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Abstract

We present results regarding fast and robust solvers for equations arising from continuous and discontinu-
ous Galerkin discretization of heterogeneous diffusion problems in the context of Isogeometric Analysis. The
solvers considered belong to the class of non-overlapping domain decomposition methods which use tearing and
interconnection strategies.

1 Introduction
In this paper, we consider the adaption of Dual Primal Finite Element Tearing and Interconnecting (FETI-DP)
methods to Isogeometric Analysis (IgA). This class of IgA solvers are now called Dual Primal Isogeometric Tear-
ing and Interconnecting (IETI-DP) methods. We apply these methods to large-scale linear systems of algebraic
equations arising from continuous Galerkin (cG) and discontinuous Galerkin (dG) IgA of heterogeneous diffusion
problems on multipatch domains. The dG formulation is used to couple the local problems across patch interfaces
with possibly non-matching grids. The purpose of this paper is to present cG and dG IETI-DP methods, summarize
some theoretical results, and discuss our numerical results.

2 Multipatch IgA of heterogeneous diffusion problems
For sake of simplicity, let us consider the following dG IgA discretization of the homogeneous Dirichlet problem
for the diffusion equation −div(α∇u) = f in a multipatch domain Ω ⊂ Rd (d = 2, 3) with a non-homogeneous
diffusion coefficient α and a given source term f . The computational domain Ω is decomposed into N non-
overlapping subdomains Ωk, called volumetric patches in IgA. Every patch Ωk is the image of the parameter
domain (0, 1)d by a regular NURBS-map G(k) : [0, 1]d → Ωk, see [1] for an introduction to the IgA technology.
Now the dG IgA scheme, appoximating our diffusion problem, can be formulated as follows: Find uh ∈ Vh =∏
k span{Nik,pk ◦G(k)−1

: supp(Nik,pk) ∩ ∂Ω = ∅} such that

N∑
k=1

ak(u, v) =

N∑
k=1

∫
Ωk

fvkdx ∀v ∈ Vh, (1)

where ak(u, v) =
∫

Ωk
αk∇uk · ∇vkdx +

∑
l∈Ek

∫
Γkl

αk

2

(
∂uk

∂n (vl − vk) + ∂vk
∂n (ul − uk)

)
+ µαk

h (ul − uk)(vl −
vk)ds. Here we assume that α = αk = const > 0 in Ωk. The cG IgA scheme can be seen as special case of (1),
where we look for a continuous IgA approximation uh ∈ V0h := Vh ∩ H1

0 (Ω) solving (1) for all test functions
vh ∈ V0h. The NURBS functions {Nik,pk} are used as basis functions for constructing the geometrical map G(k)

as well as for construction the IgA approximation uh to the solution u of our diffusion problem on the patch Ωk.

3 Tearing and Interconnecting
The idea of Tearing and Interconnecting consists in the introduction of additional dofs on the interface in order
to decouple the local subproblems and to ensure the continuity of the solution by means Lagrange multipliers.
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The operator that enforces the continuity is usually called Jump Operator and is denoted with B. For the cG
IgA scheme, we follow the standard procedure as described, e.g., in [2]. However, it is not obvious how to apply
this technique to the dG IgA scheme (1). Following the dG FETI-DP technique proposed in [3], we introduce an
additional layer of dofs, which represents the opposite subdomain interface, to the interface part of each patch.
This technique is in detail explained in [4]. Consequently, we can equivalently rewrite the corresponding linear
system as[

KcG
e BT

B 0

] [
ue
λ

]
=

[
f cGe

0

]
and

[
KdG
e BT

B 0

] [
ue
λ

]
=

[
fdGe

0

]
, (2)

where KX
e = diagk(KX

k ) and fXe = [fXk ] with X ∈ {cG, dG} are the subdomain stiffness matrices and right-
hand side vectors. We introduce primal variables in order to guarantee the invertibility of KX

e , however, at the
price of loosing its block-diagonal structure. We denote entries of the system with incorporated primal variables
with a tilde, i.e., K̃X

e , B̃, f̃
X
e , . . .. From this system, we obtain the Schur complement equation: Find λ ∈ U such

that

FXλ = dX , (3)

where FX := B̃
(
K̃X
e

)−1

B̃T and dX := B̃
(
K̃X
e

)−1

f̃X . Clearly, this system is never explicitly generated.
Instead, we apply a matrix free CG algorithm, where we just implement the application of the matrix. For an
efficient implementation concerning the application of F and the incorporation of the primal variables, we refer,
e.g., to [5] and [2]. We note that these techniques can also be applied to the case X = dG, where adaptions to the
corresponding index sets have to be made.

4 Robust preconditioners
In order to obtain an efficient and robust method, we use the preconditioned conjugate gradient (PCG) algorithm
for solving the Schur complement equation (3). We choose the so-called scaled Dirichlet preconditioner MX

sD :=
BDS

X
e BD, where SXe is a block diagonal matrix of subdomain local Schur complements, andBD denotes a scaled

version of B. In the case of X = cG, it is shown in [2] that the spectral condition number of the preconditioned
system is bounded by O

(
(1 + log(H/h)2)

)
, where H/h := maxkHk/hk. Thus, the bound is quasi optimal with

respect to the ratio of the patch diameter Hk and the mesh size hk. This condition number implies that the number
of PCG iteration grows at most like O ((1 + log(H/h))).

5 Discussion of our numerical results
The O ((1 + log(H/h))) growth of the number of PCG iteration that was proved in [2] for cG IgA equations has
been confirmed by all our numerical experiments, see also [2]. Moreover, our numerical results indicate robustness
with respect to jumping diffusion coefficients across the interface and a p−dependence of order at mostO(p) in 2D
and 3D, where p denotes the underlying polynomial degree. The analysis of the case X = dG will be studied in a
forthcoming paper. Fortunately, the numerical results in 2D and 3D clearly indicate the same quasi-optimal bound
and the same behaviour with respect to p and jumping diffusion coefficients as in the case of cG IgA equation,
see [4]. Moreover, dG IETI-DP also works for segmentations (domain decomposition) with gaps and overlaps
descussed in [6], as one can see in Fig. 1 and Table 2.
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Figure 1: Segmentation with gaps and overlaps

Alg. C coeff. scal. stiff. scal.
Dofs H/h It. κ It. κ
1908 16 9 1.50 9 1.50
6348 32 10 1.77 10 1.76

22908 64 10 2.08 10 2.07
86748 128 11 2.43 11 2.42

337308 256 12 2.82 13 2.84

Figure 2: Condition number (κ) and CG itera-
tions (It.) for coefficient and stiffness scaling;
polynomial degree 2 with homogeneous diffu-
sion coefficient.
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