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Abstract. In this paper we consider a variant of the dual-primal isogeometric tearing and interconnecting
(IETI-DP) method for solving large-sacle linear systems of algebraic equations arising from discontinuous
Galerkin (dG) isogeometric analysis of diffusion problems on multipatch domains with non-matching meshes.
The dG formulation is used to couple the local problems across patch interfaces. The purpose of this paper is to
present this new method and provide numerical examples indicating a polylogarithmic condition number bound
for the preconditioned system and showing an incredible robustness with respect to large jumps in the diffusion
coefficient across the interfaces.
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1 Introduction

Isogeometric Analysis (IgA) is an approach to approximate numerically the solution of a partial
differential equation (PDE) using the same basis functions for parametrizing the geometry and
for representing the solution. IgA was introduced by Huges, Cottrell and Bazilevs in [24], see
also [3] for the first results on the numerical analysis of IgA, the monograph [10] for a compre-
hensive presentation of the IgA, and the recent survey article [4] on the mathematical analysis
variational isogeometric methods. There exists a wide variety of different basis functions, e.g.,
B-Splines, Non Uniform Rational B-Spline (NURBS), T-Splines, Hierarchical B-Splines (HB-
Splines) and Truncated Hierarchical B-Splines (THB-Splines), see, e.g., [10], [4], [18] and [19].
A major advantage over the common finite element method (FEM) is more flexibility of h- and
p-refinement, resulting also in Ck, k ≥ 0 continuous basis functions. However, due to the larger
support of the basis functions, the resulting system matrices are denser and due to the more
involved evaluation mechanism of B-Splines, NURBS, etc., we have to deal with much higher
assembling times, see, e.g., Section 8 in [4] for a discussion of this issue and for relevant refer-
ences. The low-rank tensor approximation technique, proposed in [32], is certainly a very smart
and at the same time simple technology to overcome this bottleneck, see also [31] for a further
development of this technique.

Beside matrix generation, the efficient solution of the linear systems arising from IgA discretiza-
tion of linear elliptic boundary value problem or from the linearization of non-linear IgA equa-
tions turns out to be another bottleneck for the efficiency of the IgA technology. In this paper,
we consider a non-overlapping domain decomposition method based on the finite element tear-
ing and interconnecting (FETI) for IgA, called isogeometric tearing and interconnecting (IETI).
In particular, we focus on the dual primal variant (IETI-DP), introduced by [26] in 2012. A
comprehensive theoretical analysis of the FETI-DP and the equivalent Balancing Domain De-
composition by Constraints (BDDC) method can be found in the monographs [36] and [34]
where the reader also find the references to the corresponding original papers. The theoretical
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analysis of the IETI-DP and BDDC method was initiated in [6] and extended in [21]. Based
on the FE work in [12], a recent improvement for the IgA BDDC preconditioner with a more
advanced scaling technique, the so called deluxe scaling, can be found in [8]. Domain decompo-
sition methods for IgA is currently a very active field of research. We mention developments in
overlapping Schwarz methods, see, e.g. [5], [7], [9], and isogeometric mortaring discretizations,
see [20].

In this paper, based on the IETI-DP mentioned above method, we are going to develop an effi-
cient and robust solver for IgA systems arising from a discretization where the different patches
are coupled with a discontinuous Galerkin (dG) method, called dG-IETI-DP. This setting is
of special importance when considering non-matching meshes, see, e.g., [29], and in case of
non-matching interface parametrizations, resulting in gaps and overlaps, see, [22] and [23]. The
proposed method is based on the corresponding version for finite elements (FE) proposed in
[15] and [16], where a rigorous analysis for 2D and 3D proves the same properties as for the
classical FETI-DP, see also [14] for an analysis of the corresponding BDDC preconditioner.

