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Abstract. We propose a discontinuous Galerkin Isogeometric Analysis method for the numerical solution of
elliptic diffusion problems on decompositions into volumetric patches with non-matching interfaces. Indeed, due
to an incorrect segmentation procedure, it may happen that the interfaces of adjacent subdomains don’t coincide.
In this way, gap regions, which are not present in the original physical domain, are created. In this paper, the gap
region is considered as a subdomain of the decomposition of the computational domain and the gap boundary
is taken as an interface between the gap and the subdomains. We apply a multi-domain approach and derive
a subdomain variational formulation which includes interface continuity conditions and is consistent with the
original variational formulation of the problem. The last formulation is further modified by deriving interface
conditions without the presence of the solution in the gap. In particular, the gap terms in the interface conditions
are replaced by Taylor expansions with respect the adjacent subdomain solutions. Finally, the solution of this
modified problem is approximated by developing a discontinuous Galerkin Isogeometric Analysis technique. The
ideas are illustrated on a model diffusion problem with discontinuous diffusion coefficients. We develop a rigorous
theoretical framework for the proposed method clarifying the influence of the gap size onto the convergence
of the method. The theoretical estimates are supported by numerical examples in two- and three-dimensional
computational domains.

Key words: Elliptic diffusion problems, Heterogeneous diffusion coefficients, Isogeometric Analysis, Decomposi-
tions into volumetric patches with non-matching interfaces, Multi-patch discontinuous Galerkin method.

1 Introduction

In the numerical solution of many realistic problems by means of Isogeometric Analysis (IgA), the
whole computational (physical) domain Ω can often not be represented by a single volume patch that
is the image of the parameter domain by a single, smooth and regular B-spline or NURBS map. In
this case, it is necessary to perform a decomposition of the computational domain Ω into subdomains,
in other words, to describe the domain Ω by multiple patches. Typical examples are complicated 3d
domains, different diffusion coefficients, or even different mathematical models in different parts of
the domain. Superior B-splines (NURBS, T-spline etc) finite dimensional spaces are used, in order
to construct parametrizations for these subdomains [6]. It is typical for IgA that the same basis
functions are used to approximate the solution of the problem under consideration, see [11] and [3].
Despite the advantages, that B-splines (NURBS etc) offer for the parametrization of the subdomains,
some serious difficulties can arise, especially, when the subdomains topologically differ a lot from a
cube. The segmentation procedure, that starts from the geometrical description of the corresponding
surface patches, can lead us to non-compatible parametrizations of the geometry, meaning that the
parametrized interfaces of adjusting subdomains are not identical after the volume segmentation, see,
e.g., [12, 18, 20] for the discussion of isogeometric segmentation pipeline. In this paper, we call a non-
watertight isogeometric segmentation also non-matching interface parametrization. The result of this
phenomenon is the creation of overlapping subdomains or gap regions between adjacent subdomains.
Here we are interested in the later case. Indeed, it is an important issue of the IgA framework to
devise a stable numerical procedure that can successfully be applied to this type of decompositions.
The contribution of this paper aims at developing a multipatch discontinuous Galerkin IgA (dG IgA)
technique for this case. For simplicity, we focus on the case where we have an initial decomposition
of Ω, which gives non-matching parametrizations of two subdomain interfaces, and a gap region, say
Ωg, appears between the two adjacent subdomains. This means that the domain decomposition is
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given by TH(Ω \Ωg) := {Ωl, Ωr}, and Ω = Ωl ∪Ωr ∪Ωg. The elliptic diffusion problem, that we are
going to consider as model problem, has the form: find u : Ω → R such that

−div(ρ∇u) = f in Ω and u = uD on ∂Ω, (1.1)

where the diffusion coefficient ρ is a patch-wise positive constant function, f is a given source, and
uD are given Dirichlet data prescribed on the boundary ∂Ω of Ω. In [16] and [14], the second and
third authors have studied multipatch dG IgA methods for solving model diffusion problems like
(1.1). In particular, the authors considered matching interface domain decompositions which are
compatible with the jump discontinuities of the coefficient ρ. The weak continuity conditions across
the interfaces have been imposed by introducing dG numerical fluxes, see, e.g., [8] and [22]. In this
way, the solution of the problem can independently be approximated in every subdomain (in the IgA
frame) and non-matching grids can be employed. Here we will heavily use the results from [16] in
order to build up a stable dG IgA scheme for descritizing (1.1) on decompositions with non-matching
interfaces where gaps can appear.

In the present case, we only deal with subdomains belonging to TH(Ω \ Ωg). Thus, we need to
set up an equivalent problem on Ω \ Ωg. We first apply a multi-domain approach on Ωl ∪ Ωr ∪ Ωg

and derive a variational formulation for (1.1) by performing integration by parts separately over
every subdomain. Thereafter, under some regularity assumptions imposed on the weak solution of
(1.1), the contributions of the volume integrals on Ωg are removed, and we construct an equivalent
variational problem on TH(Ω \Ωg), where only the normal fluxes ∇u|Ωg ·n∂Ωg on ∂Ωg exist. However,
the information that is provided by the original data of the problem does not help us to explicitly
determine the fluxes ∇u|Ωg · n∂Ωg . Thus, given the regularity of u in every Ωi, the normal flux
terms ∇ug · n∂Ωg are replaced by Taylor expansions using the known values of u of the neighboring
subdomains of Ωg. In that way, we settle down with our variational problem, where its solution u is
defined only on the subdomains belonging to TH(Ω \Ωg), which can consequently be approximated
by the B-spline spaces. We utilize this last formulation, expressed on TH(Ω \ Ωg), for deriving the
discrete dG IgA formulation. As mentioned above, we can not produce approximations to ug := u|Ωg ,
since the B-spline spaces are not defined on Ωg. The accuracy of the discrete solution is affected by
the Taylor polynomials which depend on the gap distance, say dg, which charactirizes the maximum
distance of the diametrically opposite points on ∂Ωg. In fact the Taylor expansions are playing the
role of a bridge for the communication between the valus of the adjacent subdomains, and will help
to build up the numerical flux in the dG IgA method over the gap region. In this work, based on
the results of our recent works [16, 14], we are aiming at deriving an error estimate in the classical
“broken” dG-norm ‖.‖dG for derivation of the discrete solutions from the exact solution in terms of
the mesh size h and the gap distance dg. In particular, we will show that, if the IgA space defined on

subdomains Ωi has the approximation power hk and the gap distance is O(hk+
1
2 ) (that means that

the flux approximation is of O(hk)), then we obtain optimal convergence rate for the error in the dG
norm ‖.‖dG. In the special case where the gap distance is O(h), we obtain a reduced discretization

error of order O(h
1
2 ).

We lastly mention that several techniques have recently been investigated for coupling non-
matching (or non-conforming) subdomins in some weak sense. In [23] and [19], Nitsche’s method
have been applied to enforce weak coupling conditions along trimmed B-spline patches. In [2], the
most common techniques for imposing weakly the continuity on the interfaces have been applied and
tested on nonlinear elasticity problems. The numerical tests have been performed on non-matching
grid parametrizations. Furthermore, mortar methods have been developed in the IgA content utiliz-
ing different B-spline degrees for the Langrange multiplier in [5]. The method has been applied for
performing numerical tests on decompositions with non-matching interface parametrizations.

The paper is organized as follows. In Section 2, some notations, the weak form of the problem and
the definition of the B-spline spaces are given. We further describe the gap region. In Section 3, we
present the problem in Ω \Ωg, the approximation of the normal fluxes on the ∂Ωg, and the dG IgA
scheme. In the last part of this section, we estimate the remainder terms in the Taylor expansion.
Section 4 is devoted to the derivation of the a priori error estimates. Finally, in Section 5, we present
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numerical tests for validating the theoretical results on two- and three- dimensional test problems.
The paper closes with some conclusions in Section 6.

2 Preliminaries, dG IgA notation and gap representation

We start with some preliminary definitions and notations. Let Ω be a bounded Lipschitz domain in
Rd, and let α = (α1, ..., αd) be a multi-index of non-negative integers α1,...,, αd with degree |α| =∑d

j=1 αj, where we are primarily interested in the cases d = 2 and d = 3. For any α, we define the

differential operator Dα = Dα1
1 · · ·D

αd
d , with Dj = ∂/∂xj, j = 1, . . . , d, and D(0,...,0)u = u. For a non-

negative integer m, let Cm(Ω) denote the space of all functions φ : Ω → R, whose partial derivatives
Dαφ of all orders |α| ≤ m are continuous in Ω. We denote the subset of all functions from C∞(Ω)
with compact support in Ω by C∞0 (Ω) (orD(Ω)). Let 1 ≤ p < ∞ be fixed and l be a non-negative
integer. As usual, Lp(Ω) denotes the Lebesgue spaces for which

∫
Ω
|u(x)|p dx <∞, endowed with the

norm ‖u‖Lp(Ω) =
( ∫

Ω
|u(x)|p dx

) 1
p , and W l,p(Ω) is the Sobolev space, which consists of the functions

φ : Ω → R such that their weak derivatives Dαφ with |α| ≤ l belong to Lp(Ω). If φ ∈ W l,p(Ω), then
its norm is defined by

‖φ‖W l,p(Ω) =
( ∑
0≤|α|≤l

‖Dαφ‖pLp(Ω)

) 1
p and ‖φ‖W l,∞(Ω) = max

0≤|α|≤l
‖Dαφ‖L∞(Ω),

for 1 ≤ p <∞ and p =∞, respectively. We refer to [1] for more details about Sobolev spaces.
We end this section by recalling Hölder’s and Young’s inequalities: for any ε, 0 < ε < ∞, and
1 ≤ p, q ≤ ∞ such that 1

p
+ 1

q
= 1, for all u ∈ Lp(Ω) and v ∈ Lq(Ω), there holds∫

Ω

uv dx ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω),

∫
Ω

uv dx ≤ ε

p
‖u‖pLp(Ω) +

ε−
q
p

q
‖v‖qLq(Ω). (2.1)

2.1 Weak formulation

The weak formulation of the boundary value problem (1.1) reads as follows: for given source function

f ∈ L2(Ω) and Dirichlet data uD ∈ W
1
2
,2(∂Ω), find a function u ∈ W 1,2(Ω) such that u = uD on ∂Ω

and satisfies the variational identity

a(u, φ) = lf (φ), ∀φ ∈ W 1,2
0 (Ω) = {φ ∈ W 1,2(Ω) : φ = 0 on ∂Ω}, (2.2)

where the bilinear form a(·, ·) and the linear form lf (·) are defined by

a(u, φ) =

∫
Ω

ρ∇u∇φ dx and lf (φ) =

∫
Ω

fφ dx, (2.3)

respectively. Since we assume that the diffusion coefficient ρ ∈ L∞(Ω) and uniformly positive (later
we will specify this assumption for multi-patch domains), the Lax-Milgram Lemma immediately
yields existence and uniqueness of the solution u of our model diffusion problem (2.2). For simplicity,
we only consider non-homogeneous Dirichlet boundary conditions on ∂Ω. However, the analysis
presented in our paper can easily be generalized to other constellations of boundary conditions which
ensure existence and uniqueness such as Robin or mixed boundary conditions.

