ`(pm`)δ`+1(pm`+1) · · · δρ(pmρ).

It is readily seen that for any two irreducible integer-linear
polynomials p, q ∈ C[x, y] of the forms p = P (λ1x + µ1y)

and q = Q(λ2x + µ2y) with P,Q ∈ C[z], λ1, µ1, λ2, µ2∈Z,
µ1, µ2≥0 and gcd(λ1, µ1)= gcd(λ2, µ2)=1, we have p ∼x,y q
if and only if λ1 = λ2, µ1 = µ2 and q = pδ

k

for some
integer k, in which δ = δ(λ1,µ1) = δ(λ2,µ2).

Adapt from (5), every integer-linear rational function r
in C(x, y) admits the following decomposition

r = cr h
ξ1
1 · · ·h

ξs
s (6)

where cr ∈ C, s ∈ N, each hi ∈ C[x, y] is irreducible, monic
and integer-linear over C, and then hi = Pi(λix + µiy)
for Pi ∈ C[z], λi, µi ∈ Z with µi ≥ 0, gcd(λi, µi) = 1,

and ξi ∈ Z[δ(λi,µi), (δ(λi,µi))−1]. Moreover, hi �x,y hj
whenever i 6= j. W.L.O.G., we further assume that ξi
belongs to Z[δ(λi,µi)].

5.2 Relationship among remainders
With Proposition 3.6, we can describe an inherent re-

lationship among any residual forms {ai/bi + qi/v}i≥0

satisfying (3).

Lemma 5.1. With Convention 4.2, let r be a residual form
of S w.r.t. K. Then σx(K) and σx(S) are a kernel and the
corresponding shell of σx(T ) w.r.t. y. Moreover, σx(r) is a
residual form of σx(S) w.r.t. σx(K).

Proof. According to Convention 4.2, σx(T ) = σx(S)σx(H)
and σx(K) is the y-shift quotient of σx(H). To prove the
first assertion, one needs to show that σx(K) is shift-reduced
w.r.t. y, which can be proven by observing that, for any two
polynomials p1, p2 ∈ C(x)[y], gcd(σx(p1), σx(p2)) = 1 if and
only if gcd(p1, p2) = 1. Let r = a/b + q/v, where a, b, q
belong to C(x)[y], degy(a) < degy(b), gcd(a, b) = 1, b is shift-
free and strongly prime with K, and q ∈ WK . Clearly, we
have degy(σx(a)) < degy(σx(b)) and gcd(σx(a), σx(b)) = 1.
The shift-freeness and strong primeness w.r.t. σx(K) of σx(b)
easily follows by the above observation.

Note that σx ◦ degy = degy ◦σx and σx ◦ lcy = lcy ◦σx,
where lcy(p) is the leading coefficient of a polynomial p
in C(x)[y]. So the standard complements WK and Wσx(K)

for polynomial reduction have the same echelon basis accord-
ing to the case study in [10, §4.2]. It follows from q ∈ WK

that σx(q) ∈ Wσx(K). Accordingly, σx(r) is a residual form
of σx(S) w.r.t. σx(K).

Proposition 5.2. With Convention 4.2, for every nonnega-
tive integer i, assume that σix(T ) can be decomposed into (3),
where gi ∈ C(x, y), ai, bi ∈ C(x)[y] with degy(ai) < degy(bi),
gcd(ai, bi) = 1, bi shift-free w.r.t. y and strongly prime
with K, and qi belongs to WK . Then bi ≈y σix(b0).

Proof. It suffices to show b1 ≈y σx(b0). The rest follows by
a direct induction on i.

Applying σx to both sides of (3) with i = 0 gives

σx(T ) = σx(∆y(g0H)) + σx

(
a0
b0

+
q0
v

)
σx(H)

= ∆y(σx(g0H)) +

(
σx(a0)

σx(b0)
+
σx(q0)

σx(v)

)
σx(H)

It follows from Lemma 5.1 that (σx(K), σx(S)) is an RNF
of the y-shift quotient of σx(T ), and σx(a0)/σx(b0) +
σx(q0)/σx(v) is a residual form of σx(S) w.r.t. σx(K).
Let N = σx(H)/H. Then (K,σx(S)N) is also an RNF of
the y-shift quotient of σx(T ). By (3) with i = 1, a1/b1+q1/v
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is a residual form of σx(S)N w.r.t. K. By Proposition 3.6,
we have σx(b0) ≈y b1.