In the present paper, we consider the following second-order elliptic boundary value problem in
a bounded Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3}, as a typical model problem: Find u : Ω → R
such that

− div(α∇u) = f in Ω, u = 0 on ΓD, and α
∂u

∂n
= gN on ΓN , (1)

with given, sufficient smooth data f, gN and α, where the coefficient α is uniformly bounded
from below and above by some positive constants αmin and αmax, respectively. The boundary
Γ = ∂Ω of the computational domainΩ consists of a Dirichlet part ΓD and a Neumann part ΓN .
Furthermore, we assume that the Dirichlet boundary ΓD is always a union of complete domain
sides (edges / face in 2d / 3d) which are uniquely defined in IgA. Without loss of generality, we
assume homogeneous Dirichlet conditions. This can always be obtained by homogenization. By
means of integration by parts, we arrive at the weak formulation of (1) which reads as follows:
Find u ∈ VD = {u ∈ H1 : γ0u = 0 on ΓD} such that

a(u, v) = 〈F, v〉 ∀v ∈ VD, (2)

where γ0 denotes the trace operator. The bilinear form a(·, ·) : VD × VD → R and the linear
form 〈F, ·〉 : VD → R are given by the expressions

a(u, v) =

∫

Ω

α∇u∇v dx and 〈F, v〉 =

∫

Ω

fv dx+

∫

ΓN

gNv ds.

The remainder of this paper is organized as follows. Section 2 gives a short overview of the
main principles of IgA, and presents the dG-IgA formulation. The dG-IETI-DP method is de-
fined and discussed in Section 3. The numerical results, presented in Section 4, demonstrate the
numerical behaviour of dG-IETI-DP method. In particular, we study the influence of the mesh
size h, the patch diameter H , the use of non-matching meshes quantified by the mesh size ratio
h(k)/h(l) across the patch faces, and the polynomial degree p on the condition number of the
preconditioned system and, thus, on the number of iterations. Finally, in Section 5, we draw
some conclusions and give some outlook.



dG-IETI-DP on multipatch dG-IgA 3

2 Preliminaries

In this section, we give an overview of the tools required to describe the IETI-DP method for
multipatch dG-IgA equations. A more comprehensive study of IgA, IETI-DP and related topics
can be found in [21].

2.1 B-Splines and IgA

Let [0, 1] be the unit interval, the vector Ξ = {ξ1 = 0, ξ2, . . . , ξm = 1} with non-decreasing real
values ξi forms a partition of [0, 1] and is called knot vector. Given a knot vector Ξ , p ∈ N and
n = m− p− 1, we can define the B-Spline function via the following recursive formulation:

Ni,0(ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise
, (3)

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ), (4)

where i = 1, . . . , n and p is called degree. From this recursion, we can observe that Ni,p is a
piecewise polynomial of degree p. Furthermore, we only consider open knot vectors, i.e., the
first and the last node is repeated p times.

Since we are considering d-dimensional problems, we need to extent the concept of B-Splines
to the d-dimensional space, which is done via the tensor product. Let (p1, . . . , pd) be a vector in
Nd, and let, for all ι = 1, . . . , d, Ξ ι be a knot vector. Furthermore, we denote the iι univariate
B-Spline defined on the knot vector Ξ ι by N ι

iι,p(ξ
ι). Then the d-dimensional tensor product

B-Spline (TB-Spline) is defined by

N(i1,...,id),(p1,...,pd)(ξ) =
d∏

ι=1

N ι
ij ,pι

(ξι). (5)

In order to avoid cumbersome notations, we will again denote the tensor product B-Spline by
Ni,p and interpret i and p as multi-indices. Additionally, we define the set of multi-indices I by

I := {(i1, . . . , id) : iι ∈ {1, . . . ,Mι}}.

Since the knot vectorΞ provides a partition of (0, 1)d, called parameter domain in the following
, it introduces a mesh Q̂h, and we will denote a mesh element by Q̂, called cell.