For the developing of the the convergence analysis below for the dG IgA method that we are
going to propose on subdomain decompositions with gap regions, we assume that the domain Ω ⊂ Rd

consists of two subdomains Ω1 and Ω2 with common interface F , i.e.,

Ω = Ω1 ∪Ω2, Ω1 ∩Ω2 = ∅, Ω1 ∩Ω2 = F. (2.4)

For this decomposition, we use the notation TH(Ω) = {Ωi}2i=1, and define the space

W l,p(TH(Ω)) = {u ∈ Lp(Ω) : u|Ωi ∈ W l,p(Ωi), for i = 1, 2}, (2.5)

where l ≥ 0 is an integer and 1 ≤ p ≤ ∞ is real number. For the solution, we consider the following
regularity assumption.
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Assumption 1 We allow the diffusion coefficient ρ to be positive and patch-wise constant, i.e.,
ρ = ρi > 0 constant in Ωi, i = 1, 2. We assume that the solution u of (2.2) belongs to V = W 1,2(Ω)∩
W l,p(TH(Ω)) with l ≥ 2 and p ∈ (max{1, 2d

(d+2(l−1))}, 2].

In what follows, positive constants c and C appearing in inequalities are generic constants which
do not depend on the mesh-size h. In many cases, we will indicate on what may the constants depend
for an easier understanding of the proofs. Frequently, we will write a ∼ b meaning that c a ≤ b ≤ C a.

2.2 Incorrect segmentation and non-matching parametrizations

Let us suppose for the moment that we have constructed the B-spline (or NURBS) parametric space,
(see next Subsection), and we start the segmentation procedure in order to calculate the control
point net for every Ωi, i = 1, 2. Given the control net and the B-spline space we consider each
of Ωi, i = 1, 2 as the image, of a B-spline parametrization mapping. For reasons that we will see
below, we denote the two images Ωl and Ωr correspondingly. The domain Ω can be consequently
described by means of Ωl and Ωr. Despite the superior properties of B-spline spaces, in several
cases, as for example when Ωi, i = 1, 2 differ topologically a lot by a cube, the previous geometric
B-spline parametrizations can lead us to non-compatible parametrizations of the common interface.
This means that the parametrizations of the common interface of the adjusting subdomains are not
identical, see, e.g., [12]. We will call this situation a non-matching interface parametrization. The
result of this phenomenon is the creation of overlapping subdomains or gap regions between Ωl and
Ωr. Here we are interested in the later case. For the purposes of this paper, it suffices to consider the
case where only one gap region, say Ωg, exists between Ωl and Ωr, and either Ωl ⊂ Ω1 or Ωr ⊂ Ω2.
As an immediate result we have that Ω = Ωl ∪ Ωg ∪ Ωr, see an illustration in Fig. 2(c). In what
follows, we will call Ωl and Ωr parametrized subdomains or simply subdomains, if there is no chance
of confusion with Ωi, i = 1, 2. We denote by TH(Ω \Ωg) = {Ωl, Ωr}.
In Fig. 1, we illustrate a general two-dimensional case, where more than two subdomains do not
match parametrically on the internal interfaces.1

(a) (b)

Fig. 1. (a) A geometric illustration of a decomposition including gap regions between the adjacent subdomains, (b) The de-
composition without any gap region.

2.3 B-spline spaces

In this section, we briefly present the B-spline spaces and the form of the B-spline parametrizations
for the physical subdomains. For a more detailed presentation we refer to [6], [7], [24].

Let us consider the unit cube Ω̂ = (0, 1)d ⊂ Rd, which we will refer to as the parametric domain
and let Ω =

⋃N
i=1Ωi, with Ωi ∩ Ωj = ∅, for i 6= j be a decomposition of Ω. Let the integers k,

1 The two figures have been provided by the Institute of Applied Geometry of Johannes Kepler University of Linz.
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i = 1, ..., N and nι, ι = 1, ..., d denote the given B-spline degree, the coresponding physical i − th
subdomain, and the number of basis functions of the B-spline space that will be constructed in xι-
direction. We introduce the d−dimensioanl vector of knots Ξd

i = (Ξ1
i , ..., Ξ

ι
i , ..., Ξ

d
i ), ι = 1, . . . , d,

with the particular components given by Ξ ι
i = {0 = ξι1 ≤ ξι2 ≤ ... ≤ ξιnι+k+1 = 1}. The components

Ξ ι
i of Ξd

i form a mesh T
(i)

hi,Ω̂
= {Êm}Mi

m=1 in Ω̂, where Êm are the micro elements and hi is the mesh

size, which is defined as follows. Given a micro element Êm ∈ T (i)

hi,Ω̂
, we set hÊm = diameter(Êm) =

max
x1,x2∈Êm

‖x1 − x2‖d, where ‖.‖d is the Euclidean norm in Rd and the subdomain mesh size hi is

defined to be hi = max{hÊm}. We define h = maxi=1,...,N{hi}.

Assumption 2 The meshes T
(i)

hi,Ω̂
are quasi-uniform, i.e., there exist a constant θ ≥ 1 such that

θ−1 ≤ hÊm/hÊm+1
≤ θ. Also, we assume that hi ∼ hj for i 6= j.

Given the knot vector Ξ ι
i in every direction ι = 1, ..., d, we construct the associated univariate B-

spline functions, B̂Ξιi ,k = {B̂(i)
1,ι(x̂ι), ..., B̂

(i)
nι,ι(x̂ι)} using the Cox-de Boor recursion formula, see details

in [6], [7]. On the mesh T
(i)

hi,Ω̂
, we define the multivariant B-spline space, B̂Ξdi ,k

, to be the tensor-

product of the coresponding univariate BΞιi ,k spaces. Accordingly, the B-spline functions of B̂Ξdi ,k
are

defined by the tensor-product of the univariante B-spline basis functions, that is

B̂Ξdi ,k
= ⊗dι=1B̂Ξιi ,k = span{B̂(i)

j (x̂)}n=n1×...×nι×...×nd
j=1 , (2.6)

where each B̂
(i)
j (x̂) has the form

B̂
(i)
j (x̂) =B̂

(i)
j1

(x̂1)× ...× B̂(i)
jι

(x̂ι)× ...× B̂(i)
jd

(x̂d), with B̂
(i)
jι

(x̂ι) ∈ B̂Ξιi ,k. (2.7)

Finally, having the B-spline spaces and the B-spline control points C
(i)
j , we can represent each

subdomain Ωi, i = 1, ..., N by the parametric mapping

Φi : Ω̂ → Ωi, x = Φi(x̂) =
n∑
j=1

C
(i)
j B̂

(i)
j (x̂) ∈ Ωi, (2.8)

where x̂ = Ψi(x) := Φ−1i (x), cf. [6].

We construct a mesh T
(i)
hi,Ωi

= {Em}Mi
m=1 for every Ωi, whose vertices are the images of the vertices

of the corresponding parametric mesh T
(i)

hi,Ω̂
through Φi. For each E ∈ T (i)

hi,Ωi
, we denote its support

extension by D
(i)
E , where the support extension is defined to be the interior of the set formed by the

union of the supports of all B-spline functions whose supports intersects E.
For i = 1, ..., N , we construct the B-spline space BΞdi ,k

on Ωi by

BΞdi ,k
:= {B(i)

j |Ωi : B
(i)
j (x) = B̂

(i)
j ◦Ψi(x), for B̂

(i)
j ∈ B̂Ξdi ,k

}. (2.9)

The global B-spline space Vh with components on every BΞdi ,k
is defined by

Vh := Vh1 × ...× VhN := BΞd1,k
× ...× BΞdN ,k

. (2.10)

We refer the reader to [6] for more information about the meaning of the knot vectors in CAD and
IgA.

Remark 1. The B-spline spaces presented above are referred to the general case of N subdomains. In
this paper, for the sake of simplicity, we assume that we have N = 2. The mappings in (2.8) produce
(and are referred to) matching interface parametrizations. Throughout the paper it is understood
that we study the case where the mappings in (2.8) produce non-matching interface parametrizations
and a gap region appears between the adjacent subdomians, see Section 2.2.

Assumption 3 We assume that k ≥ l, cf. Assumption 1.
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Fig. 2. (a) Illustration of the gap region between two adjacent sub domains in d = 3 case, (b) the diametrically opposite points
located on ∂Ωg in d = 3 case, (c) an illustration for the d = 2 case.