The following lemma says that, with Convention 4.2, for
any polynomial f in C(x)[y], there always exists g ∈ C(x)[y]
s.t. f ≈y g and g is strongly prime with K.

Lemma 5.3. With Convention 4.2, assume that p is an
irreducible polynomial in C(x)[y]. Then there exists an
integer m s.t. σmy (p) is strongly prime with K.

Proof. It suffices to consider the following three cases ac-
cording to the definition of strong primeness.

Case 1. p is strongly prime with K. Then the lemma follows
by letting m = 0.

Case 2. There exists an integer k ≥ 0 s.t. σky (p) | u. Then

for every integer `, we have gcd(σ`y(p), v) = 1, since K is
shift-reduced w.r.t. y. Let

m = max{i ∈ N | σiy(p) | u}+ 1.

One can see that σmy (p) is strongly prime with K.

Case 3. There exists an integer k ≤ 0 s.t. σky (p) | v. Then

for every integer `, we have gcd(σ`y(p), u) = 1, since K is
shift-reduced w.r.t. y. Let

m = min{i ∈ N | σiy(p) | v} − 1.

One can see that σmy (p) is strongly prime with K.
The lemma follows.

The following proposition computes a common multiple
of some sequence {bi}i≥0 satisfying (3), provided that b0 is
integer-linear.

Proposition 5.4. With Convention 4.2, assume that

T = ∆y(gH) +
(a
b

+
q

v

)
H, (7)

where g ∈ C(x, y), a, b ∈ C(x)[y], degy(a) < degy(b),
gcd(a, b) = 1, b is shift-free w.r.t. y and strongly prime
with K, and q ∈ WK . Further assume b is integer-linear.
Then there exists a polynomial B ∈ C(x)[y] with B shift-free
w.r.t. y and strongly prime with K s.t. b | B, and for every
nonnegative integer i ≥ 0, σix(T ) can be decomposed into

σix(T ) = ∆y(giH) +
(ai
B

+
qi
v

)
H, (8)

where gi ∈ C(x, y), ai ∈ C(x)[y] with degy(ai) < degy(B)
and qi ∈WK .

Proof. When b ∈ C(x). By the modified Abramov-Petkovšek
reduction, (3) holds for every i > 0. Then bi ∈ C(x) by
Proposition 5.2. The proposition follows by letting B = 1.
Assume that b /∈ C(x). Since b is integer-linear, by (6),

b = cb · hξ11 · · ·h
ξt
t (9)

where cb ∈ C(x), t ∈ N, each hj is a monic irreducible
integer-linear polynomial of the form hj = Pj(λjx + µjy)
for Pj ∈ C[z], λj , µj ∈ Z, µj > 0 and gcd(λj , µj) = 1, and ξj
belongs to N[δ(λj ,µj)] for 1 ≤ j ≤ t. Moreover, hj �x,y hk
whenever j 6= k. Due to the primeness of hj and the partial
fraction decomposition of a/b, it suffices to prove the local
case, that is, cb = t = 1 and

b = P (λx+ µy)
∑s
i=0 ciδ

i

,

where P ∈ C[z], s, ci ∈ N, λ, µ ∈ Z, µ > 0 and δ = δ(λ,µ).
Note that for every i ∈ N, there are unique integers j, kj
with 0 ≤ j ≤ µ− 1 s.t. i = µkj + j. Let c′j = cµkj+j . Since b
is shift-free w.r.t. y, we have

b =

µ−1∏
j=0

P (λx+ µy + j)c
′
jσ
kj
y .

For every 0 ≤ j ≤ µ− 1, set `j to be kj if mj 6= 0, or some

integer otherwise with P (λx + µy + j)σ
`j
y strongly prime

with K by Lemma 5.3. Let m = max0≤j≤µ−1{c′j} and

B =

µ−1∏
j=0

P (λx+ µy + j)mσ
`j
y . (10)

Since `j = kj when mj 6= 0, every irreducible factor of b
divides B and thus b | B by the maximum of m. B is shift-
free w.r.t. y since 0 ≤ j ≤ µ − 1. Moreover, B is strongly
prime with K by the choice of `j .

