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Abstract

We propose a geometric multigrid algorithm for the solution of the linear systems which arise when using hi-
erarchical spline spaces for isogeometric discretizations of elliptic partial differential equations. In particular,
we focus on the use of hierarchical B-spline (HB) and truncated hierarchical B-spline (THB) bases to imple-
ment adaptively refined isogeometric discretizations. We describe an approach for constructing the nested
sequences of hierarchical spline spaces which are required for our geometric multigrid solver. Furthermore,
we give an algorithm for the computation of the so-called prolongation matrices which map coarser-space
functions to their finer-space representations for both HB- and THB-spline bases.

In several numerical experiments, we study two-dimensional Poisson problems with singularities and
employ a posteriori error estimators for the adaptive refinement of the hierarchical spline spaces. Using
standard multigrid smoothers, we observe that using THB-spline bases consistently confers a dramatic
advantage in terms of iteration numbers over the use of HB-spline bases, in particular for higher spline
degrees. When used as a preconditioner for Conjugate Gradient iteration, the proposed multigrid method
exhibits practical iteration numbers for two-dimensional problems up to the tested case of fourth-degree
splines.

Keywords: isogeometric analysis, multigrid, hierarchical splines, truncated hierarchical B-splines, adaptive
refinement

1. Introduction

Isogeometric analysis (IgA), which was introduced by Hughes [21], is a novel framework for numerical
simulation that aims at the close integration of geometry representations from Computer Aided Geometric
Design (CAD) into the analysis process, thereby avoiding the otherwise necessary and expensive data ex-
change between the finite element analysis (FEA) and CAD software. However, the tensor product B-spline
and NURBS spaces which are most commonly used in geometric design and IgA do not provide the pos-
sibility of local refinement. Due to their construction, any refinement propagates over the entire domain.
To address this issue, other spline spaces which permit local adaptive refinement have been utilized in IgA.
These include T-splines [1, 10, 29], hierarchical B-splines [2, 27, 28, 31], LR (locally refined) B-splines in [22]
and polynomial splines over hierarchical T-meshes [26, 32].

In the present work, we focus on the hierarchical approach to the adaptive refinement of B-splines, which
can be traced back to [12]. The key idea of the construction of the hierarchical basis, which was introduced
by Kraft [25], consists in a suitable selection of standard tensor-product B-spline functions from a sequence
of nested B-spline bases, guided by a sequence of nested subdomains.
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The hierarchical B-spline (HB-spline) basis inherits several desirable properties of B-splines such as linear
independence, local support and non-negativity. However, it does not possess the partition of unity property
and is only weakly stable with respect to the supremum norm.

To overcome these drawbacks, the truncated hierarchical B-spline (THB-spline) basis has been recently
introduced in [15]. The additional truncation step, which is applied during the construction of the THB-
spline basis, ensures that the basis possesses the partition of unity property. In addition, it also improves the
stability properties of the basis, see [16], and significantly reduces the overlap between the basis functions
from different refinement levels.

For the efficient solution of the large, sparse linear systems arising in isogeometric discretizations, multi-
grid methods are an attractive approach. Multigrid solvers for uniformly refined tensor product spline
spaces have been studied by several researchers. In particular, geometric multigrid has been considered in
[13, 20, 18, 19], and an additive multilevel scheme was proposed in [5]. A symbol-based approach has been
taken in [7, 8, 9]. Finally, a local refinement strategy based on full multigrid ideas has been developed in [6].

In the present work, we investigate geometric multigrid solvers for isogeometric discretizations based on
adaptively refined hierarchical spline spaces. In particular, we describe how to construct nested sequences
of hierarchical spline spaces starting from a coarse tensor product spline space, or from an initial coarse
basis used to describe the geometry which may already be hierarchical. We also address the topic of how
to compute the necessary prolongation matrices between nested hierarchical spline spaces in both the HB-
and the THB-spline bases.

As the smoother for the multigrid algorithm, we use a standard Gauss-Seidel method throughout. It is
known by now that classical multigrid smoothers such as Gauss-Seidel, when used in the IgA setting, do not
yield methods which are robust in the spline degree [19]. The development of p-robust multigrid methods
for IgA is an active research topic even in the case of tensor product bases. The most promising approaches
thus far appear to be mass-based smoothers ([20] and a forthcoming publication) as well as symbol-based
methods [7, 8, 9]. However, neither of these can be applied to the case of hierarchical spline spaces in a
straightforward way. This justifies us in using a classical multigrid smoother in the present work.

We perform several numerical examples and compare the performance of V-cycle multigrid for discretiza-
tions based on HB-spline bases and on THB-spline bases. Our numerical experiments indicate that using
THB-spline bases leads to significantly reduced iteration numbers in the multigrid algorithm compared to
using HB-spline bases, especially for higher spline degrees. In order to mitigate the high iteration numbers
which occur for higher spline degrees in some cases due to the use of a Gauss-Seidel smoother, we also
propose a global Conjugate Gradient (CG) iteration preconditioned with one V-cycle. In many cases, this
significantly reduces the overall iteration numbers and leads to a practical method.