2.4 The gap region

Let us now suppose that Φl : Ω̂ → Ωl and Φr : Ω̂ → Ωr are two parametrization mappings that give
a non-matching interface parametrization. Let Ωg, be the gap region between Ωl and Ωr and let us
consider that ∂Ωg = Fl∪Fr with Fl ⊂ ∂Ωl and Fr ⊂ ∂Ωr, see Figs. 2(a) and 2(c). We further assume
that there is a h0 such that

Ω1 = Ωl, Ωg ⊂ Ω2, and Ω2 = Ωg ∪Ωr, ∀h ≤ h0, (2.11)

which implies that Fl := F , see (2.4). For simplicity, Fl is considered to be a simple region, and it
can be described as the set of points (x, y, z) satisfying

0 ≤ y ≤ yM , ψ1(y) ≤ x ≤ ψ2(y), z = 0, (2.12)

where yM is a fixed real number and ψi with i = 1, 2 are given continuous functions. An illustration is
shown in Fig. 2(b). Our next goal is to assign the points xl ∈ Fl to the points of the other face xr ∈ Fr,
in order to build up later the numerical flux function. The assignment between the opposite points
is achieved by considering Fr as a graph of a B-spline function ζ0(xl,1, xl,2). In particular, having
the description (2.12) for Fl with unit normal vector nFl = (0, 0, 1), we construct a parametrization
Φl,r : Fl → Fr for Fr of the form

Φl,r(xl) = xl + ζ0(xl)nFl := xr ∈ Fr, (2.13)

or more analytically

Fr = {xr : (xr,1 = xl,1, xr,2 = xl,2, xr,3 = xl,3 + ζ0(xl))}, (2.14)

where the B-spline ζ0 function is determined by Φr|Fr . We define the corresponding mapping Φr,l :
Fr → Fl to be the projection of the Fr graph onto xy−plane, that is

Φr,l(xr) = (xl,1, xl,2, 0), where Φl,r(xl,1, xl,2, 0) = xr. (2.15)

We will see later that the parametrization mapping (2.15) simplifies the analysis and is convenient
for performing the numerical tests.

Remark 2. One could consider a mapping Φr,l : Fr → Fl having the same form as the mapping Φl,r,
e.g. Φr,l = xr + ζ̃0(xr)nFr := x∗l ∈ Fl, where nFr is the normal vector on Fr inward to Ωg. In this
case, the point x∗l is different (in general) from the original point xl = xr − ζ0(xl)nFl used in (2.13)
and this seems to make the analysis more complicated. This is because, when we will construct later
the numerical flux on Fl and on Fr, we have to take into account two different assignments of the
diametrically opposite points xl and xr. As we will see later using a parametrization mapping as



dG IgA on Non-matching Interfaces 7

in (2.15) simplifies a lot the analysis and helps on an easy materialization of the method. We note
further, that we have to take into account the two coresponding outward normals, i.e., the nFl on
Fl and nFr on Fr. The consideration of the general vector nFr on Fr, causes rather further technical
difficulties in the numerical computations. Since we are indending to develop a method that can be
easily materialized for practical applications and having in our mind a small gap regions, see few
lines below (2.18), we suppose that the angle formed between nFl and −nFr is almost zero, that is
cos^(nFl ,−nFr) ≈ 1.

We finally characterize the points which belong in the interval [xl, xr]. To this end, for every
xl ∈ Fl we construct a C1 one-to-one map γxl : [0, 1]→ Ωg,

γxl(s) = xl + s(xr − xl), with Φl,r(xl) = xr. (2.16)

The function γxl help us to quantify the size of the gap by introducing the gap distance defined by

dg = max
xl
{|γxl(0)− γxl(1)|}. (2.17)

Of special interest in our analysis are gap regions whose distance decreases polynomially in h.

Assumption 4 We assume that for any h ≤ h0, see (2.11), holds

dg ≤hλ, with λ ≥ 1. (2.18)

Finally, based on the previous properties of the shape of Ωg, without loss of generality, we can assume
that the parametrization Φl,r in (2.13) has the form

Φl,r(xl) = xl + dg ζ(xl)nFl , xl ∈ Fl, (2.19)

where ζ is a B-spline and ‖ζ‖L∞ = 1. In Section 5 Numerical tests, we give explicitly the form of the
mapping Φl,r.

Properties of the parametrization mappings Let us denote by DΦl,r(xl) the Jacobian matrix
of Φl,r(xl) evaluated at xl = (xl,1, xl,2, xl,3) ∈ Fl and by D>Φl,r(xl) its transpose. By an application
of the chain rule we can verify that

∇(u ◦Φl,r(xl)) = D>Φl,r(xl)(∇u) ◦Φl,r(xl). (2.20)

If u is a function defined on the prametrized surface Fr then holds∫
Fr

u dFr =

∫
Fl

u(Φl,r(xl))J dxl, (2.21a)∫
Fr

∇u · nFl dFr =

∫
Fl

D>Φl,r(xl)(∇u) ◦Φl,r(xl) · nFlJ dxl, (2.21b)

where J =
√

(dgζxl,1)
2 + (dgζxl,2)

2 + 1 is the norm of the outward normal vector on Fr.

2.5 Jumps and ‖.‖dG

For the face Fi, i = l, r, let nFi be its unit normal vector towards Ωg. For a smooth function φ defined
on Ω, we define its interface averages and the jumps as

JφK|Fi =
(
φi − φg

)
, {φ}|Fi =

1

2

(
φi + φg

)
, (2.22)

Jρ∇φK|Fi · nFi =
(
ρi∇φi − ρg∇φg

)
· nFi , {ρ∇φ}|Fi · nFi =

1

2

(
ρi∇φi + ρg∇φg

)
· nFi .
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Based on Assumption 1, we can infer that the exact solution satisfies

JuK|F = 0, and Jρ∇uK|F = 0. (2.23)

To proceed to our analysis, we need to define the broken dG-norm, ‖.‖dG. For v ∈ V + Vh, we define

‖v‖2dG =
∑
i=l,r

(
ρi‖∇vi‖2L2(Ωi)

+
ρi
h
‖vi‖2L2(∂Ωi∩∂Ω) +

{ρ}
h
‖vi‖2L2(Fi)

)
, (2.24)

Next, we show that the values of the exact solution u on the opposite assigned points will coincide
as dg → 0.

Proposition 1. Let the Assumption 1 and (2.18) hold true. For xl ∈ Fl, let xr ∈ Fr be its corre-
sponding assigned point. Then for φ ∈ D(Ω) we have∣∣∣ ∫

Fl

(u(xl)− u(xr))φ(xl) dxl

∣∣∣ dg→0−−−→ 0. (2.25)

Proof. By Assumption 1 it follows that

∣∣∣ ∫
Fl

(u(xl)− u(xr))φ(xl) dxl

∣∣∣ =
∣∣∣ ∫

Fl

φ(xl)

∫ 1

0

d

ds
u(xl + s(xr − xl)) ds dxl

≤
∫
Fl

∫ 1

0

|φ(xl)||xl − xr||Du(xl + s(xr − xl))| ds dxl. (2.26)

Since 0 ≤ s ≤ 1 the values of z = xl + s(xr − xl) are restricted in Ωg ⊂ Ω2 and the integration
domain Fl × [0, 1] ⊆ Ω2. Henceforth, applying (2.1), in (2.26) we get the estimate∣∣∣ ∫

Fl

(u(xl)− u(xr))φ(xl) dxl

∣∣∣ ≤ dg‖φ‖Lp(Ω2)‖Du‖Lp(Ω2), (2.27)

that proves (2.25). �

3 The problem on Ω \Ωg

The next goal is to derive a variational problem in Ω \ Ωg, such that its (unique) solution on the
subdomains Ωi, i = l, r coincides with the solution of (2.2). The bilinear form of this problem will be
determined by taking into account the normal fluxes on ∂Ωg. Finally, the problem will be discretized
by dG IgA methods. The main importance is to devise appropriate numerical fluxes, which will use
the diametrically opposite assigned values of ∇u and u on ∂Ωg.

Recall that Ω = Ωl ∪Ωg ∪Ωr. Now, multiplying (1.1) by a φ ∈ C∞0 (Ω), integrating on every Ωi

separately, then performing integration by parts, and finally summing over all Ωi, i = l, g, r, we get∫
Ωl

ρ∇u · ∇φ dx−
∫
∂Ωl∩∂Ω

ρ∇u · n∂Ωlφ dσ

+

∫
Ωg

ρ∇u · ∇φ dx−
∫
Fl

Jρ∇uφK · nFl dσ −
∫
Fr

Jρ∇uφK · nFr dσ

+

∫
Ωr

ρ∇u · ∇φ dx−
∫
∂Ωr∩∂Ω

ρ∇u · n∂Ωrφ dσ =
∑
i

∫
Ωi

fφ dx. (3.1)
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Applying the equality Jρ∇uφK = {ρ∇u}JφK+Jρ∇uK{φ} in (3.1), and using
∫

Jρ∇uK ·n∂Ωg{φ} dσ = 0,
we obtain∫

Ωl

ρ∇u · ∇φ dx−
∫
∂Ωl∩∂Ω

ρ∇u · n∂Ωlφ dσ −
∫
Fl

{ρ∇u} · nFlJφK dσ

−
∫
Ωg

div(ρ∇u)φ dx−
∫
Fl

{ρ∇u} · nFlφ dσ −
∫
Fr

{ρ∇u} · nFrφ dσ

+

∫
Ωr

ρ∇u · ∇φ dx−
∫
∂Ωr∩∂Ω

ρ∇u · n∂Ωrφ dσ −
∫
Fr

{ρ∇u} · nFrJφK dσ

=

∫
Ω\Ωg

fφ dx+

∫
Ωg

fφ dx, (3.2)

where we applied an integration by parts formula on Ωg and used
∫
Fi
ρg∇ug ·n∂Ωgφ dσ = 1

2

∫
Fi

(ρg∇ug+
ρi∇ui) · n∂Ωgφ dσ for i = l, r. Finally, by (2.2), we have∫

Ωl

ρl∇u · ∇φ dx−
∫
∂Ωl∩∂Ω

ρl∇u · n∂Ωlφ dσ −
∫
Fl

{ρ∇u} · nFlφ dσ

+

∫
Ωr

ρr∇u · ∇φ dx−
∫
∂Ωr∩∂Ω

ρr∇u · n∂Ωrφ dσ −
∫
Fr

{ρ∇u} · nFrφ dσ

=

∫
Ω\Ωg

fφ dx, for all φ ∈ C∞0 (Ω). (3.3)

Evidently, solution u of (2.2) satisfies (3.3) under Assumption 1.
Let u ∈ V ∩W 2,2(TH(Ω)). We introduce the space

V0,∂Ω := {v ∈ W 1,2(Ωl) ∪W 1,2(Ωr) |v = 0 on ∂Ω1 ∩ ∂Ω and ∂Ω2 ∩ ∂Ω}. (3.4)

By the preceding analysis, we settle down the following problem: find û ∈ W 1,2(Ωl∪Ωr) and û := uD
on ∂Ω such that

a\Ωg(û, v) = lf,\Ωg(v) + l∇ug(v), v ∈ V0,∂Ω, (3.5)

where the forms are defined by

a\Ωg(û, v) =

∫
Ωl∪Ωr

ρ∇û · ∇v dx, (3.6)

lf,\Ωg(v) + l∇ug(v) =

∫
Ωl∪Ωr

fv dx+

∫
∂Ωg

ρg∇ug · n∂Ωgv dσ. (3.7)

Since f ∈ L2(Ω) and ρ∇ug · n∂Ωg ∈ L2(∂Ωg), Lax-Milgram Lemma ensures that problem (3.5) has a
unique solution. Note that, for this case, the solution u of (2.2) satisfies problem (3.5). Therefore, û
coincides with u.

