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Abstract In this paper, we develop approximation error estimates as well
as corresponding inverse inequalities for B-splines of maximum smoothness,
where both the function to be approximated and the approximation error are
measured in standard Sobolev norms and semi-norms. The presented approx-
imation error estimates do not depend on the polynomial degree of the splines
but only on the grid size.

We will see that the approximation lives in a subspace of the classical B-
spline space. We show that for this subspace, there is an inverse inequality
which is also independent of the polynomial degree. As the approximation
error estimate and the inverse inequality show complementary behavior, the
results shown in this paper can be used to construct fast iterative methods for
solving problems arising from isogeometric discretizations of partial differential
equations.

1 Introduction

The objective of this paper is to prove approximation error estimates as well
as corresponding inverse estimates for B-splines of maximum smoothness. The
presented approximation error estimates do not depend on the degree of the
splines but only on the grid size. All bounds are given in terms of classical
Sobolev norms and semi-norms.
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In approximation theory, B-splines have been studied for a long time and
many properties are already well known. We do not go into the details of the
existing results but present the results of importance for our study throughout
this paper.

The emergence of Isogeometric Analysis, introduced in [11], sparked new
interest in the theoretical properties of B-splines. Since isogeometric Galerkin
methods are aimed at solving variational formulations of differential equations,
approximation properties measured in Sobolev norms need to be studied.

The results presented in this paper improve the results given in [13,7,
1] by explicitly studying the dependence on the polynomial degree p. Such an
analysis was done in [2]. However, the results there do not cover (for p ≥ 2) the
most important case of B-splines of maximum smoothness k = p. It turns out
that the methods established in [2] for proving those bounds are not suitable
in that case. Therefore, we develop a framework based on Fourier analysis
to prove rigorous bounds for k = p, which has the limitation that it is only
applicable for uniform grids.

Unlike the aforementioned papers we only consider approximation with B-
splines in the parameter domain within the framework of Isogeometric Anal-
ysis. A generalization of the results to NURBS as well as the introduction of
a geometry mapping, as presented in [1], is straightforward and does not lead
to any additional insight.

Note that a detailed study of direct and inverse estimates may lead to a
deeper understanding of isogeometric multigrid methods and give insight to
suitable preconditioning methods. We refer to [10,8], where similar techniques
were used.

1.1 The main results

We now go through the main results of this paper. For simplicity, we consider
the case of one dimension first, where Ω = (a, b) with a < b is the open param-
eter domain. For this domain we can introduce a uniform grid by subdividing
Ω into elements (subintervals) of length h. The setup of a uniform grid is only
possible if

nh := h−1(b− a) ∈ N,

where N := {1, 2, 3, . . .}. In other words, the grid size h has to be chosen
such that nh, the number of subintervals, is an integer. We will assume this
implicitly throughout the paper. On these grids we can introduce spaces of
spline functions.

Definition 1 The space of spline functions on the domain Ω of degree p ∈
N0 := {0, 1, 2, . . .} and continuity k ∈ N0 over the uniform grid of size h is
given by

Sp,k,h(Ω) :=
{
u ∈ Hk(Ω) : u|(a+hj,a+h(j+1)] ∈ Pp for all j = 0, . . . , nh − 1

}
,

where Pp is the space of polynomials of degree p.
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Here and in what follows, L2(Ω) and Hr(Ω) denote the standard Lebesgue
and Sobolev spaces with norms ‖ · ‖L2(Ω), ‖ · ‖Hr(Ω) and semi-norms | · |Hr(Ω).
Moreover, let (·, ·)L2(Ω) be the standard scalar product for L2(Ω) and

(u, v)Hr(Ω) :=

(
∂r

∂xr
u,

∂r

∂xr
v

)
L2(Ω)

be the scalar product for Hr(Ω), where ∂r

∂xr denotes the r-th derivative. We
then have |u|2Hr(Ω) := (u, u)Hr(Ω) as well as

‖u‖2Hr(Ω) := ‖u‖2L2(Ω) +

r∑
s=1

|u|2Hs(Ω)

for all r ∈ N0 := {0, 1, 2, . . .}.
Using standard trace theorems, we obtain that for k > 0 the space Sp,k,h(Ω)

is the space of all k− 1 times continuously differentiable functions (Ck−1(Ω)-
functions), which are polynomials of degree p on each element of the uniform
grid on Ω. For k = 0, there is no continuity condition, i.e., the space Sp,0,h(Ω)
is the space of piecewise polynomials of degree p.

For k > p, the spline spaces reduce to spaces of global polynomials. So,
the largest possible choice for k without having this effect is k = p. Therefore
we call B-splines with k = p B-splines of maximum smoothness. As we are
mostly interested in this case, here and in what follows, we will use Sp,h(Ω) :=
Sp,p,h(Ω).

The main result of this paper is the following.

Theorem 1 For all u ∈ H1(Ω), all grid sizes h and each degree p ∈ N with
h p < |Ω| = b− a, there is a spline approximation up,h ∈ Sp,h(Ω) such that

‖u− up,h‖L2(Ω) ≤
√

2 h|u|H1(Ω) (1)

is satisfied.

Note that, in contrast to the existing results presented in the next subsec-
tion, this theorem achieves two goals, it covers the case of maximum smooth-
ness and gives a uniform estimate for all polynomial degrees p.

Remark 1 Obviously Sp,k,h(Ω) ⊇ Sp,h(Ω) for all 0 ≤ k < p. So, Theorem 1 is
also valid in that case. However, for this case there might be better estimates
for these larger B-spline spaces. Moreover, Theorem 1 is also satisfied in the
case of having repeated knots, as this is just a local reduction of the continuity
(which enlarges the corresponding space of spline functions).

In Section 5, we will introduce a subspace S̃p,h(Ω) ⊆ Sp,h(Ω) (cf. Defini-
tion 8) and show that the spline approximation is even in that subspace (cf.
Corollary 1). Moreover, we show also a corresponding inverse inequality for

S̃p,h(Ω) (cf. Theorem 4 in Section 6), i.e., we will show that

|up,h|H1(Ω) ≤ 2
√

3h−1‖up,h‖L2(Ω)
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is satisfied for all grid sizes h, each p ∈ N and all up,h ∈ S̃p,h(Ω).
We will moreover show that both the approximation error estimate and

the inverse inequality are sharp up to constants (Corollaries 2, 3 and 4).

Remark 2 This inverse inequality does not extend to the whole space Sp,h(Ω).
Here it is easy to find a counterexample: Let Ω = (0, 1). The function up,h,
given by

up,h(x) =

{
(1− x/h)p for x ∈ [0, h)
0 for x ∈ [h, 1],

is a member of the space Sp,h(0, 1). Straight-forward computations yield

|up,h|H1(0,1)

‖up,h‖L2(0,1)
=

√
2p+ 1

2p− 1
p h−1,

which cannot be bounded from above by a constant times h−1 uniformly in p.
Using a standard scaling argument, this counterexample can be extended to
any Ω = (a, b).

The approximation error estimate and the inverse inequality are extended
to higher Sobolev indices in Section 7. Corresponding results for two and more
dimensions are given in Section 8. There, also the extension to Isogeometric
Analysis is discussed.

1.2 Known approximation error estimates

Before proving the main theorems, we start with recalling two important pre-
existing approximation error estimates. The first result is well-known in liter-
ature, cf. [13], Theorem 6.25 or [7], Theorem 7.3. In the framework of Isogeo-
metric Analysis, such results have been used, e.g., in [1], Lemma 3.3.

Theorem 2 For each r ∈ N0, each k ∈ N, each q ∈ N and each p ∈ N, with
0 ≤ r ≤ q ≤ p+ 1 and r ≤ k ≤ p, there is a constant C(p, k, r, q) such that the
following approximation error estimate holds. For all u ∈ Hq(Ω) and all grid
sizes h, there is a spline approximation up,k,h ∈ Sp,k,h(Ω) such that

|u− up,k,h|Hr(Ω) ≤ C(p, k, r, q)hq−r|u|Hq(Ω)

is satisfied.

This theorem is valid for tensor-product spaces in any dimension and gives
a local bound for locally quasi-uniform knot vectors. However, the dependence
of the constant on the polynomial degree has not been derived.

A major step towards estimates with explicit p-dependence was presented
in [2], Theorem 2, where an estimate with an explicit dependence on p, k, r
and q was given. However, there the continuity k is limited by the upper bound
1
2 (p+ 1). In our notation, the theorem reads as follows.
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Theorem 3 There is a constant C > 0 such that for each r ∈ N0, each k ∈ N,
each q ∈ N and each p ∈ N with 0 ≤ r ≤ k ≤ q ≤ p + 1 and k ≤ 1

2 (p + 1)
and all grid sizes h, the following approximation error estimate holds. For all
u ∈ Hq(Ω), there is a spline approximation up,k,h ∈ Sp,k,h(Ω) such that

|u− up,k,h|Hr(Ω) ≤ Chq−r(p− k + 1)−(q−r)|u|Hq(Ω)

is satisfied.

Again, the original result was stated for locally quasi-uniform knots. For
any p ≥ 2 the relevant case k = p, which we consider, is not covered by this
theorem.

Similar results to Theorem 1 are known in approximation theory, cf. [12].
There, however, different norms have been discussed. Hence we do not go into
the details. In [9], it was suggested and confirmed by numerical experiments
that Theorem 1 is satisfied. A proof was however not given.

1.3 Organization of this paper

This paper is organized as follows. In Section 2, we present the main steps
of the proof of Theorem 1 and give some preliminaries. In the following two
sections, the details of the proof are worked out. In Section 5, we introduce the
reduced spline space S̃p,h(Ω), discuss its properties and extend Theorem 1 to
that space. In the following section, Section 6, we give an inverse inequality for
S̃p,h(Ω) and a proof of robustness of the error estimate. In the remainder of
the paper, we generalize those results: In Section 7 we consider higher Sobolev
indices and in Section 8, the results are generalized to two or more dimensions.

2 Concept of the proof of Theorem 1 and Preliminaries

The proof of Theorem 1 is based on an estimate for periodic splines, which
is formulated as Lemma 9. The proof of Lemma 9 is based on a telescoping
argument based on a hierarchy of grids. For the proof, we require

– an estimate for the difference of the spline approximations of a given func-
tion on two consecutive grids, cf. (8), and

– an estimate for the difference between the spline approximation on some
finest grid and the given function, cf. Lemma 1.

As the size of the finest grid approaches 0, the constant in Lemma 1 or its
dependence on the spline degree p does not matter, whereas the constant in (8)
directly affects the constant in the final result.