It remains to show that (8) holds for every nonnegative
integer i. To prove this, we first show σx(B) ≈y B. By (10),

B ≈y
µ−1∏
j=0

P (λx+ µy + j)m,

which establishes that

σx(B) ≈y
µ−1∏
j=0

P (λx+ µy + j + λ)m.

One sees that there is a unique integer 0 ≤ k ≤ µ− 1 s.t.

P (λx+ µy + j + λ) ∼y P (λx+ µy + k).

Conversely, for any 0 ≤ k ≤ µ − 1, there exists a unique
integer 0 ≤ j ≤ µ− 1 s.t. the above equivalence holds. Thus

σx(B) ≈y
µ−1∏
k=0

P (λx+ µy + k)m ≈y B.

For i = 0, letting a0 = aB/b and q0 = q gives (8). For
every i > 0, σix(B) ≈y σi−1

x (B) since σx(B) ≈y B and
then σix(B) ≈y B. By the modified Abramov-Petkovšek
reduction, (3) holds for every i ≥ 0, in which b0 = b.
According to Proposition 5.2, bi ≈y σix(b0). It follows
from b | B that σix(b) | σix(B). Consequently, we have

bi ≈y σix(b) | σix(B) ≈y B.

Thus there is b̃i ∈ C(x)[y] dividing B so that b̃i ≈y bi.

Moreover, b̃i is strongly prime with K as B is. It follows
from Theorem 5.6 in [10] that there exist g̃i ∈ C(x, y),

ãi ∈ C(x)[y] with degy(ãi) < degy(b̃i) and q̃i ∈ WK such

that σix(T ) = ∆y(g̃iH) + (ãi/b̃i + q̃i/v)H. The assertion
follows by noticing

σix(T ) = ∆y(g̃iH) +

(
ãiB/b̃i
B

+
q̃i
v

)
H.

Under the assumptions and notations of Proposition 5.4,
applying the modified Abramov-Petkovšek reduction to T
w.r.t. y yields (1). By Proposition 3.2 and Proposition 3.6,
the significant denominator of r in (1) is shift-related to b
w.r.t. y. Thus the shift-equivalence classes represented
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by hj (1 ≤ j ≤ t) in (9) are independent of the choice
of b. Therefore, the degree of B w.r.t. y is fixed once a
hypergeometric term T is given, although the form of B
depends on the choice of b.

5.3 Upper and lower bounds
Now we show that Proposition 5.4 implies some resid-

ual forms {ai/bi + qi/v}i≥0 satisfying (3) form a finite-
dimensional vector space over C(x), and then derive the
order bounds for minimal telescopers.

Theorem 5.5. With the assumptions and notations intro-
duced in Proposition 5.4, the order of a minimal telescoper
for T is no more than

max{degy(u), degy(v)} − Jdegy(v − u) ≤ degy(u)− 1K

+

t∑
j=1

µjmj deg(Pj),

where mj is the maximum coefficient of ξj for 1 ≤ j ≤ t,
and JϕK equals 1 if ϕ is true, otherwise it is 0.

Proof. Let L =
∑ρ
i=0 eiS

i
x with ρ ∈ N, e0, . . . , eρ ∈ C(x),

not all zero, be a minimal telescoper for T w.r.t. y. By
Proposition 5.4, (8) holds for every 0 ≤ i ≤ ρ. Then
by the arguments in Section 4, the linear system (4), in
which bi = Bρ = B for 1 ≤ i ≤ ρ, of equations for the
variables {e0, . . . , eρ} has a nontrivial solution in C(x)ρ+1.
Since Qρ ∈ WK , the number of terms w.r.t. y in Qρ is no
more than dimC(x)(WK), which is bounded by

max{degy(u), degy(v)} − Jdegy(v − u) ≤ degy(u)− 1K

according to Proposition 4.7 in [10]. Note that The solutions
of the system (4) are in one-to-one correspondence with the
telescopers for T . Comparing coefficients of like powers
of y of the linear system (4) yields at most degy(Aρ) +
dimC(x)WK + 1 equations. Hence this system has nontrivial
solutions whenever ρ > degy(Aρ) + dimC(x)WK . It implies
that the order of a minimal telescoper for T is no more
than degy(Aρ) + dimC(x)WK + 1. The theorem follows by

applying degy(Aρ) < degy(B) =
∑t
j=1 µjmj degy(Pj).