We return to the relation (3.3), which will be the basis for the definition of the numerical scheme.
The normal flux terms ∇ug · n∂Ωg , which appear in (3.3), e.g.,

∫
Fl
{ρ∇u} · nFlφ dσ =

∫
Fl

1
2
(ρl∇ul +

ρg∇ug) · nFlφ dσ, are still unknown, in the sense that their values are not predefined for an explicit
use in the computations. Next, Taylor expansions are used for approximating these normal fluxes.

Remark 3. To check consistency properties, we replace in (3.3) the φ by φh ∈ Vh and integrate by
parts on each Ωi, i = l, r to get∑

i=l,r

∫
Ωi

ρi∇u · ∇φh dx−
∑
i=l,r

∫
∂Ωi∩∂Ω

ρi∇u · n∂Ωiφh dσ −
∑
i=l,r

∫
Fi

{ρ∇u} · nFiφh dσ

= −
∑
i=l,r

∫
Ωi

div(ρ∇u)φh dx =

∫
Ω\Ωg

fφh dx. (3.8)
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3.1 Approximating the normal fluxes ∇ug · n∂Ωg

Our goal in the present paragraph is to use Taylor theorem for constructing approximations of
ρg∇ug · n∂Ωg |∂Ωg . The central idea is to apply the Taylor theorem along the lines γxl (or γxr), see
(2.16), emanating from xl (or xr) and heading in the direction of the diametrically opposite point xr
(or xl correspondingly). In that way, we produce approximations of ρg∇ug ·n∂Ωg |∂Ωg using ul and ur.

We recall the following Taylor’s formula with integral remainder, for f ∈ Cm([0, 1])

f(1) = f(0) +
m−1∑
j=1

1

j!
f (j)(0) +

1

(m− 1)!

∫ 1

0

sm−1f (m)(1− s) ds. (3.9)

Let us suppose for the moment that u ∈ Cm(Ω). As usual, let xl = (xl,1, xl,2, xl,3) be a fixed point on
Fl and xr = Φl,r(xl). We define f(s) = u(γxl(s)) = u(xl + s(xr − xl)). By chain rule we can obtain

f (j)(s) =
∑
|α|=j

j!

α!
Dαu(xl + s(xr − xl))(xr − xl)α, (3.10)

where α! = α1!...αd! and (xr − xl)α = (xr,1 − xl,1)α1 ...(xr,d − xl,d)αd . Combining (3.9) and (3.10), we
obtain

u(xr) = u(xl) +
∑

0<|α|<m

1

α!
Dαu(xl)(xr − xl)α +

∑
|α|=m

(xr − xl)α
m

α!

∫ 1

0

sm−1Dαu(xr + s(xl− xr)) ds.

(3.11)

Setting m = 2 in (3.11), we get

u(xr) =u(xl) +∇u(xl) · (xr − xl) +Ru(xl), (3.12a)

where

Ru(xl) =
∑
|α|=2

(xr − xl)α
2

α!

∫ 1

0

sDαu(xr + s(xl − xr)) ds. (3.12b)

Now, we use (3.12) to approximate the flux terms∇ug ·nFl in (3.3). Denoting rl = xr−xl and rr = −rl,
by (2.19) we conclude that nFl = rl

|rl|
and nFr = rr

|rr| . Using that 0 = JuK|Fl = (ul(xl) − ug(xl)) and

(3.12), we have

ur(xr) =ug(xl) +∇ug(xl) · rl +Rug(xl) (3.13a)

ug(xl) =ur(xr)−∇ur(xr) · rl +Rur(xr), (3.13b)

and we can find that

∇ug · nFl =∇ur · nFl −
1

|rl|
(
Rur(xr) +Rug(xl)

)
(3.14a)

−1

h

(
ul(xl)− ur(xr)

)
=
|rl|
h
∇ug(xl) · nFl +

1

h
Rug(xl). (3.14b)

Next, we adopt the notations

ul := ul(xl), ur := ur(xr), xr = Φl,r(xl)),

Rug(xr + s(xl − xr)) :=
∑
|α|=2

(xr − xl)α
2

α!

∫ 1

0

sDαu(xr + s(xl − xr)) dσ,

Rur(xl + s(xr − xl)) :=
∑
|α|=2

(xl − xr)α
2

α!

∫ 1

0

sDαu(xl + s(xr − xl)) dσ.



dG IgA on Non-matching Interfaces 11

For φh ∈ Vh, it follows by (3.14) that∫
Fl

(ρl
2
∇ul +

ρg
2
∇ug

)
· nFlφh −

{ρ}
h

JuKφh dσ =∫
Fl

ρl
2
∇ul · nFlφh +

ρg
2
∇ur · nFlφh −

( ρg
2|rl|

Rug(xr + s(xl − xr)) +
ρg

2|rl|
Rur(xl + s(xr − xl))

)
φh

− {ρ}
h

(
ul − ur

)
φh +

{ρ}
h

(
|rl|∇ug · nFl +Rug(xr + s(xl − xr))

)
φh dσ =∫

Fl

(ρl
2
∇ul +

ρg
2
∇ur

)
· nFlφh −

{ρ}
h

(
ul − ur

)
φh dσ−∫

Fl

( ρg
2|rl|

Rug(xr + s(xl − xr)) +
ρg

2|rl|
Rur(xl + s(xr − xl))

)
φh dσ+∫

Fl

{ρ}
h

(
|rl|∇ug · nFl +Rug(xr + s(xl − xr))

)
φh dσ. (3.15)

Using that Jρ∇uK|Fi = 0 for i = l, r, the assumption that cos^(nFl ,−nFr) ≈ 1, relations (2.21),
definition (2.15) and relations (3.13) and (3.14), we can derive the corresponding form for the second
flux term on Fr∫

Fr

(ρr
2
∇ur +

ρg
2
∇ug

)
· nFrφh −

{ρ}
h

JuKφh dσ =∫
Fr

(ρr
2
∇ur +

ρl
2
∇ul

)
· nFrφh −

{ρ}
h

(
ur − ul

)
φh dσ−∫

Fr

( ρg
2|rr|

Rug(xl + s(xr − xl)) +
ρg

2|rr|
Rul(xr + s(xl − xr))

)
φh dσ+∫

Fr

{ρ}
h

(
|rr|∇ug · nFr +Rug(xl + s(xr − xl))

)
φh dσ. (3.16)

Remark 4. We point out that in general holds nFr |Fr 6= −nFl and based on (2.20) and (2.21), we get∫
Fl

ρrD
−>∇ur(Φl,r(xl)) · (−nFl)J dxl 6=

∫
Fl

ρrD
−>∇ur(Φl,r(xl)) · nFrJ dxl

=

∫
Fr

ρr∇ur(xr) · nFr dxr,

where J is the norm of the outward normal vector on the image of Φl,r. However, for this general
case, we have the following estimate for the fluxes in the directions −nFl and nFr .

Proposition 2. Let the assumptions (2.12), (2.18) and (2.19) concerning the shape of Ωg and the
parametrization of Fr hold. Then there exist positive constant C1 = C(‖ζ‖W 1,∞), such that∣∣∣ ∫

Fr

ρr∇ur · nFr dxr −
∫
Fr

ρr∇ur · (−nFl) dxr
∣∣∣ ≤C1dg‖ρr∇ur‖Lp(Fr). (3.17)

Proof. Let us denote ζ0(xl) = dgζ(xl). It follows from the form of the parametrization Φl,r that∣∣nFr − (−nFl)
∣∣ = 1

J

∣∣(ζ0xl,1 , ζ0xl,2 , 1 − J)∣∣, where J =
√
ζ20xl,1

+ ζ20xl,2
+ 1 is the norm of the outward

normal vector on the image of Φl,r. Since 1 ≤ J , we can show that (1− J)2 ≤ ζ2x0l,1
+ ζ20xl,2

, and then

it follows that ∣∣nFr − (−nFl)
∣∣ ≤√ζ20xl,1

+ ζ20xl,2
+ (1− J)2 ≤

√
2dg‖ζ‖W 1,∞ . (3.18)

Now, applying inequality (2.1) on the left hand side of (3.17) and using (3.18), the desired result
easily follows. �
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Proposition 3. Let the points xl0 on Fl and the corresponding xr0 = Φl,r(xl0) such that |xl0−xr0| =
dg. Then for any xl ∈ Fl and xr = Φl,r(xl), see Fig. 3, there is a constant C = C(|Fl|, |Fr|) such that

|xl0 − xr0 |
|xl − xr|

= C. (3.19)

Proof. An application of Thale’s theorem on the triangleOxr0xl0 gives |O−xr||O−xr0 |
= |O−xl|
|O−xl0 |

, and
|xl0−Z|
|xl0−xr0 |

=
|O−xr|
|O−xr0 |

. Replacing |xl0 − Z| = |xl − xr| and |xl0 − xr0| = dg into the last relations, the result (3.19)

follows. �

Fig. 3. Illustration of the
ratio between the gap dis-
tance and the distance of
two diametrically opposite
assigned points.