The estimate (8) is shown in Section 3, cf. Lemma 8. There, the proof is
done by means of Fourier analysis, which causes the restriction of the analysis
to equidistant grids. The Fourier analysis follows a classical line: first, a matrix-
vector formulation is introduced, cf. Lemma 3, then the symbols of the involved
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matrices are derived, cf. Subsections 3.3 and 3.4. A closed form for the symbol
of the mass matrix is not available, so some statements on that matrix are
derived (Lemmas 4 and 6), which are used in the proof of Lemma 8.

Having the result for two consecutive grids in the periodic case, we use the
aforementioned telescoping argument to give an approximation error estimate
for approximating a general periodic H1-function. The extension to the non-
periodic case is done by means of a periodic extension.

2.1 Periodic splines

To establish the theory within this paper, we need to introduce spaces of
periodic splines, which we define as follows.

Definition 2 Given a spline space Sp,h(Ω) over Ω = (a, b), the periodic spline

space Ŝp,h(Ω) contains all functions up,h ∈ Sp,h(Ω) that satisfy the linear
periodicity condition

∂l

∂xl
up,h(a) =

∂l

∂xl
up,h(b) for all l ∈ N0 with l < p. (2)

The next step is to introduce a B-spline-like basis for this space. First, we
introduce the cardinal B-splines. On R, the cardinal B-splines are defined as
follows, cf. [13], (4.22).

Definition 3 The cardinal B-splines of degree p = 0, ψ
(i)
0 : R → R coincide

with the characteristic function, i.e.,

ψ
(i)
0 (x) :=

{
1 for x ∈ (i, i+ 1],
0 else,

where i ∈ Z.
The cardinal B-splines ψ

(i)
p : R → R of degree p ∈ N are given by the

recurrence formula

ψ(i)
p (x) :=

x− i
p

ψ
(i)
p−1(x) +

(p+ i+ 1)− x
p

ψ
(i+1)
p−1 (x), (3)

where i ∈ Z.

From the cardinal B-splines ψ
(i)
p , we derive the B-splines ϕ

(i)
p,h on Ω over a

uniform grid of size h by a suitable scaling and shifting.

Definition 4 For i ∈ Z the uniform B-spline ϕ
(i)
p,h : Ω = (a, b)→ R of degree

p ∈ N0 and grid size h is given by

ϕ
(i)
p,h(x) := ψ(i)

p

(
x− a
h

)
. (4)
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We obtain by construction that supp(ϕ
(i)
p,h) ⊂ [ih + a, (i + p + 1)h + a].

Hence, −p and nh−1 with nh = h−1(b−a) are the first and last indices of the

B-splines supported in Ω, respectively, i.e. supp(ϕ
(i)
p,h)∩Ω 6= ∅ is equivalent to

−p ≤ i ≤ nh − 1. Moreover, {ϕ(i)
p,h}

nh−1
i=−p forms a basis for Sp,h, see, e.g., [13].

Note that both nh and the basis functions depend implicitly on the choice of
Ω, i.e., the values a and b. Throughout the paper, it is clear from the context
which Ω is chosen.

For the construction of the basis for the periodic spline space Ŝp,h(Ω), we
assume that

hp < |Ω| = b− a, (5)

i.e., that the grid is fine enough not to have basis functions that are non-zero
at both end points of the grid, cf. [13].

Definition 5 For Ŝp,h(Ω), the B-spline-like basis {ϕ̂(i)
p,h}

nh−1
i=0 is given by

ϕ̂
(i)
p,h := ϕ

(i)
p,h if i < nh − p, and

ϕ̂
(i)
p,h := ϕ

(i)
p,h + ϕ

(i−nh)
p,h if i ≥ nh − p.

Up to indexing, this definition coincides with (8.6) and (8.7) in [13]. Theo-
rem 8.2 in [13] states that (6) is actually a basis.

As ϕ
(i)
p,h vanishes on Ω for all i 6∈ {−p, . . . , nh − 1}, we have

ϕ̂
(i)
p,h =

∑
j∈Z

ϕ
(i+jnh)
p,h , (6)

where Z is the set of integers, for all i = 0, . . . , nh − 1. Using this definition,

we directly obtain that also ϕ̂
(i)
p,h = ϕ̂

(i+jnh)
p,h for any j ∈ Z, which we will use

for ease of notation throughout this paper.
We call this basis B-spline-like, as each function is a non-negative linear

combination of B-splines and it forms a partition of unity on Ω.

2.2 A non-robust approximation error estimate in the periodic case

We can extend Theorem 2 for k = p − 1 to the following Lemma 1 stating
that the approximation error estimate is still satisfied if we approximate peri-
odic functions with periodic splines. First, we introduce the spaces of periodic
functions as follows.

Definition 6 For Ω = (a, b), the space Ĥq(Ω) is the space of all u ∈ Hq(Ω)
that satisfy the periodicity condition

∂l

∂xl
u(a) =

∂l

∂xl
u(b) for all l ∈ N0 with l < q. (7)

Note that standard trace theorems guarantee that the periodicity condition (7)
is well-defined. For this space, the following lemma holds.
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Lemma 1 For each r ∈ N0, each q ∈ N and each p ∈ N with 0 ≤ r ≤
q ≤ p+ 1, there is a constant C(p, r, q) such that the following approximation

error estimate holds. For all u ∈ Ĥq(Ω) and all grid sizes h, there is a spline

approximation up,h ∈ Ŝp,h(Ω) such that

|u− up,h|Hr(Ω) ≤ C(p, r, q)hq−r|u|Hq(Ω)

is satisfied.

Proof In the following, we assume without loss of generality that Ω = (0, 1).
The extension to any other Ω = (a, b), follows using a standard scaling argu-
ment.

Let w be the periodic extension of the function u to R, i.e., w(x) := u(x−
bxc). Note that the restriction of w to any finite interval is again a function
in the Sobolev space Hq. The following of the proof is based on the proof in
§ 6.4 in [13]. We make use of the fact that the proof uses local projections. Let
Qp,h : Hq(R) → Sp,h(R) be the projection operator, as introduced in (6.40)
in [13]. The value of the approximation Qp,hw of a function w at a certain
subinterval Ii := (i h, (i+1) h) ⊆ Ω only depends on the values of the function

to be approximated in a certain neighborhood Ĩi := ((i−p) h, (i+p+1) h). So,
from the periodicity of w, the periodicity of Qp,hw follows immediately. Hence

its restriction to (0, 1) is a periodic spline, i.e. Qp,hw|(0,1) ∈ Ŝp,h(0, 1). We
define up,h to be the restriction of Qp,hw to (0, 1). Due to [13], Theorem 6.24,
the local estimate

|w −Qp,hw|Hr(Ii) ≤ C̃(p, r, q)hq−r|w|Hq(Ĩi).

is satisfied for the projector Qp,h and a constant C̃(p, r, q), which is indepen-
dent of h. By summing over all elements, we obtain

|u− up,h|2Hr(0,1) = |w −Qp,hw|2Hr(0,1) =

nh−1∑
i=0

|w −Qp,hw|2Hr(Ii)

≤ C̃2(p, r, q)h2(q−r)
nh−1∑
i=0

|w|2
Hq(Ĩi)

= C̃2(p, r, q)h2(q−r)
nh−1∑
i=0

p∑
j=−p

|w|2Hq(Ii+j).

Using the periodicity of w, we can express the last term using |u|Hq(Il) for l ∈
{0, . . . , nh − 1} only. By counting the occurrences of the summands |u|Hq(Il),
we obtain

nh−1∑
i=0

p∑
j=−p

|w|2Hq(Ii+j) = (2p+ 1)

nh−1∑
i=0

|u|2Hq(Ii) = (2p+ 1)|u|2Hq(0,1),

which finishes the proof for C(p, r, q) = (2p+ 1)1/2C̃(p, r, q). ut
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3 A robust approximation error estimate for two consecutive grids
in the periodic case

In this section we analyze the case of approximating a periodic spline function
on a fine grid by a periodic spline function on a coarser grid. In the next
section, we extend these results to the approximation of general functions
and to the non-periodic case. The extension to the non-periodic case is done
by extending functions in H1(0, 1) to (−1, 1) by reflecting them on the y-
axis. So, without loss of generality, we will restrict ourselves to Ω = (−1, 1)
throughout this section. Moreover, for the construction of (28), we will need
that hp < 1, which is stronger than the requirement hp < b−a, cf. Theorem 1.
So, throughout this section, we will use the following assumptions.

Assumption 1 The domain is given by Ω = (−1, 1) and the grid size is small
enough such that hp < 1 holds.

In the next section, we will make use of a telescoping argument. For this
purpose, we have to analyze a fixed interpolation operator. So, within this
section, we will show that

‖(I − Π̂p,h)up,h‖L2(−1,1) ≤
1√
2
h|up,h|H1(−1,1) (8)

holds for all up,h ∈ Ŝp,h2 (−1, 1), where I is the identity and Π̂p,h is the H1-

orthogonal projection operator, given by the following definition.

Definition 7 The projection Π̂p,h : Ĥ1(−1, 1) → Ŝp,h(−1, 1) maps every

u ∈ Ĥ1(−1, 1) to the function up,h ∈ Ŝp,h(−1, 1) satisfying

(up,h, vp,h)H1
◦(−1,1) = (u, vp,h)H1

◦(−1,1) (9)

for all vp,h ∈ Ŝp,h(−1, 1), where

(u, v)H1
◦(−1,1) := (u, v)H1(−1,1) +

(∫ 1

−1
u(x)dx

)(∫ 1

−1
v(x)dx

)
.

Within the next subsections, we will prove (8). This will be done by a
rigorous version of Fourier analysis. Fourier analysis is a well-known tool for
analyzing convergence properties of numerical methods, cf. the work by A.
Brandt, like [5], and many others. It provides a framework to determine sharp
bounds for the convergence rates of multigrid methods and other iterative
solvers for problems arising from partial differential equations. This is different
to classical analysis, which typically yields qualitative statements only. For a
detailed introduction into Fourier analysis, see, e.g., [15]. Recently, it has also
been applied in the area of Isogeometric Analysis, cf. [10].

Typically, Fourier analysis is done under simplifying assumptions, like as-
suming uniform grids and neglecting the boundary. In this case, one refers to
local Fourier analysis (or local mode analysis). This analysis can be under-
stood as a heuristic method to study methods of interest. In a recent work,
cf. [10], it was understood also as a rigorous statement for a limit case.
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We, however, are interested in a completely rigorous analysis. As we restrict
ourselves to periodic spline spaces, the Fourier modes are the exact eigenvec-
tors of the matrices of interest, which will allow us to diagonalize these matrices
using a similarity transformation. Based on such a diagonalization, we will be
able to prove (8).