The remainder of the paper is structured as follows. In Section 2, we recall some preliminaries on
hierarchical spline spaces, (T)HB-spline bases, and IgA. In Section 3, we describe the construction of nested
hierarchical spline spaces and a multigrid algorithm over such nested spaces. In Section 4, we give several
numerical experiments for adaptively refined discretizations of the Poisson equation. In Section 5, we end
with some concluding remarks.

2. Preliminaries

2.1. Bases for hierarchical spline spaces
We consider a sequence

S0 ⊂ S1 ⊂ . . . ⊂ SΛ−1 ⊂ SΛ

of nested tensor-product spline spaces of degree p = (p1, . . . , pd) over the parameter domain D = (0, 1)d,
where every space Sλ, λ = 0, . . . ,Λ is spanned by normalized B-splines Bλ and the positive integer Λ specifies
the number of levels. (We use Greek characters for the levels in the spline hierarchy in order to keep the
Latin ones for the multigrid levels.) Additionally let

Ω = (Ωλ)λ∈N0
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Figure 1: Subdomain structure Ω with 3 hierarchical levels Ω0,Ω1,Ω2 highlighted by black, blue and red, respectively.

be a sequence of inversely nested subdomains satisfying

D = Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩΛ = ∅. (1)

The first subdomain Ω0 is the entire parameter domain D. The higher level subdomains represent the
regions that are selected for refinement to the level λ.

Each tensor-product spline space Sλ is defined by d knot vectors, one for each coordinate direction in the
parameter space. These knot vectors are also nested, since this implies the required inclusions of the spline
spaces. The knot hyperplanes (knot lines for d = 2) determine a segmentation of the domain into cells, and
we assume that each subdomain is a collection of cells of the same level. Figure 1 shows such a hierarchy in
the bivariate case for degree p = (2, 2), as indicated by the three-fold boundary knots, with three levels of
refinement.

The hierarchical spline space induced by the sequence Ω is then given by

H(Ω) := span
⋃

λ=0,...,Λ−1

{βλ ∈ Bλ : suppβλ ⊆ Ωλ}.

The hierarchical basis K, which has been introduced by Kraft [25], with respect to a given subdomain
hierarchy Ω is obtained by selecting the active B-splines from all levels. A basis function βλ ∈ Bλ is said to
be active if

Ωλ+1 6⊇ suppβλ ⊆ Ωλ,

thus
K =

⋃
λ=0,...,Λ−1

{βλ ∈ Bλ : Ωλ+1 6⊇ suppβλ ⊆ Ωλ}.

We have H(Ω) = span(K). The basis functions collected in K will be denoted as HB-splines. Figure 2 shows
the construction of the HB-splines for the domain hierarchy shown in Figure 1.

The HB-splines inherit some of the main properties of the B-splines such as non-negativity, local support
and linear independence, as shown in [31]. The partition of unity property and the convex hull property,
however, are not preserved during the construction. Nevertheless, they may be recovered, under certain
assumptions on the subdomain hierarchy, by a suitable scaling of the basis functions, see [31].

A different approach to restore these properties which does not require any assumptions about the
subdomain hierarchy consists in using the THB-splines. In addition, this construction decreases the sup-
port overlaps between basis functions from different levels, which will be beneficial for using the multigrid
framework, as observed below.

The construction of the THB-splines T is based on the refinability of B-splines. In fact, any B-spline
β ∈ Bλ of level λ can be represented as a linear combination of the B-splines of level λ + 1 with supports
contained in suppβ, using only non-negative coefficients. Consequently, if a function β of level λ is not
active since it satisfies suppβ ⊆ Ωλ+1, then K contains functions of higher levels that allow to represent it.
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(a) Basis functions from B0 (b) Basis functions from B1 (c) Basis functions from B2

(d) Hierarchical basis

Figure 2: The contribution of basis functions from levels 0, 1 and 2 to the hierarchical basis K defined over the subdomain
structure shown in Figure 1.

The truncation of a function τ ∈ Sλ is defined with the help of its representation

τ =
∑

β∈Bλ+1

cλ+1
β (τ)β, cλ+1

β ∈ R.

with respect to the basis Bλ+1. In order to truncate the function, we simply eliminate the contributions of
all basis functions that are selected at the higher level

truncλ+1τ =
∑

β∈Bλ+1,supp β 6⊆Ωλ+1

cλ+1
β (τ)β.

It may happen that an omitted function β ∈ Bλ+1 is not active, i.e., not contained in K. This is the case
whenever suppβ ⊆ Ωλ+2. Nevertheless, this function is still contained in the span of all active functions
due to the refinability of B-splines.