O

l r

Z
l0

X X
r0

X X

Ω Ωl
r

3.2 The dG IgA problem on Ω \Ωg

For convenience we introduce the notation R∇,i = {ρ}
( |ri|
h
∇ug ·nFi + 1

h
Rug(xi)

)
for i = l, r. Recalling

(3.3), the identity (3.8) and utilizing the flux approximations (3.15) and (3.16), we deduce that the
exact solution u satisfies

∫
Ωl

ρl∇u · ∇φh dx−
∫
∂Ωl∩∂Ω

ρl∇u · n∂Ωlφh dσ

−
∫
Fl

(ρl
2
∇ul +

ρr
2
∇ur

)
· nFlφh −

{ρ}
h

(
ul − ur

)
φh dσ

+

∫
Fl

{
R∇,l +

ρg
2|rl|

Rur(xr) +
ρg

2|rl|
Rug(xl)

}
φh dσ

+

∫
Ωr

ρr∇u · ∇φh dx−
∫
∂Ωr∩∂Ω

ρr∇u · n∂Ωrφh dσ

−
∫
Fr

(ρr
2
∇ur +

ρl
2
∇ul

)
· nFrφh −

{ρ}
h

(
ur − ul

)
φh dσ

+

∫
Fr

{
R∇,r +

ρg
2|rr|

Rul(xl) +
ρg

2|rr|
Rug(xr)

}
φh dσ

=

∫
Ω\Ωg

fφh dx, for φh ∈ Vh, (3.20)

where the notation for the Taylor residuals is the same as in previous paragraph. We observe that the
terms appearing in (3.20) are the terms that are expected to be appear in a dG scheme, of course,
excluding the Taylor residual terms. In view of this, we define the forms B\Ωg(·, ·) : (V +Vh)×Vh → R,
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RΩg(·, ·) : (V + Vh)× Vh → R and the linear functional lf,\Ωg : Vh → R by

B\Ωg(u, φh) =

∫
Ωl

ρl∇u · ∇φh dx−
∫
∂Ωl∩∂Ω

ρl∇u · n∂Ωlφh dσ

−
∫
Fl

(ρl
2
∇ul +

ρr
2
∇ur

)
· nFlφh −

{ρ}
h

(
ul − ur

)
φh dσ

+

∫
Ωr

ρr∇u · ∇φh dx−
∫
∂Ωr∩∂Ω

ρr∇u · n∂Ωrφh dσ

−
∫
Fr

(ρr
2
∇ur +

ρl
2
∇ul

)
· nFrφh −

{ρ}
h

(
ur − ul

)
φh dσ, (3.21a)

RΩg(u, φh) =

∫
Fl

{
R∇,lφh +

ρg
2|rl|

Rur(xr)φh +
ρg

2|rl|
Rug(xl)φh

}
dσ

+

∫
Fr

{
R∇,rφh +

ρg
2|rr|

Rul(xl)φh +
ρg

2|rr|
Rug(xr)φh

}
dσ, (3.21b)

lf,\Ωg(φh) =

∫
Ω\Ωg

fφh dx. (3.21c)

We note that, the remainder integral terms RΩg should appear in (3.20). For establishing the dG
IgA discrete problem, we prefer the absence of these terms in the discrete form. Also, we wish the
weak enforcement of the Dirichlet boundary conditions. Thus, for defining the dG IgA scheme, we
use the forms in (3.21) and introduce the bilinear form Bh(·, ·) : Vh × Vh → R and the linear form
Fh : Vh → R as follows

Bh(uh, φh) = B\Ωg(uh, φh) +
∑
i=l,r

ρi
h

∫
∂Ωi∩∂Ω

uhφh dσ, (3.22)

Fh(φh) = lf,\Ωg(φh) +
∑
i=l,r

ρi
h

∫
∂Ωi∩∂Ω

uDφh dσ. (3.23)

We consider the discrete problem: find uh ∈ Vh such that

Bh(uh, φh) = Fh(φh), for all φh ∈ Vh. (3.24)

An immediate result is that, for the exact solution u ∈ V , the variational identity

B(u, φh) := Bh(u, φh) +RΩg(u, φh) = Fh(φh), ∀φ ∈ Vh, (3.25)

holds. Next we show several results that are going to be used in the error analysis.

Lemma 1. Let 1
q

= p−1
p

and γp,d = 1
2
d(p − 2). Then there exist a constant C ≥ 0 independent of h

such that the estimate

1

h
1+γp,d

p

‖φh‖Lq(Fi) ≤ Ch−
1
2‖φh‖L2(Fi), for i = l, r, (3.26)

holds for every φh ∈ Vh.

Proof. The lemma is proven in [16]. �

Lemma 2. Let γp,d = 1
2
d(p − 2). Then there is a constant C ≥ 0 independent of h such that the

estimate

Bh(u, φh) ≤C
(
‖u‖pdG +

∑
i=l,r

h1+γp,d‖∇ui‖pLp(∂Ωi)
) 1
p‖φh‖dG, (3.27)

holds for all (u, φh) ∈ (V + Vh)× Vh.
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Proof. We first give a bound for the normal flux terms on ∂Ωl. A direct application of Lemma 5.2
in [16] gives ∫

∂Ωl∩∂Ω
ρl∇u · n∂Ωlφh dσ ≤ C

(
h1+γp,d‖∇ul‖pLp(∂Ωl∩∂Ω)

) 1
p‖φh‖dG. (3.28)

Let J be the norm of the outward normal vector on the image of Φl,r. For the flux terms on Fl, the
triangle and (2.1) inequalities yield

∫
Fl

(ρl
2
∇ul +

ρr
2
∇ur

)
· nFlφh dσ ≤

∣∣∣ ∫
Fl

(ρlh
1+γp,d)

1
p∇ul · nFl

ρ
1
q

l

h
1+γp,d

p

φh dσ
∣∣∣

+
∣∣∣ ∫

Fl

(ρrh
1+γp,d)

1
p∇ur · nFlJ−1J

ρ
1
q
r

h
1+γp,d

p

φh dσ
∣∣∣

≤ C1(ρl)h
1+γp,d

p ‖∇ul‖Lp(Fl)
1

h
1+γp,d

p

‖φh‖Lq(Fl) + C2(ρ, J
−1)h

1+γp,d
p ‖∇ur‖Lp(Fr)

1

h
1+γp,d

p

‖φh‖Lq(Fl)

≤ C3(ρ, J
−1)h

1+γp,d
p

(
‖∇ul‖Lp(Fl) + ‖∇ur‖Lp(Fr)

)
‖φh‖dG, (3.29)

where the estimate (3.26) and relations (2.21) have been used. The flux terms of Bh(·, ·), which
appear on Fr can be bound in a similar way. As a last step, we need to bound the jump terms in
Bh(·, ·). Following similar procedure as in (3.29), we can show∑

i=l,r

∫
Ωi

ρi∇u · ∇φh dx+

∫
Fi

{ρ}
h

(
ui − uj

)
φh dσ ≤ C‖u‖dG‖φh‖dG, for j = r, l and j 6= i. (3.30)

Finally, collecting all the above bounds we can deduce assertion (3.27). �

Now, we prove that the discrete problem (3.24) has unique solution.

Lemma 3. The bilinear form Bh(·, ·) in (3.22) is bounded and elliptic on Vh, i.e., there are positive
constants CM and Cm such that the estimates

Bh(vh, φh) ≤ CM‖vh‖dG‖φh‖dG and Bh(vh, vh) ≥ Cm‖vh‖2dG, (3.31)

hold for all φh ∈ Vh.

Proof. The two properties of Bh(·, ·) can be shown following the same procedure as in Lemma 2 and
mimic the proofs of Lemma 4.5 and Lemma 4.6 in [16]. Thus, the details are omitted. �

Since Bh(., .) is bounded and elliptic in Vh, we can apply the Lax-Milgram theorem to conclude that
the problem (3.24) has a unique solution.

One of the most important properties of the dG discretization is its consistency. This ensures
that the “right” equations are solved. Consistency yields Galerkin orthogonality. Here, the solution u
satisfies (3.25) but does not satisfy the discrete problem (3.24). We derive the error analysis borrowing
ideas from the weak consistent FE methods, [9]. We start with the derivation of uniform bounds for
the RΩg(u, φh) terms.

3.3 Estimates of the remainder terms

We proceed by deriving estimates for general order Taylor remainder terms, see (3.12). We have the
following estimate.

Lemma 4. For (u, φh) ∈ V × Vh, and for i = l, r there is a positive constant C, such that

|ri|
h

∣∣ ∫
Fi

ρg∇ug · nFiφh dσ
∣∣ ≤ Chλ−1h

1+γp,d
p ‖∇ug‖Lp(Fi)‖φh‖dG, (3.32)

where γp,d = 1
2
d(p− 2).
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Proof. Following the same arguments as in estimate (3.29), we can show that∣∣ ∫
Fi

ρg∇ug · nFiφh dσ
∣∣ ≤ Ch

1+γp,d
p ‖∇ug‖Lp(Fi)‖φh‖dG. (3.33)

Observing that |ri|
h
∼ dg

h
≤ hλ−1, see (2.18), the desired bound follows. �

Lemma 5. Let Assumption 4 hold. Then there exist a positive constant C = C(l, p, d) such that for
all (u, φh) ∈ V × Vh holds

sFl(u, φh) =
1

h

∫
Fl

φh(xl)

∫ 1

0

∑
|α|=l

(xr − xl)α
l

α!
sl−1Dαu(xr + s(xl − xr)) ds dxl ≤

C d lg h
ζ d
− p(l−d−1)+1

p
g ‖φh‖dG

(∫
Ωg

κl(z)p dz
) 1
p
, (3.34)

where l ≥ 2, ζ = −2(p−1)+d(p−2)
2p

and κl(z) =
(∑

|α|=l |Dαu(z)|
)
.