Now we are in a position to describe our computational domain, called physical domain, Ω =
G((0, 1)d) by means of the geometrical mapping G defined by

G : (0, 1)d → Rg

G(ξ) :=
∑

i∈I
PiNi,p(ξ).

In practice, it is often necessary to describe the physical domain Ω by N non overlapping
domains Ω(k), called patches. Each Ω(k) is the image of an associated geometrical mapping
G(k), defined on the parameter domain (0, 1)d, i.e., Ω(k) = G(k)

(
(0, 1)d

)
for k = 1, . . . , N ,

and Ω =
⋃N
k=1Ω

(k)
.
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We denote the interface between the two patches Ω(k) and Ω(l) by Γ (k,l), and the collection of
all interfaces by Γ , i.e.,

Γ (k,l) = Ω
(k) ∩Ω(l)

and Γ :=
⋃

l>k

Γ (k,l).

Furthermore, the boundary of the domain Ω is denoted by ∂Ω. Note that the interface Γ is
sometimes called skeleton.

The key point of IgA is to use the same basis functions for representing the geometry via the
geometrical mapping also for generating the trial and test spaces. Therefore, we define the basis
functions in the physical domain as Ňi,p := Ni,p ◦G−1 and the discrete function space by

Vh = span{Ňi,p}i∈I ⊂ H1(Ω). (6)

Moreover, each function u(x) =
∑

i∈I uiŇi,p(x) is associated with the vector u = (ui)i∈I . This
map is known as Ritz isomorphism. One usually writes this relation as uh ↔ u, and we will use
it in the following without further comments. If we consider a single patch Ω(k) of a multipatch
domain Ω, we will use the notation V (k)

h , Ň
(k)
i,p , N

(k)
i,p and G(k) with the analogous definitions.

2.2 Conforming Galerkin IgA Scheme

In conforming Galerkin IgA schemes, we use functions which are continuous across patch in-
terfaces, i.e.

Vh = {v | v|Ω(k) ∈ V (k)
h } ∩H1(Ω).

The decomposition of the space Vh into basis function associated to Γ and to the interior of
each patch plays an important role for deriving IETI methods. Let us define the spaces

VΓ,h := span{Ňi,p| i ∈ IB} ⊂ H1(Ω) and V
(k)
I,h := V

(k)
h ∩H1

0 (Ω(k)),

where IB denotes all indices of basis functions having support on Γ . We are now able to state
the desired decomposition

Vh =
N∏

k=1

V
(k)
I,h ⊕H (VΓ,h) , (7)

whereH is the discrete spline harmonic extension, see [21] and references therein.

The Galerkin IgA scheme reads as follows: Find uh ∈ VD,h such that

a(uh, vh) = 〈F, vh〉 ∀vh ∈ VD,h, (8)

where VD,h ⊂ VD is the space of all functions from Vh which vanish on the Dirichlet boundary
ΓD. A basis for this space is given by the B-Spline functions {Ňi,p}i∈I0 , where I0 contains all
indices of I which do not have a support on the Dirichlet boundary ΓD. Hence, the Galerkin
IgA scheme (8) is equivalent to the linear system of algebraic equations

Ku = f , (9)

where K = (Ki,j)i,j∈I0 and f = (f i)i∈I0 denote the stiffness matrix and the load vector,
respectively, with Ki,j = a(Ňj,p, Ňi,p) and f i =

〈
F, Ňi,p

〉
, and u is the vector representation

of uh given by the IgA isomorphism.
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2.3 Discontinuous Galerkin IgA Scheme

The main principle of the dG-IgA Scheme is to use again the spaces V (k)
h of continuous func-

tions on each patch Ω(k), whereas discontinuities are allowed across the patch interface. The
continuity of the function value and its normal derivative are then enforced in a weak sense
by adding additional terms to the bilinear form. This situation is especially important when
we consider non-matching grids on each patch. For the remainder of this paper, we define the
dG-IgA space

Vh := Vh(Ω) := {v | v|Ω(k) ∈ V (k)
h }, (10)

where V (k)
h is defined as in (6).