We define the THB-splines T by applying the truncation repeatedly to all functions in K,

T =
⋃

λ=0,...,Λ−1

{truncΛ−1(truncΛ−2 . . . (truncλ+1βλ) . . .) : βλ ∈ K ∩ Bλ}.

In addition to preserving the properties of non-negativity, local support and linear independence, the THB-
splines also form a partition of unity [15]. Moreover, the hierarchical spline spaces spanned by K and T are
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(a) Basis functions from B0 (b) Basis functions from B1 (c) Basis functions from B2

(d) Hierarchical basis

Figure 3: The contribution of basis functions from levels 0, 1 and 2 to the THB-splines T defined over the subdomain structure
shown in Figure 1. The effect of truncation is clearly visible in the central area of the domain.

identical,
spanK = span T = H(Ω). (2)

Figure 3 shows the THB-splines for the domain hierarchy in Figure 1, which is another basis for the space
spanned by the HB-splines in Figure 2.

2.2. Isogeometric analysis
Let

G : D → G(D) ⊂ Rd

denote a bijective geometry mapping which maps the parameter domain D to the computational domain
P = G(D) on which we wish to solve a boundary value problem. In IgA, this mapping is typically given in
terms of spline basis functions, G ∈ (S0)d, but its concrete form is irrelevant to our discussion here.

Let Vh ⊂ H1
0 (G(D)) denote a finite-dimensional space over the computational domain. In IgA, this

discretization space is obtained by first fixing a family of basis functions {ψi : D → R} over the parameter
domain D and then mapping them into the computational domain via ϕi(x) := ψi(G

−1(x)). Originally,
Hughes et al. [21] proposed tensor product B-spline and NURBS bases for {ψi}, and these are still the
most popular choices when uniform refinement of the discretization space is desired. In the present work,
we instead use HB-spline and THB-spline bases as described in Section 2.1 in order to facilitate local and
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adaptive refinement of the discretization space. Thus, we obtain the isogeometric discretization space based
on hierarchical splines,

Vh = {u ◦G−1 : u ∈ H(Ω)} = span{K ◦G−1} = span{T ◦G−1}. (3)

We now consider an IgA discretization of the Poisson equation with pure Dirichlet boundary conditions:
find uh ∈ Vh such that

a(uh, vh) = 〈F, vh〉 ∀vh ∈ Vh (4)

with the bilinear form and linear functions, respectively,

a(u, v) =

∫
P

∇u · ∇v dx, 〈F, v〉 =

∫
P

fv dx− a(g, v).

Here g ∈ H1(Ω) is a suitable extension of the given Dirichlet data. This discretization results in a large,
sparse, symmetric positive definite linear system. Our aim is to investigate geometric multigrid solvers for
this system.

3. Multigrid Methods for Adaptively Refined Discretizations

We recall the abstract framework of multigrid methods and describe its realization for hierarchical spline
spaces in the isogeometric framework. Special attention is paid to the construction of the prolongation
matrices and the creation of the hierarchy by adaptive refinement.

3.1. An abstract multigrid framework
We recall the construction of a geometric multigrid solver in an abstract setting. We provide only an

outline here and refer to the literature [4, 17, 30] for further reading. In later sections, we will flesh out the
components of the multigrid solver for our particular setting.

Let V0 ⊂ H1
0 (G(D)) denote a coarse discretization space over our computational domain. By a suitable

refinement process, we obtain a sequence of nested spaces

V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ VL. (5)

On each level ` ∈ {0, . . . , L}, we denote the number of degrees of freedom by n` = dimV`. Given a variational
formulation of a boundary value problem, we derive a Galerkin discretization in V`, resulting in a linear
system

A`u` = f`,

where A` ∈ Rn`×n` is the stiffness matrix, f` ∈ Rn` is the load vector, and u` ∈ Rn` is the coefficient vector
of the discrete solution with respect to a chosen basis for V`.

Our aim is to solve the fine-space equation (` = L) in an efficient manner. The core idea of multigrid
is to use an iterative procedure which efficiently reduces (or “smoothes”) the high-frequency components of
the error, while the low-frequency components of the error are treated by projecting the residual equation
into a coarser space. Some of the low-frequency components in the fine space turn into high-frequency
components when viewed in the coarser space and can again be efficiently smoothed there. This idea is
applied recursively all the way to the coarsest level V0, where the linear system is small enough to be solved
by a direct method.

Since the spaces are nested, an arbitrary function in V` can always be represented on any finer level
Vk, k > `. Let P` ∈ Rn`×n`−1 denote the prolongation matrix which maps the coefficients of a function
represented in the basis of V`−1 to the coefficients of the same function represented in the basis of V`. In
other words, P` realizes the canonical embedding

V`−1 → V` : v 7→ v
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with respect to the particular choice of bases. The transpose of the prolongation matrix P>` is called the
restriction matrix and maps from the fine to the coarse space. It is easy to show that, when using Galerkin
discretizations, the coarse-space stiffness matrix can be obtained via A`−1 = P>` A`P`.