Proof. We set 1
q

= p−1
p

and γ = 2+d(p−2)
2p

. We fix an edge el ⊂ Fl such that el ⊂ ∂El, where the

micro-element El ∈ T (l)
h,Ωl

touches Fl. We note that Assumption 2 gives
∣∣el∣∣ ∼ hd−1. Inequality (2.1)

yields

sel(u, φh) =
1

h
1
p
+ 1
q
+
d(p−2)

2p

∫
el

φh(xl)

∫ 1

0

h
d(p−2)

2p

∑
|α|=l

(xr − xl)α
l

α!
sl−1Dαu(xr + s(xl − xr)) ds dxl

=

∫
el

∫ 1

0

1

hγ
φh(xl)

∑
|α|=l

h
−2(p−1)+d(p−2)

2p (xr − xl)α
l

α!
sl−1Dαu(xr + s(xl − xr)) ds dxl

≤ C
1

hγ

(∫
el

∫ 1

0

|φh|q ds dxl
) 1
q
hζ d lg

(∫
el

∫ 1

0

(∑
|α|=l

sl−1|Dαu(xr + s(xl − xr))|
)p
ds dxl

) 1
p
. (3.35)

Using the discrete inequalities (3.26), we obtain that

1

hγ

(∫
el

∫ 1

0

|φh|q ds dxl
) 1
q ≤ Cp,d

(1

h

∫
el

φ2
h dxl

) 1
2

= Cp,dh
−1
2 ‖φh‖L2(el). (3.36)

It remains to estimate the second term in (3.35) on every el. By the change of variables z = xr +
s(xl − xr), we have that

(xr − z)s−1 = (xr − xl), (3.37a)(
xl1 , xl2 , ..., xld

)
=
(
xr1(xl), xr2(xl), ..., xrd(xl)

)
+ (3.37b)

s−1
(
z1, z2, ..., zd

)
−
(
xr1(xl), xr2(xl), ..., xrd(xl)

)
(z − xr)αs−l = (xr − xl)α, (3.37c)

det
(∂(xl, s)

∂(z, s)

)
= s−d. (3.37d)

Remark 5. The previous relations have been given for a general gap region. For the gaps described
in Subsection 2.4, see Fig. 2, the relations (3.37) take the form

xr1(xl) := xr1 = xl1
xr2(xl) := xr2 = xl2
xr3(xl) := xr3(xl1 , xl2) = dg ζ(xl),

and it can be verified that det
(
∂(xl,s)
∂(z,s)

)
= s−1.
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Now, let z be any point in the interval (xl, xr). Moreover, let xl0 and xr0 = Φl,r(xl0) be as in
Proposition 3. Then we can deduce that

|z − xr| ≤ |z − xr0|+ |xr − xr0|, |xr − xl| = Cdg. (3.38)

Now, since the parameter s varies between 0 and 1, the variable z also runs in the region Eg ⊂ Ωg

with
∣∣Eg| ≤ dgh

d−1, see Fig. 2(c). Describing the domain with respect to (z, s) variables, the range
of s is defined to be such that the ω(z, s) := (z− xr)1s + xr, should remain in el. Using (3.37), (3.38)
and the fact that that diameter(el) ∼ h the new variables satisfy∣∣(z − xr)1

s
+ xr

∣∣ ≤ Cθh, and s ≤ |z − xr0|+ |xr − xr0|
Cdg

=
CΩg
dg

, (3.39)

where the constant Cθ > 0 depends on the quasi-uniformity properties of the meshes, see Assumption
2, and CΩg > 0 on the shape of Ωg. Thus, by the change of the order of integration and by the change
of variable on the second term in (3.35), we get

(∫
el

∫ 1

0

(∑
|α|=l

sl−1|Dαu(xr+s(xl−xr))|
)p
ds dxl

) 1
p

=
(∫ 1

0

∫
ω(z,s)=xl

(
sl−d−1

∑
|α|=l

|Dαu(z)|
)p
dz ds

) 1
p

≤ C
(∫

Eg

∫ CΩg
dg

0

(
sl−d−1

∑
|α|=l

|Dαu(z)|
)p
ds dz

) 1
p ≤ C

(∫
Eg

sp(l−d−1)+1
∣∣∣CΩgdg
0

(∑
|α|=l

|Dαu(z)|
)p
dz
) 1
p

≤ C
(∫

Eg

(CΩg
dg

)p(l−d−1)+1

κl(z)p dz
) 1
p ≤ Cd

− (p(l−d−1)+1)
p

g

(∫
Eg

κl(z)p dz
) 1
p
. (3.40)

Finally, inserting (3.36) and (3.40) into (3.35), and then summing over all el ⊂ Fl, we obtain

sFl(u, φh) ≤ C
( ∑
el⊂Fl

( 1

h
1
2

‖φh‖L2(el)

)q) 1
q
d lgh

ζd
− (p(l−d−1)+1)

p
g

( ∑
Eg⊂Ωg

∫
Eg

κl(z)p dz
) 1
p
. (3.41)

Using the fact that the f(x) = (η0α
x + η0β

x)
1
x , η0 > 0, x > 2 is decreasing, we have the inequality( ∑

el⊂Fl

( 1

h
1
2

‖φ2
h‖L2(el)

)q) 1
q ≤ C

(1

h
‖φh‖2L2(Fl)

) 1
2 ≤ C‖φh‖dG. (3.42)

We insert (3.42) into (3.41), and then we deduce (3.34). �

Working in a similar way as in the proof of Lemma 5, we can show similar bounds for the other
remainder terms, i.e.,

sFr(u, φh) =
1

h

∫
Fr

φh(xr)

∫ 1

0

∑
|α|=l

(xl − xr)α
l

α!
sDαu(xl + s(xr − xl)) ds dxr

≤ C‖φh‖dGd lghζd
− (p(l−d−1)+1)

p
g

(∫
Ωg

κl(z)p dz
) 1
p
. (3.43)

We continue to give an estimate for the RΩg(·, ·) defined in (3.21).

Lemma 6. Under the Assumptions 2 and 4, there exist a positive constant C = C(ρ, p, d, l), such
that the estimate

|RΩg(u, φh)| ≤ C‖φh‖dG
(
‖∇ug‖Lp(∂Ωg) + ‖κ2‖Lp(Ωg)

)
hβ, (3.44)

holds true for all (u, φh) ∈ V × Vh, where κ2 =
(∑

|α|=2 |Dαu|
)
, ζ = −2(p−1)+d(p−2)

2p
, and

β = min{2λ+ ζ − p(1−d)+1
p

, λ− 1 +
1+γp,d
p

, 1 + ζ + λ− p(1−d)+1
p
},



dG IgA on Non-matching Interfaces 17

Proof. Clearly, Proposition 3 in combination with Assumption 2 imply that |rl| ∼ hλ and |rr| ∼ hλ.
Recalling the definition of RΩg(·, ·), see (3.21), and using the estimates (3.32), (3.34) and (3.43) with
|α| = 2, we can derive

|RΩg(u, φh)| ≤ C
(
hλ−1h

1+γp,d
p ‖∇ug‖Lp(∂Ωg)

+ d 2
g h

ζ d
− p(2−d−1)+1

p
g ‖κ2‖Lp(Ωg)

+ d 2
g h

ζ+1−λ d
− p(2−d−1)+1

p
g ‖κ2‖Lp(Ωg)

)
‖φh‖dG, (3.45)

where the constant depends on the constant in (3.32), the constant in (3.34) and the quasi-uniformity
parameters of the mesh, see Assumption 2. Setting dg ∼ hλ in (3.45), we immediately arrive at
estimate (3.44). �

4 Error estimates

Next, we give an error estimate by means of a variation of Cea’s Lemma applied in dG frame. We
use the estimate for |RΩg(u, φh)| as is given in (3.44). The linearity of the Bh(·, ·), see (3.22) and
(3.21), and the discrete variational form (3.24) yield

Bh(uh − zh, φh) = Fh(φh)−Bh(zh, φh), for all φh, zh ∈ Vh. (4.1)

Using (3.21), (3.22), (3.23) and (3.25), we get

Bh(uh − zh, φh) = B(u, φh) +
∑
i=l,r

ρi
h

∫
∂Ωi∩∂Ω

(u− uD)φh dσ −Bh(zh, φh) + Fh(φh)− lf,\Ωg(φh)

= Bh(u, φh) +RΩg(u, φh)−
∑
i=l,r

ρi
h

∫
∂Ωi∩∂Ω

uDφh dσ −Bh(zh, φh) +
∑
i=l,r

ρi
h

∫
∂Ωi∩∂Ω

uDφh dσ

= Bh(u− zh, φh) +RΩg(u, φh). (4.2)

We choose in (4.2) φh = uh − zh. Then, Lemma 3 and Lemma 2 imply

Cm‖uh − zh‖2dG ≤ CM
(
‖u− zh‖pdG + h1+γp,d‖∇(u− zh)‖pLp(∂Ωg)

) 1
p‖uh − zh‖dG + |RΩg(u, uh − zh)|

≤ CM
(
‖u− zh‖pdG + h1+γp,d‖∇(u− zh)‖pLp(∂Ωg)

) 1
p‖uh − zh‖dG + C1‖uh − zh‖dGhβKp, (4.3)

where we previously used the estimate (3.44) and Kp = ‖∇ug‖Lp(∂Ωg) + ‖κ2‖Lp(Ωg). Applying triangle
inequality in (4.3), we can easily arrive at the following estimate

‖u− uh‖dG ≤ C
((
‖u− zh‖pdG + h1+γp,d‖∇(u− zh)‖pLp(∂Ωg)

) 1
p + hβ Kp

)
, (4.4)

where the constant C is specified by the constants appearing in (4.3).
Now, we can prove the main error estimate result of the section. Such an estimate requires quasi-

interpolation estimates of B-splines. By the results of multidimensional B-spline interpolation, (see
[24] and [16]), we can construct a quasi-interpolant Π : W l,p → Vh with l ≥ 1, p > 1, such that the
following interpolation estimates to be true.