In addition, we can further obtain a lower bound for the
order of telescopers for T .

Theorem 5.6. With the assumptions of Proposition 5.4,
further assume that T is not summable w.r.t. y. Then the
order of a telescoper for T is at least

max
p|b, multi.α

irred. & monic

degy(p)>0

min

{
ρ ∈ N \ {0} :

σ`y(p)α | σρx(b)

for some ` ∈ Z

}
.

Proof. Let L =
∑ρ
i=0 eiS

i
x with ρ ∈ N, e0, . . . , eρ ∈ C(x),

not all zero, be a minimal telescoper for T . Then ρ ≥ 1
as T is not summable. By the modified Abramov-Petkovšek
reduction, we have (3) holds for 0 ≤ i ≤ ρ, in which b0 = b.
Note that L is a minimal telescoper, so e0 6= 0 and

e0
a0
b0

+ e1
a1
b1

+ · · · + eρ
aρ
bρ

= 0

by the system (4). By partial fraction decomposition, for
any monic irreducible factor p of b0 with degy(p) > 0 and
multiplicity α > 0, there exists an integer i with 1 ≤ i ≤ ρ so

that pα is also a factor of bi. According to Proposition 5.2,
bi ≈y σix(b0). Thus there is a factor p′ of σix(b0) with
multiplicity at least α s.t. p′ ∼y p. Let ip be the minimal one
with this property. Then the assertion follows by the fact
that for each factor p of b0 = b, there exist no telescopers
for T of order less than ip.

With the upper and lower bounds, one may try to analyze
the complexity of the algorithm ReductionCT from [10] and
further improve it by adding them into the procedures.
Instead of doing so, in the rest of this paper, we are going
to compare our bounds to the known ones in the literature.

6. COMPARISON OF BOUNDS
Upper and lower bounds for the order of telescopers for

hypergeometric terms have been studied in [12] and [2],
respectively. In this section, we are going to review these
known bounds and then compare them to our bounds.

6.1 Apagodu-Zeilberger upper bound
Let T be a proper hypergeometric term over C(x, y), that

is it can be written in the form

T = pwxzy
m∏
i=1

(αix+ α′iy + α′′i − 1)!(βix− β′iy + β′′i − 1)!

(µix+ µ′iy + µ′′i − 1)!(νix− ν′iy + ν′′i − 1)!
,

(11)
where p ∈ C[x, y], m ∈ N is fixed, αi, α

′
i, βi, β

′
i, µi, µ

′
i, νi, ν

′
i

are non-negative integers and w, z, α′′i , β
′′
i , µ

′′
i , ν
′′
i ∈ C .

Further assume that there exist no integers i, j with 1 ≤
i, j ≤ m s.t.

{αi = µj & α′i = µ′j & α′′i − µ′′j ∈ N}
or {βi = νj & β′i = ν′j & β′′i − ν′′j ∈ N}.

We refer this as the generic situtation. Then Apagodu and
Zeiberger [12] stated that the order of a minimal telescoper
for T is bounded by

BAZ = max

{
m∑
i=1

(α′i + ν′i),

m∑
i=1

(β′i + µ′i)

}
.

We now show that BAZ given above is at least the order
bound on minimal telescopers for T obtained from Theo-
rem 5.5. Reordering the factorial terms in (11) if necessary,
let S be the maximal set of integers i with 1 ≤ i ≤ m
satisfying

{αi = µi & α′i = µ′i & µ′′i − α′′i ∈ N}
or {βi = νi & β′i = ν′i & ν′′i − β′′i ∈ N}.

Rewrite T as

rwxzy
m∏
i=1

i/∈S

(αix+ α′iy + α′′i − 1)!(βix− β′iy + β′′i − 1)!