As a first step, we introduce a matrix-vector formulation of (8).

3.1 A matrix-vector formulation of the estimate

Having fixed the B-spline like basis {ϕ̂(i)
p,h}

nh−1
i=0 , we can write any function

up,h ∈ Ŝp,h(−1, 1) as a linear combination of these basis functions:

up,h =

nh−1∑
i=0

u
(i)
p,hϕ̂

(i)
p,h.

The coefficients u
(i)
p,h can be collected in a coefficient vector: We define up,h :=

(u
(i)
p,h)nh−1i=0 . So, the vector up,h is the representation of the function up,h with

respect to the B-spline like basis. Here and in what follows, we will always as-
sume underlined quantities to be the basis representation of the corresponding

function with respect to the basis {ϕ̂(i)
p,h}

nh
i=0.

By plugging such a decomposition into the standard L2-scalar product
(·, ·)L2(−1,1), we obtain

(up,h, vp,h)L2(−1,1) =

nh−1∑
i=0

nh−1∑
j=0

u
(i)
p,h v

(j)
p,h (ϕ̂

(i)
p,h, ϕ̂

(j)
p,h)L2(−1,1).

As the grid is equidistant and the splines are periodic, we obtain that for

all i and j the relation (ϕ̂
(i)
p,h, ϕ̂

(j)
p,h)L2(−1,1) = m

(i−j)
p,h holds with coefficients

m
(i)
p,h := (ϕ̂

(i)
p,h, ϕ̂

(0)
p,h)L2(−1,1). Those coefficients form a circulant matrix Mp,h :=

(m
(i−j)
p,h )j=0,...,nh−1

i=0,...,nh−1 , which is called the mass matrix. We immediately obtain

(up,h, vp,h)L2(−1,1) = (up,h, vp,h)Mp,h
:= vTp,hMp,hup,h

and
‖up,h‖2L2(−1,1) = ‖up,h‖2Mp,h

:= uTp,hMp,hup,h.

Having a look onto the support of the functions ϕ̂
(0)
p,h, we obtain that the

bandwidth of the mass matrix is 2p+1, i.e.m
(i−j)
p,h = 0 for all i, j with |i−j| > p.

Analogously to the definition of the mass matrix, we can introduce the
stiffness matrix, representing the H1

◦ -scalar product. The stiffness matrix is

given by Kp,h := (k
(i−j)
p,h )j=0,...,nh−1

i=0,...,nh−1 , where the coefficients are given by

k
(i)
p,h :=

(
ϕ̂
(i)
p,h, ϕ̂

(0)
p,h

)
H1
◦(−1,1)

.
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Since the basis functions ϕ̂
(i)
p,h form a partition of unity on Ω = (−1, 1),∫ 1

−1 ϕ̂
(i)
p,h(x)dx = h and further

k
(i)
p,h =

(
ϕ̂
(i)
p,h, ϕ̂

(0)
p,h

)
H1(−1,1)

+ h2. (10)

Note that for uniform knot vectors the identity

∂

∂x
ϕ
(j)
p,h(x) =

1

h

(
ϕ
(j−1)
p−1,h(x)− ϕ(j)

p−1,h(x)
)

holds, see e.g. (5.36) in [13]. This statement directly carries over to the periodic
splines using relation (6), i.e.,

∂

∂x
ϕ̂
(j)
p,h(x) =

1

h

(
ϕ̂
(j−1)
p−1,h(x)− ϕ̂(j)

p−1,h(x)
)

also holds. By plugging this into (10), the entries of the stiffness matrix can
be derived directly using the entries of the mass matrix for splines of order
p− 1. Straight-forward calculations show that

Kp,h = DhMp−1,hD
T
h + Eh, (11)

where the gradient matrix Dh := (d
(i−j)
h )j=0,...,nh−1

i=0,...,nh−1 is given by the coefficients

d
(i)
h :=

1

h

1 for i ∈ nh Z
−1 for i ∈ nh Z− 1
0 else

,

the rank-one matrix Eh is given by Eh := h21h1
T
h , where 1h := (1, . . . , 1)T ∈

Rnh is a vector consisting only of ones, representing the constant function.
Note that Dh, Eh and, consequently, Kh are also circulant matrices.

To derive a matrix-vector formulation of (8), we have to introduce a matrix

that represents the canonical embedding from Ŝp,h(−1, 1) into Ŝp,h2
(−1, 1).

The following lemma is rather well-known in literature, cf. [6] equation (4.3.4),
and can be easily shown by induction in p.

Lemma 2 For all p ∈ N, all grid sizes h and all x ∈ R,

ϕ
(j)
p,h(x) = 2−p

p+1∑
l=0

(
p+ 1
l

)
ϕ
(2j+l)

p,
h
2

(x)

is satisfied for all j = −p, . . . , nh − p− 1.

This directly carries over to the periodic splines, i.e., we obtain

ϕ̂
(j)
p,h(x) = 2−p

p+1∑
l=0

(
p+ 1
l

)
ϕ̂
(2j+l)

p,
h
2

(x) =
∑
i∈Z

2−p
(
p+ 1
i− 2j

)
︸ ︷︷ ︸

p
(i,j)

p,
h
2

:=

ϕ̂
(i)

p,
h
2

(x). (12)
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Here, we use equation (6) and that the binomial coefficient

(
a
b

)
vanishes for

b 6∈ {0, . . . , a}. Again, we define the matrix P
p,
h
2

:= (p
(i,j)

p,
h
2

)j=0,...,nh−1
i=0,...,2nh−1. Here

and in what follows, we make use of nh
2

= 2nh.

Lemma 3 The inequality (8) is equivalent to

‖M1/2

p,h2
(I − Pp,h2K

−1
p,hP

T
p,h2

Kp,h2
)K
−1/2
p,h2
‖ ≤ 1√

2
h, (13)

which is a consequence of the combination of

‖M1/2

p,h2
M
−1/2
p−1,h2

‖ ≤ 1 and (14)

‖M1/2

p−1,h2
(I − Pp,h2K

−1
p,hP

T
p,h2

Kp,h2
)K
−1/2
p,h2
‖ ≤ 1√

2
h. (15)

Here and in what follows, ‖ · ‖ is the Euclidean norm and the square root A1/2

of a symmetric and positive definite matrix A is that symmetric and positive
definite matrix that satisfies A1/2A1/2 = A.

Proof of Lemma 3 Using the introduced matrices Kp,h and P
p,
h
2

, we can

rewrite (9) for the choice u := up,h2
∈ Ŝp,h2 in matrix-vector form as

(Pp,h2
up,h, Pp,h2

vp,h)K
p, h

2

= (up,h2
, Pp,h2

vp,h)K
p, h

2

,

which is equivalent to

PT
p,h2

Kp,h2
Pp,h2

up,h = PT
p,h2

Kp,h2
up,h2

.

This yields, using the Galerkin principle (PT
p,h2

Kp,h2
Pp,h2

= Kp,h), that the

coarse-grid approximation up,h is given by

up,h = K−1p,hP
T
p,h2

Kp,h2
up,h2

.

By plugging this into (8), we see that we have to show

‖(I − Pp,h2K
−1
p,hP

T
p,h2

Kp,h2
)up,h2

‖M
p, h

2

≤ 1√
2
h‖up,h2 ‖Kp, h2

for all up,h2
∈ R2nh . By rewriting this using a standard matrix norm, we obtain

(13). Using the semi-multiplicativity of matrix norms, we obtain that (13) is
a consequence of (14) and (15). ut

Note that the stiffness matrix for some degree p depends implicitly on the
mass matrix for the degree p− 1. So, analyzing (15) is more convenient than
analyzing (13) as the inequality (15) depends just on the one mass matrix
Mp−1,h2

, whereas (13) depends on two mass matrices: Mp−1,h2
and Mp,h2

. We

will show (14) in the next subsection and (15) in Subsection 3.6.
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3.2 A lemma relating the mass matrices for different polynomial degrees

The estimate (14) is a direct consequence of the following lemma.

Lemma 4 For all p ∈ N, grid sizes h and vectors uh ∈ Rnh , the inequality

‖uh‖Mp,h
≤ ‖uh‖Mp−1,h

is satisfied.

Proof First we observe that the convolution formula for cardinal B-splines, cf.

equation (13) in [10], can be carried over to the functions ϕ̂
(i)
p,h, i.e., that

ϕ̂
(i)
p,h(x) = h−1

∫ h

0

ϕ̂
(i)
p−1,h(x− t)dt (16)

holds. Let uh = (u
(i)
h )nh−1i=0 . Then, using (16), we have that

‖uh‖2Mp,h
=

∫ 1

−1

(
nh−1∑
i=0

u
(i)
h ϕ̂

(i)
p,h(x)

)2

dx

=

∫ 1

−1

(
nh−1∑
i=0

u
(i)
h h−1

∫ h

0

ϕ̂
(i)
p−1,h(x− t)dt

)2

dx

= h−2
∫ 1

−1

(∫ h

0

(
nh−1∑
i=0

u
(i)
h ϕ̂

(i)
p−1,h(x− t)

)
dt

)2

dx

= h−2
∫ 1

−1

(∫ h

0

1 s(x− t)dt

)2

dx

holds, where s(x) :=
∑nh−1
i=0 u

(i)
h ϕ̂

(i)
p−1,h(x− t).

Now, we apply the Cauchy-Schwarz inequality to the inner integral and
obtain

‖uh‖2Mp,h
≤ h−2

∫ 1

−1

(∫ h

0

12dt

)(∫ h

0

s2(x− t)dt

)
dx

= h−1
∫ 1

−1

∫ h

0

s2(x− t)dtdx = h−1
∫ h

0

∫ 1

−1
s2(x− t)dx dt.