We now follow the notation used in [13] and [15]. A comprehensive study of dG schemes for
FE can be found in [35] and [11]. For an analysis of the dG-IgA scheme, we refer to [29].

Dirichlet boundary conditions can be handled in different ways. We can use the dG technique to
incorporating them in a weak sense, see, e.g., [1] and [2]. This methods for imposing Dirichlet
boundary conditions was already proposed by Nitsche [33]. Another method consists in enforc-
ing them in a strong sense via an L2 projection and homogenization. In this paper, for simplicity
of presentation, we will follow the latter one, where we assume that the given Dirichlet data can
be represented exactly with B-Splines. Hence, we define VD,h as the space of all functions from
Vh which vanish on the Dirichlet boundary ΓD. Furthermore, we denote the set of all indices l
such that Ω(k) and Ω(l) have a common edge/face (2D/3D) F (kl) by I(k)F . Having these defini-
tions at hand, we can define the discrete problem based on the Symmetric Interior Penalty (SIP)
dG formulation as follows: Find uh ∈ VD,h such that

ah(uh, vh) = 〈F, vh〉 ∀vh ∈ VD,h, (11)

where

ah(u, v) :=
N∑

k=1

a(k)e (u, v) and 〈F, v〉 :=
N∑

k=1

∫

Ω(k)

fv(k)dx,

a(k)e (u, v) := a(k)(u, v) + s(k)(u, v) + p(k)(u, v),

and

a(k)(u, v) :=

∫

Ω(k)

α(k)∇u(k)∇v(k)dx,

s(k)(u, v) :=
∑

l∈I(k)F

∫

F (kl)

α(k)

2

(
∂u(k)

∂n
(v(l) − v(k)) +

∂v(k)

∂n
(u(l) − u(k))

)
ds,

p(k)(u, v) :=
∑

l∈I(k)F

∫

F (kl)

δα(k)

2h(kl)
(u(l) − u(k))(v(l) − v(k)) ds.

The notation ∂
∂n

means the derivative in the direction of the outer normal vector, δ is a positive
sufficiently large penalty parameter, and h(kl) is the harmonic average of the adjacent mesh
sizes, i.e., h(kl) = 2h(k)h(l)/(h(k) + h(l)).
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We equip VD,h with the broken Sobolev norm

‖u‖2dG =
N∑

k=1


α(k)

∥∥∇u(k)
∥∥2
L2(Ω(k))

+
∑

l∈I(k)F

δα(k)

h(kl)

∫

F (kl)

(u(k) − u(l))2ds


 .

Furthermore, we define the bilinear forms

dh(u, v) =
N∑

k=1

d(k)(u, v) and d(k)(u, v) = a(k)e (u, v) + p(k)(u, v).

for later use. We note that ‖uh‖2dG = dh(uh, uh).

We are now able to show existence and uniqueness of a solution to (11). The following Lemma
is an equivalent statement of Lemma 2.1 in [15] for IgA, and the proof is based on the results in
[29].

Lemma 1. Let δ be sufficiently large. Then there exist two positive constants γ0 and γ1 which
are independent of h(k), H(k), δ, α(k) and uh such that the inequalities

γ0d
(k)(uh, uh) ≤ a(k)e (uh, uh) ≤ γ1d

(k)(uh, uh), ∀uh ∈ VD,h (12)

are valid for all k = 1, 2, . . . , N . Furthermore, we have the inequalities

γ0 ‖uh‖2dG ≤ ah(uh, uh) ≤ γ1 ‖uh‖2dG , ∀uh ∈ VD,h. (13)

Proof. Rewriting the proofs of Lemma 4.6 and Lemma 4.7 in [29] for a single patch gives the
desired inequalities (12). In order to show the boundedness, we additionally need to apply the
discrete inverse inequality ‖∇uh‖2L2(F (kl)) ≤ C/h(k) ‖∇uh‖2L2(Ω(k)), see, e.g., [17], to the term∑

l∈I(k)F
α(k)h(k) ‖∇uh‖2L2(F (kl)) appearing in the bound of Lemma 4.7 in [29]. Then we easily

arrive at the estimate
∑

l∈I(k)F

α(k)h(k) ‖∇uh‖2L2(F (kl)) ≤ C
∑

l∈I(k)F

α(k) ‖∇uh‖2L2(Ω(k)) .