(µix+ µ′iy + µ′′i − 1)!(νix− ν′iy + ν′′i − 1)!
,

where r ∈ C(x, y). For q ∈ C[x, y], and m ∈ N, let

qm = q(q + 1)(q + 2) · · · (q +m− 1)

with the convention q0 = 1. It can be calculated that the
kernel and shell of the shift quotient σy(T )/T are

K = z
∏
i

(αix+ α′iy + α′′i )α
′
i(νix− ν′iy + ν′′i − µ′i)ν

′
i

(µix+ µ′iy + µ′′i )µ
′
i(βix− β′iy + β′′i − β′i)β

′
i

,
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where the product runs over all i from 1 to m s.t. i /∈ S,
α′i, β

′
i > 0 and µ′i, ν

′
i > 0, and S = r, respectively.

Let K = u/v with gcd(u, v) = 1. Note that K is proper, a
straightforward calculation implies

degy(u) =

m∑
i=1,i/∈S

(α′i + ν′i) and degy(v) =

m∑
i=1,i/∈S

(β′i + µ′i).

Applying the modified Abramov-Petkovšek reduction to T
w.r.t. y yields (7), in which b is integer-linear. Since b comes
from the shift-free part of the denominator of r, it factors
into integer-linear polynomials of degree 1 which are shift-
equivalent to either (µix + µ′iy + µ′′i ) or (βix − β′iy + β′′i )
w.r.t. x, y for some i ∈ S. Note that each i in S increases
the multiplicities of the corresponding integer-linear factors
in b by at most 1. Hence, the bound given in Theorem 5.5
is no more than

max{degy(u), degy(v)} − Jdegy(v − u) ≤ degy(u)− 1K

+

m∑
i=1,i∈S

(β′i + µ′i),

which is exactly equal to BAZ− Jdegy(v−u) ≤ degy(u)−1K
since

∑m
i=1,i∈S(α′i + ν′i) =

∑m
i=1,i∈S(β′i + µ′i).

In general, i.e., when we have the generic situation, the
order bound in Theorem 5.5 is almost the same as BAZ .
However, our bound may be much tighter in some special
examples.

Example 6.1. Consider a rational function

T =
α2y2 + α2y − αβy + 2αxy + x2

(x+ αy + α)(x+ αy)(x+ βy)
,

where α, β are positive integers and α 6= β. Rewriting T into
the proper form yields BAZ = α + β. On the other hand,
the kernel of σy(T )/T is 1 since T is a rational function.
By the modified Abramov-Petkovšek reduction, b = x + βy
in (7). According to Theorem 5.5, a minimal telescoper
for T has order no more than β, which is indeed the real
order of minimal telescopers for T .

Remark 6.2. Only with [1, Theorem 10], the upper order
bound on minimal telescopers derived in [12] can be also
applied to non-proper hypergeometric terms. On the other
hand, Theorem 5.5 can be applied to any hypergeometric
term provided that its telescopers exist.

6.2 Abramov-Le lower bound
With Convention 4.2, assume that T has the initial

reduction (7), in which b is integer-linear. Define H ′=H/v.
A direct calculation leads to σy(H ′)/H ′ = u/σy(v), which
is again shift-reduced w.r.t. y. Let d′ ∈ C(x)[y] be the
denominator of σx(H ′)/H ′. Then the algorithm LowerBound
in [2] asserts that the order of telescopers for T is at least

BAL = max
p|b

irred. & monic

degy(p)>0

min

ρ ∈ N \ {0} :

σ`y(p) | σρx(b)
or

σ`y(p) | σρ−1
x (d′)

for some ` ∈ Z


Comparing to BAL, it is obvious that the lower bound given
by Theorem 5.6 can be better but not worse than BAL.

Example 6.3. Consider a hypergeometric term

T =
1

(x− αy − α)(x− αy − 2)!
,

where α ∈ Z and α ≥ 2. By the algorithm LowerBound, a
telescoper for T has order at least 2. On the other hand,
a telescoper for T has order at least α by Theorem 5.6. In
fact, α is exactly the order of minimal telescopers for T .
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