Observe that due to periodicity,
∫ 1

−1 s
2(x− t)dx =

∫ 1

−1 s
2(ξ)dξ for all t ∈ [0, h],

which implies

‖uh‖2Mp,h
≤ h−1

∫ h

0

∫ 1

−1
s2(ξ)dξ dt = h−1

(∫ h

0

1dt

)(∫ 1

−1
s2(ξ)dξ

)

=

∫ 1

−1

(
nh−1∑
i=0

u
(i)
h ϕ̂

(i)
p−1,h(ξ)

)2

dξ = ‖uh‖2Mp−1,h
,

which finishes the proof. ut
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3.3 Symbols of mass matrix and stiffness matrix

As the matrices Mp,h and Kp,h are circulant matrices, we can analyze them
using Fourier analysis. So, we consider the Fourier vectors

f
h,j

:= (e2ijhπi)nh−1i=0 for j = 0, . . . , nh − 1,

where i is the imaginary unit.
We observe (using that the bandwidth of the mass matrix is 2p+ 1) that

(Mp,hfh,j)i =

p∑
l=−p

m
(l)
p,he

2(i+l)jhπi =

p∑
l=−p

m
(l)
p,he

2ljhπie2ijhπi

=

p∑
l=−p

m
(l)
p,he

2ljhπi

︸ ︷︷ ︸
m̂

(j)
p,h :=

(f
h,j

)i

for all i = 0, . . . , nh − 1 and j = 0, . . . , nh − 1 and consequently

Mp,hfh,j = m̂
(j)
p,hfh,j

is satisfied for all j = 0, . . . , nh−1, i.e., that f
h,j

is an eigenvector of Mp,h with

corresponding eigenvalue m̂
(j)
p,h. As we have identified nh different eigenvalues,

the corresponding eigenvectors define a basis of Rnh . Therefore, the matrix
Fh, obtained by collecting the vectors f

h,j
, i.e.,

Fh :=
(
f
h,0

f
h,1
· · · f

h,nh−1

)
= (e2ijhπi)j=0,...,nh−1

i=0,...,nh−1 ,

is a non-singular matrix. As Fh is the matrix built from the eigenvectors, it
diagonalizes the matrix Mp,h, i.e.,

F−1h Mp,hFh = M̂p,h, (17)

where M̂p,h := diag(m̂
(0)
p,h, . . . , m̂

(nh−1)
p,h ). Analogously, we obtain

F−1h DhFh = D̂h, (18)

where D̂h := diag(d̂
(0)
h , . . . , d̂

(nh−1)
h ) with

d̂
(j)
h := h−1(1− e2jhπi). (19)

Using the same construction we obtain that further

F−1h DT
h Fh = D̂∗h. (20)
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With D̂∗h we denote the adjoint (the conjugate transpose) of the matrix D̂h.
Note that Eh = h21h1

T
h is a circulant matrix with rank 1. The only non-zero

eigenvalue is h, with corresponding eigenvector 1h = f
h,0

. So, we obtain

F−1h EhFh = Êh (21)

where Êh := diag(ê
(0)
h , . . . , ê

(nh−1)
h ) with

ê
(j)
h :=

{
h for j = 0
0 otherwise.

(22)

So, we can determine, K̂h, the symbol of the stiffness matrix. Using (11), (17),
(18), (20) and (21), we obtain that

F−1h Kp,hFh = K̂h, (23)

where K̂h := diag(k̂
(0)
p,h, . . . , k̂

(nh−1)
p,h ) with

k̂
(j)
p,h := d̂

(j)
h m̂

(j)
p−1,h(d̂

(j)
h )∗ + ê

(j)
h . (24)

3.4 Symbol of the intergrid transfer

The following lemma characterizes the symbol of the intergrid transfer.

Lemma 5 We have

F−1h
2

Pp,h2
Fh = P̂p,h2

, (25)

where P̂p,h2
:= (p̂

(i,j)

p,h2
)j=0,...,nh−1
i=0,...,2nh−1 with

p̂
(i,j)

p,h2
:= 2−p−1

{(
1 + e−2i

h
2 πi
)p+1

for i− j ∈ {0, nh}
0 otherwise

(26)

for all i = 0, . . . , 2nh − 1 and all j = 0, . . . , nh − 1.

Proof The equation (25) is equivalent to Ph
2
Fh = Fh

2
P̂h

2
. We obtain using (12)

and the definition of Fh for any unit vector I
(j)
h with j = 0, . . . , nh − 1 that

Ph
2
FhI(j)h = Ph

2
f
h,j

= 2−p

(∑
r∈Z

(
p+ 1
i− 2r

)
e2jrhπi

)2nh−1

i=0

.
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Because 1
2 (1 + etπi) takes the value 0 for t being odd and 1 for t being even,

we can substitute r by 2t and obtain

Ph
2
FhI(j)h = 2−p−1

(∑
t∈Z

(
p+ 1
i− t

)
e2jth2 πi(1 + etπi)

)2nh−1

i=0

= 2−p−1

(∑
k∈Z

(
p+ 1
k

)
e2j(i−k)h2 πi(1 + e(i−k)πi)

)2nh−1

i=0

= 2−p−1
∑
k∈Z

(
p+ 1
k

)(
e−2jk

h
2 πif h

2 ,j
+ e−2(j+nh)k

h
2 πif h

2 ,j+nh

)
= 2−p−1

(
1 + e−2j

h
2 πi
)p+1

f h
2 ,j

+ 2−p−1
(

1 + e−2(j+nh)
h
2 πi
)p+1

f h
2 ,j+nh

.

This shows that the j-th column of Ph
2
Fh is just the combination of two

columns of Fh
2
. Therefore, the matrix P̂h

2
has just two non-zero entries, in the

j-th row: those which we have claimed in (26). ut

For determining the symbol of PT
p,h2

, we observe as follows. As the Fourier

modes f
h,j

are pairwise orthogonal, and f∗
h,j
f
h,j

= nh, we immediately obtain

F∗hFh = nhI and, consequently, F−1h = hF∗h. So, we obtain using (25) that

F−1h PT
p,h2

Fh
2

= (F∗h
2
Pp,h2

F−∗h )∗ = (2F−1h
2

Pp,h2
Fh)∗ = 2P̂ ∗

p,h2
. (27)

3.5 Some statements on the symbol of the mass matrix

A closed form for the symbol of the mass matrix is not known. Within this
subsection we will show a few statements characterizing the symbol, which we
will need later on. Due to [6,16], we have

m
(j)
p,h = h

E(2p+ 1, p+ j)

(2p+ 1)!
, (28)

where j ∈ {−p, . . . , p}. Here, E(n, k) are the Eulerian numbers, which satisfy
the recurrence relation

E(n, k) = (n− k)E(n− 1, k − 1) + (k + 1)E(n− 1, k)

and the initial condition

E(0, j) =

{
1 for j = 0
0 for j 6= 0

.

A similar result was also stated in [10]. There, the entries of the mass matrix,
i.e., the L2-products of two B-splines of order p have been shown to be equal
to the function value of one B-spline of order p + 1. Using the recurrence
relation (3), one obtains that the result in [10] is equivalent to (28).
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As m
(j)
p,h = m

(−j)
p,h and eθi + e−θi = 2 cos θ, we obtain

m̂
(j)
p,h = h

p∑
l=−p

E(2p+ 1, p+ l)

(2p+ 1)!
cos(2ljhπ).

The symbol is better characterized by the following lemma.

Lemma 6 The following two statements hold:

– m̂
(j)
p,h > 0 for all j = 0, . . . , nh − 1 and

– m̂
(j)
p,h ≤ m̂

(k)
p,h for all j, k = 0, . . . , nh − 1 with cos(2jhπ) ≤ cos(2khπ).

Proof For c ∈ [0, 2], we define

gp(c) :=

p∑
l=−p

E(2p+ 1, p+ l)

(2p+ 1)!
cos(l arccos(c− 1))

and observe gp(c) = h−1m̂
(η(c))
p,h , where η(c) := 1

2hπ arccos(c − 1). The state-
ment of the lemma is now equivalent to the combination of the following two
statements:

– h−1m̂
(η(0))
p,h = gp(0) > 0 and

– h−1m̂
(η(c))
p,h = gp(c) is monotonically increasing for c > 0.

Since we can express cos(l arccos(c− 1)) as the l-th Chebyshev polynomial, gp
is a polynomial function in c. Using the recurrence relation for the Eulerian
numbers, we can derive the following recurrence formula for gp:

gp(c) =
1 + cp

1 + 2p
gp−1(c) +

(2− c)(1 + c(2p− 1))

p(1 + 2p)
g′p−1(c) +

(c− 2)2c

p(1 + 2p)
g′′p−1(c).

We can make an ansatz

gp(c) =

p∑
j=0

ap,jc
j ,

where we use 00 = 1, and derive the recurrence formula

ap,j =
(1− j + p)2

p+ 2p2︸ ︷︷ ︸
Ap,j :=

ap−1,j−1+
4j(p− j) + j + p

p+ 2p2︸ ︷︷ ︸
Bp,j :=

ap−1,j+
2 + 6j + 4j2

p+ 2p2︸ ︷︷ ︸
Cp,j :=

ap−1,j+1

for the coefficients ap,j . For p = 1, we obtain

a1,j =

{
1
3 for j ∈ {0, 1}
0 otherwise.

As Ap,j > 0, Bp,j > 0 and Cp,j > 0 for 0 ≤ j ≤ p, one can show using
induction in p that for all p ≥ 1:{

ap,j > 0 for j ∈ {0, 1, . . . , p}
ap,j = 0 otherwise.

This immediately implies that gp(0) > 0 and that gp(c) is monotonically in-
creasing for c > 0, which concludes the proof. ut



18 Stefan Takacs, Thomas Takacs

3.6 An estimate for the projection operator

Now, we are able to prove the following lemma.

Lemma 7 The inequality (15) holds.

Proof The inequality (15) is equivalent to

h−1‖M1/2

p−1,h2
(I − Pp,h2K

−1
p,hP

T
p,h2

Kp,h2
)K
−1/2
p,h2
‖︸ ︷︷ ︸

q :=

≤ 1√
2
.

Using Galerkin orthogonality, we obtain Kp,h = PT
p,h2

Kp,h2
Pp,h2

. Note that

H := I − Pp,h2K
−1
p,hP

T
p,h2

Kp,h2
is a projection operator, so HH = H. Moreover,

observe that HK−1
p,h2

= K−1
p,h2
HT . Using these identities and ‖W‖2 = ρ(WWT ),

where ρ denotes the spectral radius, we obtain

q2 = h−2ρ(M
−1/2
p−1,h2

HK−1
p,h2
HTM−1/2

p−1,h2
) = h−2ρ(K−1

p,h2
M−1
p−1,h2

H)

= h−2ρ(K−1
p,h2

Mp−1,h2
(I − Pp,h2 (PT

p,h2
Kp,h2

Pp,h2
)−1PT

p,h2
Kp,h2

)).