As an important ingredient in the multigrid algorithm, we need so-called smoothers. On each level except
the coarsest, ` ∈ {1, . . . , L}, we choose a smoother S` ∈ Rn`×n` . This matrix must be easier to invert than
the stiffness matrix A`. Standard choices are the Jacobi smoother, where S` is chosen as a scalar multiple
of the diagonal of A`, and the Gauss-Seidel smoother, where S` is chosen as the lower triangular part of A`.
We then define the smoothing operator

S`(v, b) := v + S−1
` (b−A`v)

for arbitrary vectors and right-hand sides v, b ∈ Rn` . Analogously, we define the transposed smoothing
operator S>` (v, b) where the matrix S` is replaced by its transpose S>` in the definition.

The iterative procedure vj 7→ vj+1 := S`(vj , b) must converge to the solution of the linear system A`v = b.
Typically, it does so very slowly. However, to obtain an efficient multigrid algorithm it is only required that
the smoothing iteration efficiently reduces the components of the error which can not be represented in the
coarser space V`−1, i.e., the high-frequency error.

We now have the components in place to define the multigrid algorithm in a recursive fashion. On the
coarsest level, we define the multigrid operator as the exact solution of the coarse-space problem, i.e.,

MG0(v, b) := A−1
0 b.

On every level ` > 0, we define the V-cycle multigrid operatorMG`(v, b) by the sequence of operations

v(1) := S`(v, b),
v(2) := v(1) + P`MG`−1(0, P>` (b−A`v(1))),

MG`(v, b) := v(3) := S>` (v(2), b).

These three steps are called pre-smoothing, coarse-grid correction, and post-smoothing, respectively. It is
possible to apply several steps of the smoothing operator S` in sequence, however in this work we always
use exactly one pre- and one post-smoothing step.

The V-cycle iteration for the fine-grid problem is given, for an arbitrary initial guess u0 ∈ RnL , by the
procedure

uj+1 :=MGL(uj , fL) ∀j = 0, 1, 2, . . .

It is called the V-cycle because in each iteration, the method starts with some fine-level approximation
vj ∈ RnL , proceeds by smoothing and restriction through all levels to the coarsest space, and then by
prolongation and smoothing back to the finest space, obtaining a new approximation vj+1 ∈ RnL . This
pattern can be visualized as a V-shape as in Figure 4.

` = 0

` = 1

` = 2 uj uj+1

Figure 4: Visualization of one iteration of the multigrid V-cycle algorithm with three nested spaces. Circles correspond to
smoothing operations or, on the coarsest level ` = 0, the exact solve. Downward arrows correspond to restriction and upward
arrows to prolongation operations.
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3.2. Nested sequences of hierarchical spline spaces
The sequence of nested spaces (5) will be generated by performing an isogeometric discretization (with

a given geometry mapping) based on nested hierarchical spline spaces (2), which are spanned by (T)HB-
splines. More precisely, we use several instances of the hierarchical spline spaces H(Ω) as in (2) which are
constructed in a way which ensures that they are nested. The following lemma, which has been derived in
[31], will be essential for this construction.

Lemma 1 ([31]). We consider the two sequences Ω and Ω̂ of nested subdomains

Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩΛ and Ω̂0 ⊇ Ω̂1 ⊇ . . . ⊇ Ω̂Λ

and the hierarchical spline spaces H(Ω) and H(Ω̂) defined by them. If Ωλ ⊆ Ω̂λ for every λ = 0, . . . ,Λ, then

H(Ω) ⊆ H(Ω̂).

In other words, enlarging all subdomains of a given subdomain hierarchy Ω while preserving the property
that they are nested leads to a superspace of the hierarchical spline space. Clearly, this result is inherited by
the spaces used for the isogeometric discretizations (3), since these spaces are obtained simply by composing
the hierarchical spline spaces with the inverse of the geometry mappings.

In order to use this result in the multigrid framework, we consider L+ 1 sequences Ω` of subdomains,

Ω` = (Ωλ` )λ∈N0 for ` = 0, . . . , L,

where each of them satisfies the assumption (1). Each sequence Ω` induces a hierarchical spline space H(Ω`)
as defined in Section 2.1, as well as a set of HB-spline and THB-spline basis functions, which we denote
by K` and T`, respectively. The idea is now to choose the multigrid spaces as hierarchical spline spaces,
transformed by the geometry mapping as in Section 2.2,

V` := {u ◦G−1 : u ∈ H(Ω`)} = span{K` ◦G−1} = span{T` ◦G−1} for ` = 0, . . . , L.