Hence, the right-hand side can be bounded by d(k)(uh, uh). Formula (13) immediately follows
from (12), which concludes the proof. ut

We note that, the results obtained in [29] are for the Incomplete Interior Penalty (IIP) scheme,
an extension to SIP-dG and using harmonic averages for h and/or α is discussed in Remark 3.1.
in [29], see also [28].

A direct implication of (13) is the well posedness of the discrete problem (8) by the Theorem of
Lax-Milgram. The consistency of the method together with interpolation estimates for B-spline
quasi-interpolant lead to the following a-priori error estimate, as established in [29].

Theorem 1. Let u ∈ H1(Ω) ∩ ∏N
k=1W

l+1,q(Ω(k)) with q ∈ (min{1, 2d/(d + 2l)}, 2] and
some integer l ≥ 1, solves (2), and let uh ∈ VD,h solves the discrete problem (11). Then the
discretization u− uh satisfies the estimate

‖u− uh‖2dG ≤
N∑

k=1

C(k)



(
h(k)
)2r

+
∑

j∈I(k)F

α(k)h
(k)

h(j)
(
h(k)
)2r

 ,
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where r = min{l+(d
2
−d
q
), p}, andC(k) is a positive constant which depends on p, ‖u‖W l+1,q(Ω(k)),

and maxl0≤l+1 ‖∇l0G(k)‖L∞(Ω(k)), but not on h. Here W l+1,q(Ω(k)) denotes the Sobolev space
of all functions from the space Lq(Ω(k)) such that all weak derivatives up to order l + 1 belong
to Lq(Ω(k)) as well.

As explained in Section 2.2, we choose the B-Spline functions {Ňi,p}i∈I0 as basis for the space
Vh, see (10), where I0 contains all indices of I, which do not have a support on the Dirichlet
boundary. Hence, the dG-IgA scheme (11) is equivalent to the system of linear equations

Ku = f , (14)

where K = (Ki,j)i,j∈I0 and f = (f i)i∈I0 denote the stiffness matrix and the load vector,
respectively, with Ki,j = a(Ňj,p, Ňi,p) and f i =

〈
F, Ňi,p

〉
, and u is the vector representation

of uh.

3 IsoGeometric Tearing and Interconnecting for multipatch dG

Let us consider a multipatch domain, where the interfaces are geometrically matching, but not
the meshes, i.e. the meshes can be different on different patches. Therefore, the considered
solution and test space do not provide continuity across patch interfaces. Hence, we cannot
enforce continuity of the solution by means of the jump operator as in the conforming IETI-
DP. As proposed in [15], the remedy will be to introduce an additional layer of dofs on the
interfaces and enforce continuity between the different layers. The considered method can then
be seen as a conforming IETI-DP on an extended grid of dofs. We will follow the derivation
presented in [15] with adopted notations. In the following, let Vh be the dG-IgA space which
fulfils the Dirichlet boundary conditions as defined in Section 2.3 and we denote by {Ňi,p}i∈I
the corresponding B-Spline basis.