Using (17), (18), (20), (23), (25) and (27), we obtain further

q2 = h−2ρ(K̂−1
p,h2

M̂p−1,h2
(I − 2P̂p,h2

(2P̂ ∗
p,h2

K̂p,h2
P̂p,h2

)−1P̂ ∗
p,h2

K̂p,h2
)︸ ︷︷ ︸

T̂p,h2
:=

).

Lemma 6 states that all diagonal entries of M̂p−1,h2
are non-zero. It is straight-

forward to see that also the diagonal entries of K̂p,h2
and K̂p,h = P̂ ∗

p,h2
K̂p,h2

P̂p,h2
are non-zero. So, T̂p,h2

is well-defined.

Recall that Lemma 5 states that the matrix P̂p,h2
= (p̂

(i,j)

p,h2
)j=0,...,nh−1
i=0,...,2nh−1 has

a block-structure, given by

p̂
(i,j)

p,h2
= 0 for all i− j 6∈ {0, nh}.

Therefore and because the matrices M̂p−1,h2
and K̂p,h2

are diagonal, the matrix

T̂p,h2
= (t̂

(i,j)

p,h2
)j=0,...,2nh−1
i=0,...,2nh−1 has a block-structure, given by

t̂
(i,j)

p,h2
= 0 for all i− j 6∈ {−nh, 0, nh}.

By reordering the coefficients of the matrix T̂p,h2
, we obtain a block-diagonal

matrix with blocks

T (l)

p,h2
=

 t̂
(l,l)

p,h2
t̂
(l,l+nh)

p,h2

t̂
(l+nh,l)

p,h2
t̂
(l+nh,l+nh)

p,h2

 .
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As this block-diagonal matrix is spectrally equivalent to T̂p,h2
and the spectral

radius of a block-diagonal matrix is just the maximum over the spectral radii
of the blocks, we obtain

q2 = ρ(T̂p,h2
) = max

l=0,...,nh−1
ρ(T (l)

p,h2
).

So, in the following, we derive the spectral radius of T (l)

p,h2
for any particular l.

Straight-forward computation yields that for l ∈ {0, . . . , nh−1}, i ∈ {l, l+nh}
and j ∈ {l, l + nh}, we have

t̂
(i,j)

p,h2
=
m̂

(i)

p−1,h2

k̂
(i)

p,h2

δi,j − p̂
(i,l)

p,h2
(p̂

(j,l)

p,h2
)∗∑1

r=0(p̂
(l+rnh,l)

p,h2
)∗k̂

(l+rnh)

p,h2
p̂
(l+rnh,l)

p,h2

k̂
(j)

p,h2

 , (29)

where δi,j is the Kronecker-delta, i.e., δi,j = 1 for i = j and δi,j = 0 for i 6= j.

Now, consider case A: l ∈ {1, . . . , nh−1}. Here, we plug the values of k̂
(j)

p,h2
,

d̂
(j)
h
2

, ê
(j)
h
2

(which takes the value 0 for j ∈ {l, l + nh}), p̂(i,j)p,h2
, as given by (24),

(19), (22) and (26), into (29) and substitute m̂
(l+nh)

p−1,h2
by ξm̂

(l)

p−1,h2
. Doing so,

the term m̂
(l)

p−1,h2
cancels out and we obtain by straight-forward computation

T (l)

p,h2
=

1

δ

(
−z(1− z)p−3ξ
z(1 + z)p−3

)(
(−1)p(1− z)p+1

(1 + z)p+1

)T
,

where δ := (1 + z)2p + (−1)p(1− z)2pξ and z := e2lh2 πi. Note that the compu-

tations are not a problem, as none of the symbols (except ê
(j)
h
2

) takes the value

0 for case A. Moreover, for case A we have that z 6∈ {−1, 1}.
Observe that T (l)

p,h2
has rank 1. Therefore, its spectral radius equals its trace,

so we obtain by straight-forward computations that

ρ(T (l)

p,h2
) =

z(1 + z)2p−2 − (−1)pz(1− z)2p−2ξ
(1 + z)2p + (−1)p(1− z)2pξ

=
z−p+1(1 + 2z + z2)p−1 − (−1)pz−p+1(1− 2z + z2)p−1ξ

z−p(1 + 2z + z2)p + (−1)pz−p(1− 2z + z2)pξ

=
(z−1 + 2 + z)p−1 − (−1)p(z−1 − 2 + z)p−1ξ

(z−1 + 2 + z)p + (−1)p(z−1 − 2 + z)pξ

=
(2 + 2c)p−1 − (−1)p(−2 + 2c)p−1ξ

(2 + 2c)p + (−1)p(−2 + 2c)pξ
=

(1 + c)p−1 + (1− c)p−1ξ
2((1 + c)p + (1− c)pξ)︸ ︷︷ ︸

Ψp(c, ξ) :=

holds, where c := cos(2lh2π) and, as defined above, ξ = m̂
(l+nh)

p−1,h2
/m̂

(l)

p−1,h2
. Note

that c ∈ (−1, 1) holds as we have restricted ourselves to l ∈ {1, . . . , nh − 1}.
Observe that Lemma 6 implies that ξ > 0. Now, consider two cases:
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– If c = cos(2lh2π) > 0, then cos(2(l+ nh)h2π) = cos(2lh2π + π) ≤ 0. For this

case Lemma 6 states that m̂
(l+nh)

p−1,h2
≤ m̂(l)

p−1,h2
, so ξ ≤ 1 holds.

– Analogously, ξ ≥ 1 holds if c ≤ 0.

To finalize the proof of case A, we need to show

Ψp

cos

(
2l
h

2
π

)
,
m̂

(l+nh)

p−1,h2

m̂
(l)

p−1,h2

 ≤ 1

2

for all l = 1, . . . , nh − 1. It suffices to show

Ψp(c, ξ) ≤
1

2
(30)

for all (c, ξ) ∈ [0, 1) × (0, 1] ∪ (−1, 0] × [1,∞) and all p ∈ N, i.e., to show the
inequality for the whole range of c and ξ, ignoring their dependence on l. As
a next step, we observe that Ψp(c, ξ) = Ψp(−c, ξ−1), which indicates that it
suffices to show (30) for all (c, ξ) ∈ [0, 1) × (0, 1] and all p ∈ N. We observe
that

Ψp(c, ξ) =
1 +

(
1−c
1+c

)p−1
ξ

2

(
(1 + c) + (1− c)

(
1−c
1+c

)p−1
ξ

)
and ω :=

(
1−c
1+c

)p−1
∈ [0, 1] for c ∈ [0, 1]. So, it suffices to show that

1 + ωξ

2((1 + c) + (1− c)ωξ)
≤ 1

2
(31)

for all (c, ξ, ω) ∈ [0, 1)× (0, 1]× [0, 1] and all p ∈ N, again ignoring the depen-
dence of ω on p and c.

As the denominator is always positive, (31) is equivalent to

1 + ωξ ≤ 1 + ωξ + c(1− ωξ),

which is obviously true for all (c, ξ, ω) ∈ [0, 1)× (0, 1]× [0, 1].

Now, we consider case B : l = 0. Here, we have to use that ê
(0)

p,h2
6= 0 and

obtain – by straight-forward computation – that

T (0)

p,h2
=

(
0 0
0 1

4

)

and consequently ρ(T (0)

p,h2
) = 1

4 . Also this is bounded from above by 1
2 , which

finishes the proof. ut
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3.7 The approximation error estimate

Now, we are able to show the approximation error estimate (8).

Lemma 8 The inequality (8), i.e.,

‖(I − Π̂p,h)up,h2
‖L2(−1,1) ≤

1√
2
h|up,h2 |H1(−1,1),

holds for all up,h2
∈ Ŝp,h2 (−1, 1).

Proof Lemma 3 states that (8) is a consequence of (14) and (15). As Lemma 4
shows (14) and Lemma 7 shows (15), this finishes the proof. ut

4 The proof of Theorem 1

In the previous section, we have given a proof for the approximation error
of discretized functions between two consecutive grids. Using a telescoping
argument, we can extend this result to an approximation error estimate for
general functions. As in the last section, we first consider the periodic case.

Lemma 9 For all u ∈ Ĥ1(−1, 1), all grid sizes h and each p ∈ N, with hp < 1,

‖(I − Π̂p,h)u‖L2(−1,1) ≤
√

2 h|u|H1(−1,1)

is satisfied, where Π̂p,h is given as in Definition 7.

Proof Using a telescoping argument, i.e. iteratively applying the triangular
inequality, and the relation Π̂p,2hΠ̂p,h = Π̂p,2h for the projectors, we obtain
for any q ∈ N

‖(I − Π̂p,h)u‖L2(−1,1) ≤ ‖(I − Π̂p,2−qh)u‖L2(−1,1)

+

q−1∑
l=0

‖(I − Π̂p,2−lh)Π̂p,2−l−1hu‖L2(−1,1).

We use Lemma 1 and a standard Aubin-Nitsche duality argument to estimate
‖(I − Π̂p,2−qh)u‖L2(−1,1) from above. Using [4], Lemma 7.6, and Lemma 1 for
r = 1 and q = 2, we immediately obtain

‖(I − Π̂p,2−qh)u‖L2(−1,1) ≤ C̃(p)2−qh‖u‖H1(−1,1), (32)

where C̃(p) is independent of the grid size. Using (32) and Lemma 8, we obtain

‖(I − Π̂p,h)u‖L2(−1,1) ≤ C̃(p) 2−qh‖u‖H1(−1,1)

+

q−1∑
l=0

1√
2

2−lh|Π̂p,2−l−1hu|H1(−1,1).
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Because Π̂p,h is H1-orthogonal, we obtain |Π̂p,2−l−1hu|H1(−1,1) ≤ |u|H1(−1,1)
and further

‖(I − Π̂p,h)u‖L2(−1,1) ≤ C̃(p) 2−qh‖u‖H1(−1,1) +

q−1∑
l=0

1√
2

2−lh|u|H1(−1,1).

The summation formula for the infinite geometric series gives

‖(I − Π̂p,h)u‖L2(−1,1) ≤ C̃(p) 2−qh‖u‖H1(−1,1) + 2
1√
2
h|u|H1(−1,1).

As this is true for all q ∈ N, we can take the limit q → ∞ and obtain the
desired result. ut

Having this result, we note that Theorem 1 is just the extension of Lemma 9
to the non-periodic case. So, we can easily prove Theorem 1.

Proof of Theorem 1 In the following, we assume without loss of generality that
Ω = (0, 1). The extension to any other Ω = (a, b), follows using a standard
scaling argument.