Under the additional assumption

Ωλ`−1 ⊆ Ωλ` ∀λ ∈ N0, ` ∈ N, (6)

Lemma 1 yields the nestedness of the multigrid spaces,

V0 ⊆ . . . ⊆ V` ⊆ . . . ⊆ VL,

which we have assumed in the construction of our multigrid method in Section 3.1. Figure 5 illustrates an
example of two subdomain hierarchies that satisfy the above conditions and therefore induce two nested
hierarchical spline spaces.

Combining assumption (6) with the fact that the subdomains within each hierarchy are also nested (1),
we can sketch the following diagram for the relationships between the subdomains:

D = Ω0
0 ⊇ . . . ⊇ Ωλ0 ⊇ Ωλ+1

0 ⊇ . . . ⊇ ΩΛ
0 = ∅

= ⊆ ⊆ =

...
...

...
...= ⊆ ⊆ =

D = Ω0
` ⊇ . . . ⊇ Ωλ` ⊇ Ωλ+1

` ⊇ . . . ⊇ ΩΛ
` = ∅

= ⊆ ⊆ =

...
...

...
...= ⊆ ⊆ =

D = Ω0
L ⊇ . . . ⊇ ΩλL ⊇ Ωλ+1

L ⊇ . . . ⊇ ΩΛ
L = ∅

Each row of this diagram corresponds to a hierarchical spline space and therefore to a multigrid level V`.
Each column corresponds to a level λ of the underlying hierarchical spline space construction.

Several comments on this construction of nested hierarchical spline spaces are in order:
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Ω1 = (D,Ω1
1) Ω2 = (D,Ω1

2,Ω
2
2)

Figure 5: Two subdomain hierarchies over D = (0, 1)2 which satisfy (1) and (6). The subdomains Ω1
` are shown in blue, and

Ω2
2 is shown in red. Due to (1), each hierarchy Ω` induces a hierarchical spline space H(Ω`) as defined in Section 2.1. Due to

(6), the hierarchical spline spaces are nested, H(Ω1) ⊂ H(Ω2).

• In the standard situation, the sequences Ω` are constructed by adaptively refining a given uniform
discretization consisting of only one level, see Section 3.4. Typically this means that one refinement
level is added in every step. Thus we have Ωλ` = ∅ whenever λ > `, and the diagram shown above
becomes lower triangular.
Note that each refinement step ` − 1 → ` not only adds an extra level, but may also enlarge the
previously introduced subdomains, hence the sets in (6) are generally not equal for λ < `. This is
analogous to the situation in standard adaptive finite element methods where an element that has
been refined in an earlier step still may be further refined in a later step. To illustrate this, we refer
the reader forward to Figure 8, where the meshes for successive multigrid levels ` in an actual example
are shown. It can be clearly observed that each new multigrid level ` not only introduces a new, finer
spline level λ = `, but also enlarges refinement areas for levels λ < `, i.e., Ωλ`−1 ⊆ Ωλ` . The construction
described above ensures that V`−1 ⊆ V`.

• The construction of the multigrid hierarchy also supports geometry mappings which use hierarchical
spline spaces, such as the mappings constructed in [11]. In this case, even the coarsest domain hierarchy
may be fully populated, i.e., all subdomains are possibly non-empty, except for ΩΛ

0 .

• An alternative multigrid hierarchy can be constructed by considering only the subdomain sequence for
the largest level L, i.e., the last row in the diagram. HB-splines KµL (and similarly THB-splines T µL )
spanning nested discretization spaces are obtained simply by replacing each subdomain ΩλL with the
empty set for λ > µ, again producing a triangular diagram. Except for the discretization at the coarsest
level, which is the same by definition, this approach gives larger dimensions of the discretization spaces
in the multigrid hierarchy. Moreover, it does not comply with the isoparametric principle at all levels
if the geometry mapping uses hierarchical splines.

3.3. Computation of the prolongation matrix
In order to describe the computation of the prolongation matrix, which is required for the multigrid solver,

we assume that the B-splines within each basis Bλ are identified by indices, Bλ = {βλi : 1 ≤ i ≤ mλ}, where
mλ is the number of tensor-product B-splines of level λ in the spline hierarchy. Given a fixed level ` of the
multigrid hierarchy, the active B-splines (which are selected for inclusion in K`) are identified by indicator
functions

χλ` (i) =

{
1 if βλi is active in K`,
0 otherwise, λ = 0, . . . ,Λ.

These functions are represented by using a sparse data structure in our implementation, cf. [23]. We also
use them to create an index set for the basis functions in K` and T`,

I` =

Λ⋃
λ=0

{λ} × Iλ` , Iλ` = {i : χλ` (i) = 1, 1 ≤ i ≤ mλ}, (7)
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where Iλ` is the index set of active B-spline functions from the hierarchical level λ. The overall index set I`
of the multigrid hierarchy ` is sorted lexicographically with respect to λ and i.