Lemma 7. Let u ∈ W l,p(Ωi) with l ≥ 2, p ∈ (max{1, 2d
d+2(l−1)}, 2]. Then for i = l, r, there exist

constants Ci such that

h
1+γp,d

p ‖∇(u−Πu)‖Lp(∂Ωi) ≤CihδΠ(l,p,d)‖u‖W l,p(Ωi), (4.5a)

{ρi}
h

(
‖u−Πu‖L2(∂Ωi)

)2 ≤Ci(hδΠ(l,p,d)‖u‖W l,p(Ωi)

)2
, (4.5b)

where δΠ(l, p, d) = l + (d
2
− d

p
− 1) and γp,d = 1

2
d(p− 2).
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Proof. The proofs are given in [16] for the general case of non-matching grids. �

Lemma 8. Let u satisfy Assumption 1. Then, there exist constants Ci > 0 with i = l, r independent
of the grid sizes h such that

‖u−Πu‖dG ≤
∑
i=l,r

Cih
δΠ(l,p,d)‖u‖W l,p(Ωi), (4.6)

where δΠ(l, p, d) = l + (d
2
− d

p
− 1).

Proof. We show first an estimate for E ∈ T (i)
h,Ωi

for i = l, r. We associate with each E ∈ T (i)
h,Ωi

the local

support extension D
(i)
E of the B-splines, see Subsection 2.3. By the properties of the quasi-interpolant

Π we have the estimate, see [16],

|u−Πu|W 1,p(E) ≤ Chl−1‖u‖
W l,p(D

(i)
E )
. (4.7)

We quote below an inequality which holds for f satisfying Assumption 1 and has been shown in [16],

‖f‖L2(E) ≤ Cih
d
2
− d
p
(
‖f‖pLp(E) + hp|f |pW 1,p(E)

) 1
p , for E ∈ T (i)

h,Ωi
, i = l, r. (4.8)

Setting f := ∇u−∇Πu in (4.8), summing over all micro-elements and applying the approximation
estimate (4.7), we obtain that

|u−Πu|2W 1,2(Ωi)
≤ Ci

(
hl+( d

2
− d
p
−1)‖u‖W l,p(Ωi)

)2
, for i = l, r. (4.9)

It remains to estimate the jump terms in dG-norm. We apply (4.5b) and get

∑
i=l,r

{ρ}
h

∫
Fi

|ui −Πui|2 dσ ≤
∑
i=l,r

Ci
(
hδΠ(l,p,d)‖u‖W l,p(Ωi)

)2
, (4.10)

Recalling the definition of ‖.‖dG, combining the estimates (4.9) and (4.10) we can derive (4.6). �

Theorem 1. Let u be the solution of problem (3.25), uh be the corresponding dG IgA solution of
problem (3.24), and let dg = hλ with λ ≥ 1. Then the error estimate

‖u− uh‖dG . hδΠ(l,p,d)
∑
i=l,r

‖u‖W 2,p(Ωi) + hβ Kp, (4.11)

holds, where δΠ(l, p, d) = l + (d
2
− d

p
− 1), Kp = ‖∇ug‖Lp(∂Ωg) + ‖κ2‖Lp(Ω),

κ2 =
(∑

|α|=2 |Dαu|
)
, β = min{2λ+ ζ − p(1−d)+1

p
, λ− 1 +

1+γp,d
p

, 1 + ζ + λ− p(1−d)+1
p
},

ζ = −2(p−1)+d(p−2)
2p

, γp,d = 1
2
d(p− 2) and the positive constants Ci are the same as in (4.6)

Proof. The required estimate follows easily by introducing the quasi-interpolation estimates (4.5a)
and (4.6) into estimate (4.4). �

5 Numerical tests

We have performed a few numerical tests in order to confirm the theoretically predicted order of accu-
racy for the dG IgA scheme proposed in (3.22). We will discuss two- and three- dimensional test exam-
ples.
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Φl Φr

(-1, -0.2) (0, 0)
(-0.75, 0) (0.25, 0)
(-0.5, 0) (0.5, 0)
(-0.25, 0) (0.75, 0)

(0, 0) (1, 0.2)
(-1, 0.25) (0, 0.25)

(-0.75, 0.25) (0.25, 0.25)
(-0.5, 0.25) (0.5, 0.25)
(-0.25, 0.25) (0.75, 0.25)

(0, 0.25) (1, 0.25)
(-1, 0.5) (0, 0.5)

(-0.75, 0.5) (0.25, 0.5)
(-0.5, 0.5) (0.5, 0.5)
(-0.25, 0.5) (0.75, 0.5)

(0, 0.5) (1, 0.5)
(-1, 0.75) (0, 0.75)

(-0.75, 0.75) (0.25, 0.75)
(-0.5, 0.75) (0.5, 0.75)
(-0.25, 0.75) (0.75, 0.75)

(0, 0.75) (1, 0.75)
(-1, 1.2) (0,1)
(-0.75, 1) (0.25,1)
(-0.5, 1) (0.5, 1)
(-0.25, 1) (0.75, 1)

(0, 1) (1, 0.8)

Table 1. The control
points for the map-
pings Φi, i = l, r.

All tests have been performed using second order (k = 2) B-spline spaces.
Every example has been solved applying several mesh refinement steps with
hi, hi+1, ..., satisfying Assumption 2. The numerical convergence rates r have
been computed by the ratio r = ln(ei/ei+1)/ln(hi/hi+1), i = 1, 2, ..., where

the error ei := ‖u− uh‖dG is always computed on the meshes T
(l)
hi,Ωl
∪ T (r)

hi,Ωr
.

We mention that, in the test cases with highly smooth solutions, i.e., k+1 ≤
l, the approximation order in (4.11) becomes δΠ(l, p, d) = k.

The code that has been materialized for performing the tests uses uni-
directional Taylor expansions, see (2.15), Remark 4 and Remark 5. The
predicted values of power β in (4.11) are given in Table 2.

For the two dimensional examples, we use the knot vectors Ξ1
i = Ξ2

i :=
{0, 0, 0, 0.5, 0.5, 1, 1, 1}, with i = l, r, to define the parametric mesh and to
construct the coresponding second order B-spline space, see (2.6). The B-
spline parametrizations of Ωl and Ωr, see (2.8), are constructed using the
control points which are listed in Table 1. In any test case, the gap region
is artificially created by moving all control points of the second subdomain
which have the form (0, ξ), where 0 < ξ < 1, in the direction (1, 0), For all
tests, the parametric mapping in (2.19) has the form Φl,r(x1, x2) = (x1, x2)+
dg4x2(1− x2)(1, 0).

B-spline degree k = 2

Smooth solutions, u ∈W l>3,p=2

dg = hλ λ = 1 λ = 2 λ = 3

β := 0.5 1.5 2

δΠ(l, p, d) := 2 2 2
Table 2. The values of the order β of the remainder
term bounds and the B-spline approximation order.

- dg = hλ

- λ = 1 λ = 2 λ = 3

- expected rates r

γ = 0.42, u ∈W 2,1.26 0.22 0.42 0.42

γ = 0.38, u ∈W 2,1.23 0.19 0.38 0.38

γ = 1, u ∈W 2,2 0.5 1 1

γ = 1.5, u ∈W 2.5,2 0.5 1.5 1.5

γ = 2, u ∈W 3,2 0.5 1.5 2
Table 3. The expected values of the rates r
for the example with low regularity solution.

5.1 Two-dimensional numerical examples

Example 1. The domain Ω with the subdomains Ωl, Ωr and Ωg are shown in Fig. 4(a). The Dirichlet
boundary condition and the right hand side f are determined by the exact solution u(x1, x2) =
sin(5πx1) sin(4πx2). In this example, we consider the homogeneous diffusion case, i.e., ρl = ρr = 1,
and the left interface is given by Fl = {(xl,1, xl,2) : xl1 = 0, 0 ≤ xl,2 ≤ 1}, see Fig. 4(a). We performed
two computations. In the first computation, the size of dg was successively defined to be O(hλ), with
λ = 1, 2 and 3. The numerical convergence rates for several levels of mesh refinement are plotted in
Fig. 4(b). They are in good agreement with our theoretically predicted estimates given in Theorem
1, see also Table 2. In the second computation, we progressively decrease the size of dg when we are
performing the computation on successively refined meshes. In Fig. 4(c), we present the corresponding
convergence rates r. For the first meshes, we set dg = h, and the rates are r = 0.5, for the next, we
set dg = h2 and the rates are increased to r = 1.5, behaving according to the rates predicted by the
theory. Finally, for the last refinement levels, we set dg = h3, and the rates become optimal having
similar behavior as in Fig. 4(b).

Example 2. We consider the problem with discontinuous coefficient, i.e., we set ρ1 = 4π in Ω1 and
ρ2 = 1 in Ω2. The domain Ω is presented in Fig. 4(a), where the interface F is the x2-axis. The
solution is given by the formula

u(x1, x2) =

{
exp (x1)− 1 if (x1, x2) ∈ Ω1,

sin(4πx1) if (x1, x2) ∈ Ω2.
(5.1)
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(a)

h

||
u

u
h
||

d
G

10
2

10
1

10
010

3

10
2

10
1

10
0

10
1

d
g
=h

d
g
=h

2

d
g
=h

2.5

d
g
=h

3

r=0.51
r=0.50

r=0.50

r=1.54

r=1.58

r=1.6

r=2.00

r=2.01

r=2.03

r=2.0

r=2.01

r2.03

(b)

h

||
u

u
h
||

d
G

10
3

10
2

10
1

10
10

3

10
2

10
1

10
0

10
1

d
g
:= h>h

3

d
g
=h,

r=1.31

r=1.42

r=1.49 d
g
=h

2

r=2.01

r=2.00

r=4.1

d
g
=h

3

(c)

Fig. 4. Example 1: (a) The subdomains Ωl, Ωr and Ωg and the exact solution contours, (b) The convergence rates for dg =
O(hλ), (c) The convergence rates for fixed dg.