Observe that any u ∈ H1(0, 1) can be extended to a w ∈ Ĥ1(−1, 1) by
defining w(x) := u(|x|). The assumption hp < 1 in Theorem 1 guarantees that

Lemma 9 can be applied. We set wp,h := Π̂p,hw ∈ Ŝp,h(−1, 1) as in Lemma 9
and obtain

‖w − wp,h‖L2(−1,1) ≤
√

2 h|w|H1(−1,1).

The function wp,h is symmetric, i.e., wp,h(x) = wp,h(−x) holds. This can be
seen by the following argument: As w satisfies w(x) = w(−x), we have for
w̃p,h(x) := wp,h(−x)

|w − wp,h|H1(−1,1) = |w − w̃p,h|H1(−1,1)

and as wp,h was a unique minimizer, consequently wp,h(x) = w̃p,h(x) =
wp,h(−x) holds. By restricting wp,h to (0, 1), we obtain a function up,h ∈
Sp,h(0, 1). This function satisfies the desired approximation error estimate
since |w|H1(−1,1) =

√
2|u|H1(0,1) and ‖w−wp,h‖L2(−1,1) =

√
2‖u− up,h‖L2(0,1)

hold due to the symmetry of w and wp,h. ut

5 Approximation error estimate for a reduced spline space

In the proof of Theorem 1 we have defined up,h to be the restriction of a

symmetric and periodic spline wp,h ∈ Ŝp,h(−1, 1) to (0, 1). So, we know more
about up,h than just up,h ∈ Sp,h(0, 1). Throughout this Section we again as-
sume hp < |Ω|.

As we have shown in the proof of Theorem 1 the spline wp,h is symmetric,
i.e., wp,h(x) = wp,h(−x), so we have

∂l

∂xl
wp,h(x) = (−1)l

∂l

∂xl
wp,h(−x) for all l ∈ N0.
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dim Sp,h(0, 1) dim Ŝp,h(0, 1) dim S̃p,h(0, 1)

p even n + p n n
p odd n + p n n + 1

Table 1 Degrees of freedom, where n is the number of elements in (0, 1).

By plugging x = 0 into this relation, we obtain that all odd derivatives vanish
for x = 0. By plugging x = 1 into the relation, we obtain together with (2)
that also for x = 1 all odd derivatives vanish.

So, we have shown that the approximation error estimate (1) is still satisfied

if we restrict the approximating spline up,h to be in the space S̃p,h(0, 1), defined
as follows.

Definition 8 Given a spline space Sp,h(Ω) over Ω = (a, b), the space of

splines with vanishing odd derivatives S̃p,h(Ω) is the space of all up,h ∈ Sp,h(Ω)
that satisfy the following condition:

∂2l+1

∂x2l+1
up,h(a) =

∂2l+1

∂x2l+1
up,h(b) = 0 for all l ∈ N0 with 2l + 1 < p.

Using a standard scaling argument, we can again extend the result for
Ω = (0, 1) to any Ω = (a, b) and obtain the following Corollary.

Corollary 1 For all u ∈ H1(Ω), all grid sizes h and all p ∈ N, with hp < |Ω|,
there is a spline approximation up,h ∈ S̃p,h(Ω) such that

‖u− up,h‖L2(Ω) ≤
√

2 h|u|H1(Ω)

is satisfied.

In the Appendix, we will introduce a basis for the space S̃p,h(Ω). Based
on the bases of those spaces, we obtain that their dimensions are as given in
Table 1.

6 An inverse inequality for the reduced spline space and a proof of
robustness of the error estimate

For the space S̃p,h(Ω), a robust inverse inequality holds. Note that an extension
to Sp,h(Ω) is not possible (cf. Remark 2).

Theorem 4 For all grid sizes h and each p ∈ N,

|up,h|H1(Ω) ≤ 2
√

3h−1‖up,h‖L2(Ω) (33)

is satisfied for all up,h ∈ S̃p,h(Ω).
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Proof In the following, we assume without loss of generality that Ω = (0, 1).
The extension to any other Ω = (a, b), follows directly using a standard scal-

ing argument. We can extend every up,h ∈ S̃p,h(0, 1) to (−1, 1) by defining

wp,h(x) := up,h(|x|) and obtain wp,h ∈ Ŝp,h(−1, 1). (33) is equivalent to

|wp,h|H1(−1,1) ≤ 2
√

3h−1‖wp,h‖L2(−1,1). (34)

This is shown using induction in p for all u ∈ S̃p,h(−1, 1). For p = 1, (34) is
known, cf. [14], Theorem 3.91.

Now, we show that the constant does not increase for larger p. So assume
p > 1 to be fixed. Due to the periodicity and due to the Cauchy-Schwarz
inequality,

|wp,h|2H1(−1,1) =

∫ 1

−1
(w′p,h)2dx = −

∫ 1

−1
w′′p,hwp,hdx

≤ ‖w′′p,h‖L2(−1,1)‖wp,h‖L2(−1,1) = |w′p,h|H1(−1,1)‖wp,h‖L2(−1,1)

is satisfied. Using the induction assumption (and w′p,h ∈ Ŝp−1,h(−1, 1), cf. [13],
Theorem 5.9), we know that

|w′p,h|H1(−1,1) ≤ 2
√

3h−1‖w′p,h‖L2(−1,1) = 2
√

3h−1|wp,h|H1(−1,1).

Combining these results, we obtain

|wp,h|2H1(−1,1) ≤ 2
√

3h−1|wp,h|H1(−1,1)‖wp,h‖L2(−1,1)

and further
|wp,h|H1(−1,1) ≤ 2

√
3h−1‖wp,h‖L2(−1,1).

This shows (34), which concludes the proof. ut

Remark 3 Neither Theorem 3.91 in [14], nor any of the arguments in the proof
of Theorem 4 requires the grid to be equidistant. So, also having a general grid,
the estimate

|up,h|H1(Ω) ≤ 2
√

3 h−1min‖up,h‖L2(Ω)

is satisfied for all splines up,h on Ω = (a, b) with vanishing odd derivatives at
the boundary. Here, as in any standard inverse inequality, hmin is the size of
the smallest element.

As we have proven both an approximation error estimate and a correspond-
ing inverse inequality, both of them are sharp (up to constants independent of
p and h). First, we show that there is a lower bound for the inverse inequality

for S̃p,h(Ω). For the inverse inequality for Sp,h(Ω), cf. Remark 2.

Corollary 2 For all grid sizes h with 2hp < |Ω| and each p ∈ N, there is a

non-constant function up,h ∈ S̃p,h(Ω) such that

|up,h|H1(Ω) ≥
1

2
√

2
h−1‖up,h‖L2(Ω).
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Proof Let up,h ∈ S̃p,h(Ω)\{0} be such that (up,h, up,2h)L2(Ω) = 0 for all up,2h ∈
S̃p,2h(Ω). As the constant functions are in S̃p,2h(Ω), this orthogonality implies
that up,h is non-constant. Using this orthogonality and Theorem 1, we obtain
‖up,h‖L2(Ω) = infup,2h∈S̃p,2h(Ω) ‖up,h−up,2h‖L2(Ω) ≤

√
2(2h)|up,h|H1(Ω), which

finishes the proof. ut

Similarly, we can give a lower bound for the approximation error estimate.
As (35) is obviously true for constant functions, we show that there also exist
other functions satisfying this inequality.

Corollary 3 For all grid sizes h and each p ∈ N with hp < |Ω|, there is a
non-constant function u ∈ H1(Ω) such that

inf
up,h∈Sp,h(Ω)

‖u− up,h‖L2(Ω) ≥
1

4
√

3
h|u|H1(Ω). (35)

Proof Let Rp,δ,h(Ω) := {u ∈ S̃p,δ(Ω) : (u, up,h)L2(Ω) = 0 for all up,h ∈
Sp,h(Ω)} and let nh := h−1|Ω|. Note that the dimension of S̃p,h2

(Ω) is 2nh (or

2nh + 1 for p being odd) and the requirement of orthogonality corresponds to
dimSp,h(Ω) = nh + p linear constraints. As the constraints are homogeneous,
the space Rp,h2 ,h

(Ω) is non-empty and has nh − p > 0 (or nh − p + 1 > 1

for p being odd) degrees of freedom. We choose u ∈ Rp,h2 ,h
(Ω)\{0} arbi-

trarily but fixed. As the constant functions are in Sp,h(Ω), the orthogonal-
ity implies that u is non-constant. Using the orthogonality, we know that
the infimum in (35) is taken for up,h = 0. So, we obtain using Theorem 4
infup,h∈Sp,h(Ω) ‖u − up,h‖L2(Ω) = ‖u‖L2(Ω) ≥ 1

2
√
3

h
2 |u|H1(Ω), which finishes

the proof. ut

Theorem 1 and Corollary 3 do not cover the case, where p is large compared
to h−1. Using pre-existing results on interpolation by global polynomials, we
can extend the presented results to the following statement.

Corollary 4 For Ω = (0, 1), all grid sizes h and each p ∈ N, the estimate

1

4
√

3(nh + p)
≤ sup

u∈H1(Ω)

u6=const

inf
up,h∈Sp,h(Ω)

‖u− up,h‖L2(Ω)

|u|H1(Ω)
≤ 2

√
2

nh + p
(36)

holds, where nh + p = h−1 + p = dimSp,h(Ω).

Proof First we show the first inequality in (36). If in the proof of Corollary 3,
the spline space Rp, hm ,h

(Ω) is considered, one obtains in (35) a lower bound
1

2
√
3m

h |u|H1(Ω) for all hp < (m − 1)|Ω| = m − 1. If we choose m to be the

smallest integer satisfying this statement, we obtain m = 2 + bhpc, where b·c
is the floor function. Using this choice, we obtain that

inf
up,h∈Sp,h(Ω)

‖u− up,h‖L2(Ω)

|u|H1(Ω)
≥ h

2
√

3(2 + bhpc)
≥ 1

4
√

3(h−1 + p)
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for some non-constant u ∈ Rp, hm ,h(Ω) ⊂ H1(Ω).

Now we show the second inequality in (36). Theorem 1 states an upper
bound of

√
2h for h < p−1. As the space of global polynomials is a subspace

of Sp,h(Ω), we can apply Theorem 3.17 in [14] (with M = 1 and t1 = 0) and
obtain an upper bound of 2−1(p(p+ 1))−1/2 <

√
2 p−1 for all h > 0, including

the case h ≥ p−1. So, we directly obtain for all u ∈ H1(Ω)

inf
up,h∈Sp,h(Ω)

‖u− up,h‖L2(Ω)

|u|H1(Ω)
≤
√

2 min
{
h, p−1

}
≤ 2

√
2

h−1 + p
.