Given two spline hierarchies for adjacent levels ` − 1 and ` in the multigrid hierarchy, the algorithm
PROLONG computes the associated prolongation matrix for K`−1 and T`−1:

Algorithm PROLONG( I`−1, I`, (Rλ)λ=1,...,Λ) {

// I`−1 and I`: index sets of active basis functions of level ` − 1 and ` in the multigrid hierarchy,
respectively. The index sets for each level λ in the spline hierarchy are Iλ`−1 and Iλ` , see (7)
// (Rλ)λ=1,...,Λ: prolongation matrices between Bλ−1 and Bλ, precomputed using knot insertion.
// The algorithm returns the prolongation matrix P`.

create null matrix P` of size |I`−1| × |I`|

for all (λ, i) ∈ I`−1 do {

create null vector Mλ of size mλ

Mλ[i] := 1

for ν from λ to N − 1 do {

for all k ∈ Iν` do {
if ν > λ { // this line THB-splines only
for all k ∈ Iν`−1 do { // this line THB-splines only
Mν [k] := 0 } } // this line THB-splines only

P`[(λ, i), (ν, k)] := Mν [k]

Mν [k] := 0 // this line HB-splines only
}

Mν+1 := Rν+1Mν } }

RETURN(P`) }

For HB-splines, the algorithm iteratively computes the representation of each B-spline in K`−1 with
respect to the new basis K`. This is performed by visiting all levels ν of the spline hierarchy. In each
level we eliminate the contributions of the functions which are present at the next level ` of the multigrid
hierarchy. Subsequently, the remainder is represented with respect to the next level ν + 1 of the spline
hierarchy. Clearly, the iteration can be aborted if all coefficients in Mν+1 are zero.

The computation for THB-splines is based on the preservation of coefficients, see [16, Section 5]. We
apply truncation to compute the representation at all levels and to determine the coefficients with respect to
the THB-splines at level ` of the multigrid hierarchy. In order to speed up the computation, we determine,
for each index (λ, i) ∈ I`−1, the highest level

max{λ′ : suppβλi ∩ Ωλ
′

` 6= ∅}

that can lead to non-zero entries in the prolongation matrix P`. The iteration is aborted when this level is
reached.

3.4. Construction by adaptive refinement
In practice we usually construct the sequence of nested subdomains Ω`, and therefore the sequence of

associated discretization spaces, by adaptive refinement based on an a posteriori error estimator. We first
describe a single step of our refinement strategy.

Given a previously computed discrete solution uh, we compute the residual a posteriori error estimator
for IgA introduced in [14]. On each cell K, the estimator ηK is defined by

η2
K := h2

K‖f − (−∆uh|K)‖2L2(K),
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where hK denotes the diameter of the cell K. Note that compared to classical residual error estimators
from the finite element literature (cf. Braess [3]), the jump components of the estimator across cell interfaces
vanish due to our use of trial spaces which are at least C1-continuous. Based on this estimator, we refine
those cells K which satisfy some thresholding criterion, ηK ≥ θ, where the threshold θ is chosen according
to a relative thresholding strategy; see [14] for details.

We now describe the overall adaptive solution procedure. To this end, we start with a coarse tensor
product B-spline discretization defined over the parameter domain. In our notation, this means that the
initial hierarchy

Ω0 = (D)

contains only a single domain, namely, the entire parameter domain. Let V0 = H(Ω0) denote the hierarchical
spline space defined over Ω0, which is simply a tensor product spline space. Over this coarse space, we solve
the discretized boundary value problem (4) and obtain a discrete solution u0.

We now compute the estimators ηK based on u0 and apply the adaptive refinement strategy described
above, which results in the marking of some cells in D for refinement. The marked cells are collected in Ω1

1,
and we obtain a new hierarchy

Ω1 = (D,Ω1
1)

which induces a refined hierarchical spline space V1 = H(Ω1) ⊇ V0. We now solve (4) in V1 and obtain a
new discrete solution u1. We repeat the process of a posteriori error estimation and adaptive refinement,
adding at most one new level to the hierarchy at each iteration, so that after the k-th step we obtain a
hierarchy

Ωk = (D,Ω1
k, . . . ,Ω

k
k)

and associated hierarchical spline space Vk = H(Ωk). Note that the refinement procedure may not only
add an additional level to the hierarchical spline space, but also enlarge the subdomains associated to the
previous levels, as discussed in Section 3.2. We terminate this process once we are satisfied with the accuracy
of the obtained solution uk.

It is clear that the same procedure can be performed when the initial hierarchy Ω0 is non-trivial, for
instance because the geometry map is already given in terms of a hierarchical basis. In our examples,
however, we always start from a tensor product space.

3.5. Application of multigrid
The nested sequence of discretization spaces V0 ⊂ V1 ⊂ . . . ⊂ Vk constructed in Section 3.4 allows us to

apply the abstract multigrid framework described in Section 3.1 to the solution of the discretized problem
in Vk, where k = L is the number of levels in the multigrid hierarchy. For the computation of the transfer
matrices P` which describe the embedding of V`−1 in V`, we use the procedure described in Section 3.3.