3.1 Basic setup and local space description

As already introduced in Section 2.3, let I(k)F be the set of all indices l such that Ω(k) and Ω(l)

share a common edge/face. We may denote I(k)F by E (k) when considering 2D domains and
by F (k) for 3D domains. If we consider 3D objects, we additionally define E

(klm)
as the edge

shared by the patchesΩ(k),Ω(l) andΩ(m), i.e.,E(klm) = ∂F (kl)∩∂F (km) for l ∈ F (k),m ∈ F (k).
The set of all indices (l,m) of Ω(l) and Ω(m), such that E

(klm)
is an edge of patch Ω(k) is

denoted by E (k). Note, although F lk ⊂ ∂Ω(l) and F kl ⊂ ∂Ω(k) are geometrically the same, they
are treated as different objects. The same applies for edges E

(klm)
, E

(lkm)
and E

(mkl)
. In order

to keep the presentation of the method simple, we assume that the considered patch Ω(k) does
not touch the Dirichlet boundary. The other case can be handled in an analogous way.

As already introduced above, the computational domain Ω is given by Ω =
⋃N
k=1Ω

(k)
, where

Ω(k) = G(k)
(
(0, 1)d

)
for k = 1, . . . , N , and the interface by Γ (k) = ∂Ω(k)\∂Ω. For each patch

Ω(k), we introduce its extended version Ω
(k)
e via the union with all neighbouring interfaces

F lk ⊂ ∂Ω(l):

Ω
(k)

e := Ω
(k) ∪ {

⋃

l∈I(k)F

F
(lk)}.
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Moreover, the extended interface Γ (k)
e is given by the union of Γ (k) with all neighbouring inter-

faces F lk ⊂ ∂Ω(k):

Γ (k)
e := Γ (k) ∪ {

⋃

l∈I(k)F

F
(lk)}.

Based on the definitions above, we can introduce

Ωe =
N⋃

k=1

Ω
(k)

e , Γ =
N⋃

k=1

Γ (k) and Γe =
N⋃

k=1

Γ (k)
e .

The next step is to describe appropriate discrete function spaces to reformulate (11) in order
to treat the new formulation in the spirit of the conforming IETI-DP method. We start with a
description of the discrete function spaces for a single patch.

As defined in (6), let V (k)
h be the discrete function space defined on the patch Ω(k). Then we

define the corresponding function space for the extended patch Ω(k)
e by

V
(k)
h,e := V

(k)
h ×

∏

l∈I(k)F

V
(k)
h (F

(lk)
),

where V (k)
h (F

(lk)
) ⊂ V

(l)
h is given by

V
(k)
h (F

(lk)
) := span{Ň (l)

i,p | supp{Ň (l)
i,p} ∩ F

(lk) 6= ∅}.

According to the notation introduced in [15], we will represent a function u(k) ∈ V (k)
h,e as

u(k) = {(u(k))(k), {(u(k))(l)}
l∈I(k)F

}, (15)

where (u(k))(k) and (u(k))(l) are the restrictions of u(k) toΩ(k) and F
(lk)

, respectively. Moreover,
we introduce an additional representation of u(k) ∈ V (k)

h,e , as u(k) = (u
(k)
I , u

(k)
Be

), where

u
(k)
I ∈ V

(k)
I,h := V

(k)
h ∩H1

0 (Ω(k)),

and

u
(k)
Be
∈ W (k) := span{Ň (l)

i,p | supp{Ň (l)
i,p} ∩ Γ (k)

e 6= ∅ for l ∈ I(k)F ∪ {k}}.

This provides a representation of V (k)
h,e in the form of V (k)

I,h ×W (k).

3.2 Schur complement and discrete harmonic extensions

We note that the bilinear form a
(k)
e (·, ·) is defined on the space V (k)

h,e × V
(k)
h,e , since it requires

function values of the neighbouring patches Ω(l), l ∈ I(k)F . Therefore, it depicts a matrix repre-
sentationK(k)

e satisfying the identity

a(k)e (u(k), v(k)) = (K(k)
e u,v)l2 for u(k), v(k) ∈ V (k)

h,e ,
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where u and v denote the vector representation of u(k) and v(k), respectively. By means of the
representation V (k)

I,h ×W (k) for V (k)
h,e , we can partition the matrixK(k)

e as

K(k)
e =

[
K

(k)
e,II K

(k)
e,IBe

K
(k)
e,BeI

K
(k)
e,BeBe

]
. (16)

This enables us to define the Schur complement ofK(k)
e with respect to W (k) as

S(k)
e := K

(k)
e,BeBe

−K(k)
e,BeI

(
K

(k)
e,II

)−1
K

(k)
e,IBe

. (17)

We denote the corresponding bilinear form by s(k)e (·, ·), and the corresponding operator by S(k)
e :

W (k) → W (k)∗, i.e.