For the dimension of Sp,h(Ω), cf. Table 1. ut

7 An extension to higher Sobolev indices

We can easily lift the statement of Theorem 1 (and also Corollary 1) up to
higher Sobolev indices.

Theorem 5 For all grid sizes h, each q ∈ N and each p ∈ N0 with 0 < q ≤
p + 1 and with h(p − q + 1) < |Ω|, there is for each u ∈ Hq(Ω), a spline

approximation up,h ∈ S̃(q)
p,h(Ω) such that

|u− up,h|Hq−1(Ω) ≤
√

2 h|u|Hq(Ω),

where S̃
(q)
p,h(Ω) is the space of all up,h ∈ Sp,h(Ω) that satisfy the following

symmetry condition:

∂2l+q

∂x2l+q
up,h(a) =

∂2l+q

∂x2l+q
up,h(b) = 0 for all l ∈ N0 with 2l + q < p.

Proof Let again Ω = (0, 1) without loss of generality. The proof is done by

induction. From Corollary 1, we know the estimate for q = 1 (as S̃
(1)
p,h(0, 1) =

S̃p,h(0, 1)) and all p > q − 1 = 0. For q = 1 and p = q − 1 = 0, the estimate
is a well-known result, cf. [13], Theorem 6.1, (6.7), where (in our notation)
|u− u0,h|L2(0,1) ≤ h|u|H1(0,1) has been shown.

So, now we assume to know the estimate for some q − 1 and show it for q.
As u ∈ Hq(0, 1), we know that u′ ∈ Hq−1(0, 1), so we can apply the

induction hypothesis and obtain that there is some up−1,n ∈ S̃(q−1)
p−1,n(0, 1) with

|u′ − up−1,n|Hq−2(0,1) ≤
√

2 h|u′|Hq−1(0,1).

Define

up,h(x) := c+

∫ x

0

up−1,n(ξ)dξ. (37)

Note that up,h ∈ Sp,h(0, 1) as integrating increases both the polynomial degree
and the differentiability by 1, cf. [13], Theorem 5.16. After integrating, the
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boundary conditions on the l-th derivative become conditions on the l + 1-st

derivative, therefore we further have up,h ∈ S̃(q)
p,h(0, 1).

Therefore, we have

|u′ − u′p,h|Hq−2(0,1) ≤
√

2 h|u′|Hq−1(0,1),

which is the same as

|u− up,h|Hq−1(0,1) ≤
√

2 h|u|Hq(0,1).

The bound on the grid size with respect to the degree, i.e. h(p− q + 1) < |Ω|
is sufficient, as the degree of ∂q−1/∂xq−1u is equal to p− q + 1. This finishes
the proof. ut

Remark 4 The integration constant (integration constants for q > 2) in (37)
can be used to guarantee that∫

Ω

∂l

∂xl
(u(x)− up,h(x))dx = 0

for all l ∈ {0, 1, . . . , q − 1}.

For the spaces S̃
(q)
p,h(Ω) there is again an inverse inequality.

Theorem 6 For all grid sizes h, each q ∈ N and each p ∈ N with 0 < q ≤ p,

|up,h|Hq(Ω) ≤ 2
√

3h−1|up,h|Hq−1(Ω) (38)

is satisfied for all up,h ∈ S̃(q)
p,h(Ω), where S̃

(q)
p,h(Ω) is as defined in Theorem 5.

Proof First note that (38) is equivalent to∣∣∣∣ ∂q−1∂xq−1
up,h

∣∣∣∣
H1(Ω)

≤ 2
√

3h−1
∥∥∥∥ ∂q−1∂xq−1

up,h

∥∥∥∥
L2(Ω)

. (39)

As ∂q−1

∂xq−1up,h ∈ S̃(1)
p−q+1,n(Ω) = S̃p−q+1,n(Ω), cf. [13], Theorem 5.9, the esti-

mate (39) follows directly from Theorem 4. ut

Again, as we have both an approximation error estimate and an inverse
inequality, we know that both of them are sharp (cf. Corollaries 2 and 3).

The following theorem is directly obtained from telescoping.

Theorem 7 For all grid sizes h, each r ∈ N0, each q ∈ N0, each p ∈ N0 with
0 ≤ r ≤ q ≤ p + 1 and h(p − r) < |Ω|, there is for each u ∈ Hq(Ω) a spline
approximation up,h ∈ Sp,h(Ω) such that

|u− up,h|Hr(Ω) ≤ (
√

2 h)q−r|u|Hq(Ω)

is satisfied.
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Proof For r = q, the desired statement is trivial and for r = q − 1, it is
stated by Theorem 5. For r < q− 1, the statement is shown by induction in r.
So, we assume to know the desired result for some r, i.e., there is a spline
approximation wp,h ∈ Sp,h(Ω) such that

|u− wp,h|Hr(Ω) ≤ (
√

2 h)q−r|u|Hq(Ω). (40)

Now, we show that there is some up,h ∈ Sp,h(Ω) such that

|u− up,h|Hr−1(Ω) ≤ (
√

2 h)q−(r−1)|u|Hq(Ω). (41)

As u−wp,h ∈ Hr(Ω), Theorem 5 states that there is a function up,h ∈ Sp,h(0, 1)
such that

|u− up,h|Hr−1(Ω) ≤
√

2 h|u− wp,h|Hr(Ω),

which shows together with the induction assumption (40) the induction hy-
pothesis (41). Again, the bound on the grid size h(p−r) < |Ω| follows directly
from the bounds in Theorem 5. ut

Here, it is not known to the authors how to choose a proper subspace
of Sp,h(Ω) such that a complementary inverse inequality can be shown.

8 Extension to two and more dimensions and application in
Isogeometric Analysis

Without loss of generality and to simplify the notation, we restrict ourselves
to Ω := (0, 1)d throughout this section. We can extend Theorem 1 (and also
Corollary 1) to the following theorem for a tensor-product structured grid on

Ω. Here, we can introduce W̃p,h(Ω) = ⊗dl=1S̃p,h(0, 1). Let n = nh, for even

p, and n = nh + 1 for odd p. Assuming that (ϕ̃
(0)
p,h, . . . , ϕ̃

(n−1)
p,h ) is a basis of

S̃p,h(0, 1), the space W̃p,h(Ω) is given by

W̃p,h(Ω) =

w : w(x1, . . . , xd) =

n−1∑
i1,...,id=0

wi1,...,id ϕ̃
(i1)
p,h (x1) · · · ϕ̃(id)

p,h (xd)

 .

Theorem 8 For all u ∈ H1(Ω), all grid sizes h and each p ∈ N0, with hp < 1,

there is a spline approximation wp,h ∈ W̃p,n(Ω) such that

‖u− wp,h‖L2(Ω) ≤
√

2d h|u|H1(Ω)

is satisfied.

The proof is similar to the proof in [3], Section 4, for the two dimensional case.
To keep the paper self-contained we give a proof of this theorem.
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Proof of Theorem 8 For sake of simplicity, we restrict ourselves to d = 2. The
extension to more dimensions is completely analogous. Here

W̃p,h(Ω) = S̃p,h(0, 1)⊗S̃p,h(0, 1) =

w : w(x, y) =

n−1∑
i,j=0

wi,jϕ̃
(i)
p,h(x)ϕ̃

(j)
p,h(y)

 .

We assume u ∈ C∞(Ω) and show the desired result using a standard

density argument. Let Π̃p,h be the L2-orthogonal projection from L2(0, 1) into

S̃p,h(0, 1) and define v(x, ·) := Π̃p,hu(x, ·) for each x ∈ (0, 1). Using Corollary 1,
we obtain

‖u(x, ·)− v(x, ·)‖L2(0,1) ≤
√

2 h|u(x, ·)|H1(0,1).

By squaring and taking the integral over x, we obtain

‖u− v‖L2(Ω) ≤
√

2 h

∥∥∥∥ ∂∂yu
∥∥∥∥
L2(Ω)

. (42)

It is easy to check that the derivative in x-direction and the L2-orthogonal
projection in y-direction commute. So, we immediately obtain together with
the L2-stability of Π̃p,h that∥∥∥∥ ∂∂xv

∥∥∥∥2
L2(Ω)

=

∫ 1

0

∥∥∥∥Π̃p,h
∂

∂x
u(x, ·)

∥∥∥∥2
L2(0,1)

dx ≤
∥∥∥∥ ∂∂xu

∥∥∥∥2
L2(Ω)

. (43)

As v(x, ·) ∈ S̃p,h(0, 1), there are coefficients vj(x) such that

v(x, y) =

n−1∑
j=0

vj(x)ϕ̃
(j)
p,h(y).

Using Corollary 1, we can introduce for each j ∈ {0, . . . , N} a function wj ∈
S̃p,h(0, 1) with

‖vj − wj‖L2(0,1) ≤
√

2 h|vj |H1(0,1). (44)

Next, we introduce a function w by defining

w(x, y) :=

n−1∑
j=0

wj(x)ϕ̃
(j)
p,h(y),

which is obviously a member of the space W̃p,n(Ω). By squaring (44), multi-

plying it with ϕ̃
(j)
p,h(y)2, summing over j and taking the integral, we obtain

∫ 1

0

n−1∑
j=0

‖vj − wj‖2L2(0,1)ϕ̃
(j)
p,h(y)2dy ≤ 2 h2

∫ 1

0

n−1∑
j=0

|vj |2H1(0,1)ϕ̃
(j)
p,h(y)2dy.
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Using the definition of the norms, we obtain∫ 1

0

∫ 1

0

n−1∑
j=0

(vj(x)−wj(x))2ϕ̃
(j)
p,h(y)2dxdy ≤ 2 h2

∫ 1

0

∫ 1

0

n−1∑
j=0

v′j(x)2ϕ̃
(j)
p,h(y)2dxdy

and further

‖v − w‖L2(Ω) ≤
√

2 h

∥∥∥∥ ∂∂xv
∥∥∥∥
L2(Ω)

.

Using (43), we obtain

‖v − w‖L2(Ω) ≤
√

2 h

∥∥∥∥ ∂∂xu
∥∥∥∥
L2(Ω)

. (45)

Using (42) and (45), we obtain

‖u− w‖L2(Ω) ≤ ‖u− v‖L2(Ω) + ‖v − w‖L2(Ω)

≤
√

2 h

∥∥∥∥ ∂∂yu
∥∥∥∥
L2(Ω)

+
√

2 h

∥∥∥∥ ∂∂xu
∥∥∥∥
L2(Ω)

(46)

≤ 2 h|u|H1(Ω),

which finishes the proof. ut

The extension of Theorem 4 to two or more dimensions is rather easy.