The boundary conditions and the source function f are determined by (5.1). Note that in this test
case, we have JuK|F = 0 as well Jρ∇uK|F = 0 for the normal flux on F . The contours of the exact
solution on the domain Ω are presented in Fig. 5(a). The problem has been solved on meshes refined
following a sequential process, where we set dg = hλ, with λ = 1, 2 and 3. Thus for every computation
the gap boundary is formed by the choice of h and λ. In Fig. 5(b), we plot the uh solution on Ω \Ωg

computed on a grid with h = 0.125 and dg = 0.1. The computed rates are presented in Fig. 5(c).
For the cases where λ = 1 and λ = 2, we observe that the values of the rates behave according to
the predicted rates, see (4.11). The error corresponding to the dg = h3 test case (dashed dot line) on
the first refinements appears to decay slower than it was expected, but finally on the last refinement
levels tends to take the optimal value, which has predicted by the theory. By this example we validate
numerically the predicted convergence rates for problems with discontinuous coefficient and smooth
solutions.
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Fig. 5. Example 2: (a) The contours of exact u given by (5.1), (b) The contours of uh on subdomains Ωl, Ωr , (c) The convergence
rates for the three choices of λ.

Example 3. This example consists of problem with low regularity solution, i.e., u(x1, x2) = ((x1 −
0)2+(x2−0.5)2)

γ
2 , with γ = 1, 1.5 and 2. see also [16] and [15]. The computational domain is the same

as in the previous examples. The source function f and uD are manufactured by the exact solution.
The diffusion coefficient has been defined to be ρ = 1 everywhere. Fig. 6(a) shows the contours of uh
using the values γ = 1 and dg = 0.1. By this example, we demonstrate the ability of the proposed
method to approximate the solution singularities located on the interface of the subdomains with
the expected accuracy. We emphasize that the convergence rate is specified by both, the regularity
of the solution and the size of the gap. Table 3 displays the expected rates r for several values of the
parameters γ and λ. Hence, for validation, we have computed the convergence rates of varying size
dg = hλ and for several values of γ, which specifies the regularity of the solution, see Table 3. In Fig.
6(b), we plot the convergence rates for γ = 1 and λ = 1, 2 and 3. We observe that the rates computed
on the last level meshes for λ = 2 and λ = 3 confirm the theoretically predicted rates, see Table 3.
On the other hand, the rates corresponding to the case λ = 1 are little higher than the expected. We
observe same behavior for the rates plotted in Fig. 6(c) and in Fig. 6(d), which are related to the
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cases γ = 1.5 and γ = 2. The rates corresponding to λ = 2 and λ = 3 are approaching the optimal
rates and are in agreement with the theoretical rates. But the rates for λ = 1 are higher. However,
this result can be explained by the “quadratic properties” of the solution on ∂Ωg. More precisely,
the expected rate r = 0.5 is coming from the estimate of the first remainder term, see first term in
the right hand side in (3.14b) and (3.32). Setting dg = h in the first term in the right hand side
in (3.14b), we get a “continuous quadratic” flux term, whose discrete (second order) analogue term
appears in the dG numerical flux formula, see (3.25). In other words, the “quadratic” remainder flux
term is implicitly approximated through the numerical flux by second order B-spline space. Hence,
the resulting error of the first remainder term, the bound of which is related to the second term in
the formula of β in Theorem 1, seems to be very weak. The rate that we found is approaching the
value r = 1 and is the expected value according to the first and third term of the formula of β, see
Theorem 1.

We also study the convergence rates for γ = 0.42 and γ = 0.38 which lead to solutions u belonging
to W 2,1.26(Ω) and W 2,1.23(Ω), respectively. The convergence rates are plotted in Fig. 6(e) and in in
Fig. 6(f), correspondingly. Here, the suboptimal behavior of the rates can be seen for all λ cases.
Again for the case λ = 1, the rates are little higher than the expected ones, see first two rows in
Table 3. Considering λ = 2 and λ = 3, the rates are determined by the regularity of the solution,
because the approximation error is of lower order compared to the estimates of the Taylor terms
RΩg , see the orders δΠ(l, p, d) and β in (4.11). The rates presented in the graphs in Fig. 6(e) and in
Fig. 6(f), follow the error bound O(hδΠ ) given in (4.11) and in Table 3.
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Fig. 6. Example 3: (a) The contours of uh computed setting γ = 1 and dg = 0.1, (b) convergence rates r for γ = 1, (c)
Convergence rates r for γ = 1.5, (d) Convergence rates r for γ = 2, (e) Convergence rates r for γ = 0.42, (f) Convergence rates
r for γ = 0.38.
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5.2 Three-dimensional numerical examples

In the three-dimensional tests, the domain Ω has been constructed by a straight prolongation to
the x3-direction of the previous two-dimensional domain. The knot vector in x3-direction is the
same as in the other directions, this means Ξ3

i = {0, 0, 0, 0.5, 0.5, 1, 1, 1} with i = l, r. The B-spline
parametrizations of the two subdomains have been build by adding a third component to the control
points that are listed in Table 1. The third component takes the following values {0, 0.25, 0.50, 0.75, 1}.
Again, the gap region is artificially constructed by moving only the interior control points located at
the x2x3-plane into the x1-direction.

Example 4. Although the first 3d example is a simple extension of the previous two dimensional
Example 2, it is still interesting to check the numerical rates. The exact solution is given by (5.1)
and the set up of the problem is illustrated in Fig. 7. The interface F is the x2x3-plane. In Fig. 7(a),
we can see the contours of the solution uh on both subdomains without having a gap region. Note
that the contours resemble the two-dimensional contours along any slice x3 = constant. In Fig. 7(b),
we plot the contours of the solution uh resulting from the solution of the problem in case of having
a gap region with dg = 0.1. We can clearly observe the similarities of the contours in Fig. 5(b) and
in Fig. 7(b). Also, in Fig. 7(b), we show the shape of the gap as it appears on an oblique cut of the
domain Ω. We have computed the convergence rates for the three different values of λ. The results
of the computed rates are plotted in Fig. 7(c). We observe that all the rates are in agreement with
the predicted rates by the theory and are similar to the rates of the two-dimensional test Example
2, see Fig. 5(c).
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Fig. 7. Example 4: (a) The contours of uh computed on Ω , (b) The contours of uh computed on Ω \ Ωg with dg = 0.1 , (c)
Convergence rates r.

Example 5. Φ-shape gap. For the second numerical test example, the domain Ω is the same as in
previous example with the subdomain interface F to be the x2x3-plane, see Figs. 7(a) and 8(a). We
consider a manufactured problem, where the solution is

u(x1, x2, x3) =

{
u1 := sin(π(x1 + x2)) if (x1, x2, x3) ∈ Ω1,

u2 := sin(π(4x1 + x2)) if (x1, x2, x3) ∈ Ω2,
(5.2)

and the diffusion coefficient is defined to be ρ1 = 4 and ρ2 = 1. We note that, for this test case, we
have JuK|F = Jρ∇uK|F = 0.
Here, we artificially created the gap region such that Ωg ∩Ω1 6= ∅, and consequently for the left gap
boundary Fl, we get Fl 6= F . In particular, in all computations for this example, the two gap parts
belonging to Ω1 and Ω2 are symmetric with respect to the original interface F . In Fig. 8(b), we can
see the gap shape for dg = 2 · 0.0625. The contours of the solution uh computed on a decomposition
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with dg = 0 and dg = 2 · 0.0625 are presented in Fig. 8(a) and in Fig. 8(b), respectively. We have
computed the convergence rates r for the three different sizes dg , i.e., dg = hλ with λ = 1 , λ = 2
and λ = 3. We plot our results in Fig. 8(c). We observe that the rates are approaching the expected
values that have been mentioned in Table 2. Furthermore, we note that, for the case dg = h, the
rate tends to become 0.5 and is in agreement with the rate predicted by the theory, see Table 2
and Theorem 1. Therefore, in this example, the rates follow the same behavior as in the previous 3d
example and do not follow the behavior of the two-dimensional low regularity test case, see Fig. 6.

(a) (b) (c)

Fig. 8. Example 5: (a) The contours of uh computed on Ω , (b) The contours of uh computed on Ω \Ωg with dg = 2 ∗ 0.0625 ,
(c) Convergence rates r for the different dg sizes.

6 Conclusions

In this article, we have developed and analyzed dG IgA methods for discretizing linear, second-order
elliptic boundary value problems on volumetric patch decompositions with non-matching interface
parametrizations, which include gap regions between the adjacent subdomains (patches). Starting
from the original weak formulation, we derived a consistent variational problem on a decomposition
without including the gap region. The unknown normal fluxes on the gap boundary were approxi-
mated via Taylor expansions. These approximations were adapted to the proposed dG IgA scheme,
and the communication of the discrete solution of the adjacent subdomains was ensured. A priori
error estimates in the dG-norm ‖.‖dG were shown in terms of the mesh-size h and the gap distance
dg. The estimates were confirmed by solving several two- and three-dimensional test problems with
known exact solutions.

The techniques presented here for linking the diametrically opposite points on the gap boundary
can be used for a wide variety of other problems with different gap shapes. The only information,
which is required, is the construction of parametrization between the opposite gap boundary parts.
This parametrization can be used in conjunction with the Taylor expansions to derive approximations
of the normal fluxes on the gap boundary and then to incorporate the numerical fluxes into the dG
IgA scheme. From a practical point of view, it would be valuable to derive a posteriori error estimates
with computable upper bounds. The functional a posteriori error estimation technique introduced
by S. Repin would be one possible method to drive such estimates , see, e.g., [21]. Fast generation
techniques for the IgA system matrix and fast parallel solvers for large-scale systems of dG IgA
equations are certainly other hot research topics. Fast generation techniques can be constructed on
the basis of low-rank tensor approximations as proposed in [?]. Efficient solvers can certainly be
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constructed on the basis of multigrid, multilevel, and domain decomposition methods. In particular,
IETI-DP methods, introduced in [13] and analysed in [10], see also [4, 17] for related BDDC methods,
seems to be well suited for the parallel solution of dG IgA equations including the dG IgA schemes
studied in this paper.
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