In the present work, we use a simple Gauss-Seidel smoother, i.e., the smoothing matrix S` used in level
` is chosen as the lower triangular part of the stiffness matrix A` on the same level. It is understood by now
that this simple smoothing strategy does not always result in optimal multigrid solvers in the isogeometric
setting, in particular for higher spline degrees and space dimensions [19]. However, the design of optimal
smoothers for IgA is still a field of active research (see, e.g., [18, 8]), and we therefore stick to the simple
choice of the Gauss-Seidel smoother.

4. Numerical experiments

In this section, we present experimental results for three model problems. Example 1 uses a synthetically
generated sequence of meshes generated a priori, while Examples 2 and 3 use adaptive refinement by a
posteriori error estimation for problems with nonsmooth solutions.

In all examples, we compare iteration numbers for THB-spline basis functions with those for HB-spline
basis functions. This is a simple change of basis which leaves the discretization spaces unchanged. In each
example we test V-cycle iteration with one pre- and one post-smoothing Gauss-Seidel step on each level, as
well as Conjugate Gradient (CG) iteration preconditioned with one such V-cycle. The stopping criterion in
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all cases is the reduction of the Euclidean norm of the initial residual by a factor of 10−8. Since all examples
exhibit a similar trend, we discuss them collectively in some more detail in Section 5, the conclusion.

4.1. Example 1
On the square P = (−1, 1)2, we construct a hierarchy of THB-spline spaces by adaptively fitting the

function
u(x, y) = exp(52

√
(10x− 2)2 + (10y − 3)2)−1

starting from a coarse tensor product spline space. The applied fitting method is described in details in [24].
An example of the mesh resulting after several fitting steps is shown in Figure 6.

Figure 6: THB-spline supports after five steps of adaptive fitting with quadratic THB-splines (Example 1)

We then solve the Poisson equation

−∆u = f in P, u|∂P = g,

where the right-hand side f and Dirichlet data g are chosen according to the exact solution u given above. We
use the sequence of nested THB-spline spaces generated by the fitting process as the grids in our multigrid
method.

Note that in this example, the mesh is refined a priori in such a way as to be able to represent the exact
solution u well. This mimics the situation of an ideal (but impractical) error estimator. This example was
included in order to separate the performance study of the multigrid method from the quality of a practical
error estimator. The behavior of the estimator influences not only the approximation quality of the obtained
solution, but also the sequence of multigrid spaces and therefore to a certain degree the convergence of the
algorithm. Therefore, this test case serves to illustrate that the later examples, which we will perform with
true a posteriori error estimators, are not strongly dependent on the particular choice of estimator.

The iteration numbers are reported in Table 1. Here, the upper part of the table gives the number of
V-cycle iterations needed to reduce the `2-norm of the initial residual by 10−8. For the lower part of the
table, instead of V-cycle iteration, we perform Conjugate Gradient (CG) iteration preconditioned with one
V-cycle.
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V-cycle iteration
p = 2 p = 3 p = 4
THB HB THB HB THB HB

` dofs iter iter dofs iter iter dofs iter iter
0 49 64 81
1 109 11 27 169 43 43 196 167 167
2 365 15 48 475 90 554 528 891 12443
3 829 12 31 1174 75 441 1272 628 13126
4 1487 13 29 2266 81 414 2509 404 10771
5 2317 12 29 3580 75 408 4136 419 9091

CG iteration preconditioned with one V-cycle
p = 2 p = 3 p = 4
THB HB THB HB THB HB

` dofs iter iter dofs iter iter dofs iter iter
0 49 64 81
1 109 7 9 169 15 15 196 28 28
2 365 8 14 475 18 29 528 38 74
3 829 8 12 1174 19 46 1272 57 229
4 1487 8 12 2266 20 48 2509 50 229
5 2317 8 12 3580 19 45 4136 47 212

Table 1: Iteration numbers for Example 1

Overall, we observe that when using THB-splines, the number of iterations is significantly smaller than
for HB-splines, in particular for higher spline degrees. Furthermore, the use of preconditioned CG iteration
further reduces the iteration numbers, more pronouncedly so for the cases with higher degrees, without
significantly increasing the computational cost of one cycle.

4.2. Example 2

Figure 7: Solution field obtained in Example 2 with quadratic THB-splines.

We solve the Poisson equation

−∆u = f in P, u|∂P = 0

with the source function

f(x, y) =

{
1, (x− 0.25)2 + (y − 1.6)2 < 0.22,

0, otherwise.

The domain P approximates a quarter annulus in the first quadrant with inner and outer radius 1 and 2,
respectively, by means of quadratic tensor product B-splines.