Theorem 9 For all grid sizes h and each p ∈ N, the inequality

|up,h|H1(Ω) ≤ 2
√

3d h−1 ‖up,h‖L2(Ω)

is satisfied for all up,h ∈ W̃p,h(Ω).

Proof For sake of simplicity, we restrict ourselves to d = 2. The generalization
to more dimensions is completely analogous.

We have obviously

|up,h|2H1(Ω) =

∥∥∥∥ ∂∂xup,h
∥∥∥∥2
L2(Ω)

+

∥∥∥∥ ∂∂yup,h
∥∥∥∥2
L2(Ω)

=

∫ 1

0

|up,h(·, y)|2H1(0,1)dy +

∫ 1

0

|up,h(x, ·)|2H1(0,1)dx

This can be bounded from above using Theorem 4 via

|up,h|2H1(Ω) ≤12h−2
(∫ 1

0

‖up,h(·, y)‖2L2(0,1)dy +

∫ 1

0

‖up,h(x, ·)‖2L2(0,1)dx

)
=24h−2‖up,h‖2L2(Ω),

which finishes the proof. ut
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The extension to isogeometric spaces can be done following the approach
presented in [1], Section 3.3. In Isogeometric Analysis, we have a fixed geometry
parameterization F ∈ W d

p,h(Ω) = (⊗dl=1Sp,h(0, 1))d. We assume that F is
continuous and regular with a Jacobian determinant bounded away from zero.
An isogeometric function on the physical domain Ω̂ = F(Ω) is then given as
the composition of a B-spline on the parametric domain Ω with the inverse of
F. Due to a standard chain rule argument, there exists a constant C = C(F)
such that

C−1 ‖f‖Hq(Ω̂) ≤ ‖f ◦ F‖Hq(Ω) ≤ C ‖f‖Hq(Ω̂) (47)

for all f ∈ Hq(Ω̂) and q ∈ {0, 1}. See [1], Lemma 3.5, or [3], Corollary 5.1, for
related results. Using this equivalence of norms, we can transfer Theorems 8
and 9 from the parametric domain Ω to the physical domain Ω̂. However,
we need to point out that this equivalence is not valid for seminorms. Hence,
in Theorem 8 the seminorm on the right-hand side of the estimate needs to
be replaced by the full norm. Moreover, the bounds depend on the geometry
parameterization via the constant C in (47).

Estimates for higher Sobolev indices as in Theorems 6 and 7 can be devel-
oped also for multivariate and isogeometric spaces. In that case, an estimate
similar to (47) for q > 1 needs to be satisfied. A sufficient condition for this
would be F ∈ Cq−1. We do not elaborate these generalizations here, but refer
to [1,3] to give additional insight. Note that in both papers the statements are
more general: There, one is not limited to the geometry mapping being Cq−1

globally. Such an extension relies on the definition of bent Sobolev spaces. If
the parameterization is of maximum smoothness F ∈ Cp−1, results similar to
Theorem 7 can be shown for bent Sobolev norms for q ≤ p+ 1. Moreover, [1]
gives a more detailed dependence on the parameterization F whereas [3] es-
tablishes bounds for anisotropic grids. Obviously, an extension to anisotropic
grids can be achieved directly using the estimate (46). Note that the degree and
the grid size are not necessarily equal in each parameter direction. A strategy
similar to the one presented in [1] can be followed when extending the results
to NURBS. In the case of NURBS the seminorms again have to be replaced
by the full norms due to the quotient rule of differentiation. In that case the
constants of the bounds additionally depend on the given denominator of the
NURBS parameterization.
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Appendix

At this point, we want to give a basis for S̃p,h(Ω) to make the reader more
familiar with that space and to demonstrate that it is possible to work with
it. The basis, which we introduce, is directly related to the (scaled) cardinal

B-splines {ϕ(i)
p,h}

nh−1
i=−p .

Lemma 10 The set {ϕ̃(i)
p,h}i=−d p2 e,...,nh−b p2 c−1

with

ϕ̃
(i)
p,h :=

∑
l∈{−i−p−1,i,2nh−i−p−1}

ϕ
(l)
p,h (48)

is a basis of S̃p,h(Ω).

Before we prove Lemma 10 we give a more practical representation of the basis
functions by removing all contributions vanishing in Ω. We obtain for odd p
that

ϕ̃
(i)
p,h = ϕ

(i)
p,h i = −(p+ 1)/2

ϕ̃
(i)
p,h = ϕ

(i)
p,h + ϕ

(−i−p−1)
p,h i = −(p− 1)/2, . . . ,−1

ϕ̃
(i)
p,h = ϕ

(i)
p,h i = 0, . . . , nh − p

ϕ̃
(i)
p,h = ϕ

(i)
p,h + ϕ

(2nh−i−p−1)
p,h i = nh − p+ 1, . . . , nh − (p+ 1)/2

ϕ̃
(i)
p,h = ϕ

(i)
p,h i = nh − (p− 1)/2

and for even p that

ϕ̃
(i)
p,h = ϕ

(i)
p,h + ϕ

(−i−p−1)
p,h i = −p/2, . . . ,−1

ϕ̃
(i)
p,h = ϕ

(i)
p,h i = 0, . . . , nh − p− 1

ϕ̃
(i)
p,h = ϕ

(i)
p,h + ϕ

(2nh−i−p−1)
p,h i = nh − p, . . . , nh − p/2− 1.

Note that here we need that 0 ≤ nh − p− 1, which is equivalent to hp < 1.

Proof of Lemma 10 For the sake of simplicity, we consider the case Ω = (0, 1)

only. We show first that every function in (48) is in S̃p,h(0, 1). Note that we

have constructed S̃p,h(0, 1) such that the restriction of any symmetric function

in Ŝp,h(−1, 1) to (0, 1) is a member of S̃p,h(0, 1). Let n = 1/h. So, consider

the functions {ϕ̂(j)
p,h}

n−1
j=−n, forming a basis for Ŝp,h(−1, 1). Here we consider a

different indexing with j = i− n. Defining

sj(x) := ϕ̂
(j)
p,h(x) + ϕ̂

(j)
p,h(−x) = ϕ̂

(j)
p,h(x) + ϕ̂

(−j−p−1)
p,h (x),

for j = −n, . . . , n−1, we obtain symmetric functions in Ŝp,h(−1, 1). Using the
relation

ϕ̂
(j)
p,h|(0,1) =

∑
k∈Z

ϕ
(j+2nk)
p,h ,
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we obtain that the restriction of sj to (0, 1) fulfills

sj |(0,1) =
∑
k∈Z

ϕ
(j+2nk)
p,h +

∑
k∈Z

ϕ
(−j−p−1+2nk)
p,h = ϕ

(j)
p,h +

∑
k∈Z

ϕ
(−j−p−1+2nk)
p,h ,

which is

sj |(0,1) = ϕ
(j)
p,h + ϕ

(−j−p−1)
p,h for j ∈ {−n, . . . ,−1},

sj |(0,1) = ϕ
(j)
p,h for j ∈ {0, . . . , n− p− 1}, or

sj |(0,1) = ϕ
(j)
p,h + ϕ

(−j−p−1+2n)
p,h for j ∈ {n− p, . . . , n− 1}.

In all three cases sj equals ϕ̃
(j)
p,h or 2ϕ̃

(j)
p,h. This shows that ϕ̃

(i)
p,h ∈ S̃p,h(0, 1).

It is easy to see that the functions in (48) are linear independent for i =
−
⌈
p
2

⌉
, . . . , n −

⌊
p
2

⌋
− 1. So, it remains to show that every function up,h ∈

S̃p,h(0, 1) can be expressed as a linear combination of the functions in (48). As
we have already noticed, by construction the function up,h can be extended

to (−1, 1), by defining wp,h(x) := up,h(|x|). Note that wp,h ∈ Ŝp,h(−1, 1). So,
we can express it as a linear combination of basis functions of the basis given
in (6) via

wp,h =

n−1∑
j=−n

wjϕ̂
(j)
p,h.

By construction, wp,h(x) = wp,h(−x), so we obtain

wp,h(x) =
1

2
(wp,h(x) + wp,h(−x)) =

1

2

n−1∑
j=−n

wj(ϕ̂
(j)
p,h(x) + ϕ̂

(j)
p,h(−x))

=
1

2

n−1∑
j=−n

wj(ϕ̂
(j)
p,h(x) + ϕ̂

(−j−p−1)
p,h (x))

=
1

2

n−1∑
j=−n

∑
k∈Z

wj(ϕ
(j+2nk)
p,h (x) + ϕ

(−j−p−1+2nk)
p,h (x))

=
1

2

n−1∑
j=−n

wj(ϕ
(−j−p−1)
p,h (x) + ϕ

(j)
p,h(x) + ϕ

(2n−j−p−1)
p,h (x)).

Again, it can be checked easily, that for all j, n ∈ Z the term

ϕ
(−j−p−1)
p,h (x) + ϕ

(j)
p,h(x) + ϕ

(2n−j−p−1)
p,h (x)

is in the span of {ϕ̃(i)
p,h}i=−d p2 e,...,n−b p2 c−1

, which concludes the proof. ut

We observe that the basis forms a partition of unity. Moreover, all basis func-
tions are obviously non-negative linear combinations of B-splines. Hence we
call it a B-spline-like basis.
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Fig. 1 B-spline-like basis functions for S̃1,h(0, 1) and S̃2,h(0, 1)
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Fig. 2 B-spline-like basis functions for S̃3,h(0, 1) and S̃4,h(0, 1)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Fig. 3 B-spline basis functions for S1,h(0, 1) and S2,h(0, 1)
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Fig. 4 B-spline basis functions for S3,h(0, 1) and S4,h(0, 1)
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Fig. 1 and 2 depict the B-spline basis functions that span S̃p,h(0, 1). Here,
the basis functions that have an influence at the boundary are plotted with
solid lines. The basis functions that have zero derivatives up to order p − 1
at the boundary coincide with standard B-spline functions. They are plotted
with dashed lines.

If we compare the pictures of the B-spline basis functions in S̃p,h(0, 1)
(Fig. 1 and 2) with the standard B-spline basis functions for Sp,h(0, 1) (Fig. 3
and 4) obtained from a classical open knot vector, we see that the latter ones
have more basis functions that are associated with the boundary. This can
also be seen by counting the number of degrees of freedom, cf. Table 1.
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