(S(k)
e u

(k)
Be
,v

(k)
Be

)l2 =
〈
S(k)
e , u

(k)
Be
, u

(k)
Be

〉
= s(k)e (u

(k)
Be
, u

(k)
Be

), ∀u(k)Be , u
(k)
Be
∈ W (k).

The Schur complement has the property that
〈
S(k)
e , u

(k)
Be
, u

(k)
Be

〉
= min

w(k)=(w
(k)
I ,w

(k)
Be

)∈V (k)
h,e

a(k)e (w(k), w(k)), (18)

such that w(k)
Be

= u
(k)
Be

on Γ (k)
e . We define the discrete NURBS harmonic extension H(k)

e (in the
sense of a(k)e (·, ·)) for patch Ω(k)

e by

H(k)
e : W (k) → V

(k)
h,e :





FindH(k)
e uBe ∈ V (k)

h,e :

a
(k)
e (H(k)

e uBe , u
(k)) = 0 ∀u(k) ∈ V (k)

I,h ,

H(k)
e uBe |Γ (k) = uBe |Γ (k) ,

(19)

where V (k)
I,h is here interpreted as subspace of V (k)

h,e with vanishing function values on Γ (k)
e . One

can show that the minimizer in (18) is given byH(k)
e uBe . In addition, we introduce the standard

discrete NURBS harmonic extensionH(k) (in the sense of a(k)(·, ·)) of u(k)Be as follows:

H(k) : W (k) → V
(k)
h,e :





FindH(k)uBe ∈ V (k)
h,e :

a(k)(H(k)uBe , u
(k)) = 0 ∀u(k) ∈ V (k)

I,h ,

H(k)uBe |Γ (k) = uBe |Γ (k) ,

(20)

where V (k)
I,h is the same space as in (19), and a(k)(·, ·) is a bilinear form on the space V (k)

h,e ×V
(k)
h,e .

The crucial point is to show equivalence in the energy norm dh(uh, uh) between functions,
which are discrete harmonic in the sense of H(k)

e and H(k). This property is summarized in the
following Lemma, cf. also Lemma 3.1 in [15].

Lemma 2. There exists a positive constant which is independent of δ, h(k), H(k), α(k) and u(k)Be
such that the inequalities

d(k)(H(k)uBe ,H(k)uBe) ≤ d(k)(H(k)
e uBe ,H(k)

e uBe) ≤ Cd(k)(H(k)uBe ,H(k)uBe), (21)

hold for all u(k)Be ∈ W (k).
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Proof. The proof is identical to that one presented in [14] for Lemma 4.1 up to the point where
we have to use the discrete trace inequality

‖uh‖2L2(∂Ω(k)) ≤ Ch−1 ‖uh‖2L2(Ω(k)) , ∀uh ∈ V (k)
h ,

for IgA function spaces, see, e.g., [17]. ut

The subsequent statement immediately follows from Lemma 1 and Lemma 2, see also [15].

Corollary 1. The spectral equivalence inequalities

C0d
(k)(H(k)uBe ,H(k)uBe) ≤ a(k)e (H(k)

e uBe ,H(k)
e uBe) ≤ C1d

(k)(H(k)uBe ,H(k)uBe), (22)

hold for all u(k)Be ∈ W (k), where the constants C0 and C1 are independent of δ, h(k), H(k), α(k)

and u(k)Be .