Starting from a coarse tensor-product B-spline basis (` = 0), we construct a hierarchy of THB-spline
spaces by means of adaptive refinement based on an a posteriori error estimator as described in Section 3.4.
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Figure 8: Meshes for different multigrid levels ` = 1, . . . , 6 in Example 2 using quadratic THB-splines.
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V-cycle iteration
p = 2 p = 3 p = 4
THB HB THB HB THB HB

` dofs iter iter dofs iter iter dofs iter iter
0 100 121 144
1 182 15 35 195 70 253 226 217 4128
2 343 19 42 353 78 379 381 428 6577
3 701 25 57 668 136 1187 673 527 6387
4 1355 26 64 1326 200 742 1216 2109 26743
5 2822 23 98 2635 145 991 2312 1489 35034

CG iteration preconditioned with one V-cycle
p = 2 p = 3 p = 4
THB HB THB HB THB HB

` dofs iter iter dofs iter iter dofs iter iter
0 100 121 144
1 182 9 12 195 16 26 226 30 61
2 343 10 14 353 20 44 381 39 123
3 701 11 17 668 26 57 673 52 158
4 1355 11 18 1326 26 63 1216 84 297
5 2822 11 21 2635 27 70 2312 88 351

Table 2: Iteration numbers for Example 2

The meshes of the resulting hierarchical bases when using quadratic THB-splines are shown in Figure 8. A
plot of the obtained solution is shown in Figure 7.

We then set up a multigrid method as described above which always has ` = 0 as its coarse grid and
solves the problem on some given level ` by V-cycle iteration.

The iteration numbers are reported in Table 2. Once again, when using THB-splines, the number of
iterations is significantly smaller than for HB-splines, and CG iteration further reduces the numbers.

4.3. Example 3
We solve the classical benchmark problem for a singularity arising from a reentrant corner on the L-shape

domain
−∆u = 0 in P, where P = (−1, 1)2 \ [0, 1]2.

We choose pure Dirichlet boundary conditions according to the exact solution, given in polar coordinates,

g(r, ϕ) = r2/3 sin((2ϕ− π)/3),

where the argument is assumed to have the range ϕ ∈ [0, 2π). The geometry is represented by piecewise
linear splines.

We then perform adaptive refinement using THB-splines as described in Example 2. An example of a
THB-spline basis arising from adaptive refinement is shown in Figure 9.

The procedure is as in Example 2, and we report the resulting iteration numbers in Table 3, which again
confirms the observation regarding the superior performance of THB-splines.

5. Conclusion

We have presented a multigrid solver for isogeometric discretizations of the Poisson equation on adaptively
refined hierarchical spline spaces. We have tested the solver both on synthetic examples as well as on
hierarchies which were generated by adaptive refinement where the exact solution has a singularity. In each
example, we compared the iteration numbers when the hierarchical spline space is represented by standard
HB-splines and by THB-splines.
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Figure 9: L-shape domain with cubic THB-splines after four adaptive refinement steps (2379 dofs)

V-cycle iteration
p = 2 p = 3 p = 4
THB HB THB HB THB HB

` dofs iter iter dofs iter iter dofs iter iter
0 630 703 780
1 810 18 33 909 71 297 982 392 3487
2 1163 16 35 1252 68 317 1332 370 3300
3 1631 18 33 1721 84 359 1783 557 4266
4 2338 17 41 2379 73 395 2458 446 5873
5 3327 18 32 3414 87 382 3514 615 6804

CG iteration preconditioned with one V-cycle
p = 2 p = 3 p = 4
THB HB THB HB THB HB

` dofs iter iter dofs iter iter dofs iter iter
0 630 703 780
1 810 9 12 909 19 36 982 41 98
2 1163 9 13 1252 19 39 1332 40 116
3 1631 9 13 1721 20 41 1783 50 146
4 2338 9 15 2379 20 43 2458 53 160
5 3327 9 13 3414 21 42 3514 62 190

Table 3: Iteration numbers for Example 3
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In all examples, we found that the V-cycle iteration numbers to reduce the initial residual by a fixed
factor were significantly smaller when using THB-splines compared to HB-splines. The difference in iteration
numbers was especially dramatic for higher spline degrees.

For high spline degrees, the pure V-cycle iteration numbers are not satisfactory even when using THB-
splines. This is consistent with the known fact that even in the case of tensor product B-splines, the
Gauss-Seidel smoother does not perform well for high spline degrees [19]. Research into optimal and robust
smoothers for isogeometric multigrid methods is ongoing, and we can hope that insights gained in the tensor
product case will also result in better smoothers for the more complicated case of hierarchical splines.

As a remedy, we have used CG iteration preconditioned with one V-cycle. The numerical examples have
shown that this usually results in a significant reduction of the iteration numbers, while having the same
asymptotic computational complexity per cycle. The speedup is particularly dramatic for the cases with
higher degrees and makes the iteration numbers very practical even for the case p = 4. The advantage of
THB-splines over HB-splines remains clear also in the case of CG iteration.
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