3.3 Global space description

Based on the definitions of the local spaces in Section 3.1, we can introduce the corresponding
spaces

Vh,e := {v | v(k) ∈ V (k)
h,e , k ∈ {1, . . . , N}}.

for the whole extended domain Ωe. Additionally, we need a description of the global extended
interface spaces

W := {vBe | v(k)Be
∈ W (k), k ∈ {1, . . . , N}} =

N∏

k=1

W (k).

We note that according to [15], we will also interpret this space as subspace of Vh,e, where its
functions are discrete harmonic in the sense ofH(k)

e on each Ω(k). For completeness, we define
the discrete NURBS harmonic extension in the sense of

∑N
k=1 a

(k)
e (·, ·) and

∑N
k=1 a

(k)(·, ·) for
W asHeu = {H(k)

e u(k)}Nk=1 andHeu = {H(k)u(k)}Nk=1, respectively.

The goal is to reformulate (11) and (14) in terms of the extended domain Ωe. In order to achieve
this, we need a coupling of the now independent interface dofs. In the context of tearing and
interconnecting methods, we need a “continuous” subspace Ŵ of W such that Ŵ is equivalent
to VΓ,h, i.e., Ŵ ≡ VΓ,h. Since the space VΓ,h consists of functions which are discontinuous
across the patch interface, the common understanding of continuity makes no sense. We follow
the way in [14], providing an appropriate definition of continuity in the context of the spaces
Ŵ ,W, VΓ,h, Vh,e and Vh.

Definition 1. We say that u ∈ Vh,e is continuous on Γe if the relations

(u(k))
(k)
i = (u(l))

(k)
j ∀(i, j) ∈ Be(k, l), ∀l ∈ I(k)F , (23)

and

(u(k))
(l)
i = (u(l))

(l)
j ∀(i, j) ∈ Be(l, k), ∀l ∈ I(k)F . (24)

hold for all k ∈ {1, . . . , N}. We denote the set of index pairs (i, j) such that the i-th basis
function in V (k)

h can be identified with the j-th basis function in V (l)
h (F

(kl)
) by Be(k, l). We note

that Be(k, l) 6= Be(l, k). Moreover, V̂h,e denotes the subspace of continuous functions on Γe of
Vh,e. Furthermore, V̂h,e can be identified with Vh.
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The operator B : W → U∗ := RΛ, which realizes constraints (23) and (24) in the form

Bu = 0,

is called jump operator. The space of all functions in W which belong to the kernel of B is
denoted by Ŵ , and can be identified with VΓ,h, i.e.

Ŵ = {w ∈ W |Bw = 0} ≡ VΓ,h.

Furthermore, we define the restriction of Ŵ to Ω(k)
e by Ŵ (k).

Remark 1. According to [15], the space Ŵ can also be interpreted as the set of all functions in
V̂h,e, which are discrete harmonic in the sense ofHe.

We introduce the set of patch vertices V and the corresponding extended set Ve, given by

V(k)
e = V(k) ∪ {

⋃

l∈I(k)F

∂F (lk)}, where V(k) = {
⋃

l∈I(k)F

∂F (kl)},

for 2D domains and by

V(k)
e = V(k) ∪ {

⋃

(l,m)∈E(k)
∂E(lkm) ∪ ∂E(mkl)},where V(k) = {

⋃

(l,m)∈E(k)
∂E(klm)},

for 3D domains. The set V and Ve is then given by the union of all V(k) and V(k)
e , respectively.

Moreover, we denote by V(kl)
e ⊂ Ve all vertices which belong to the interface F (kl).

Now we are in the position to reformulate (14) in terms of V̂h,e, leading to the system

K̂eue = f̂ e, (25)

where the matrix K̂e is given by the assembly of the patchwise matricesK(k)
e , i.e.

K̂e =
N∑

k=1

A
Ω

(k)
e
K(k)

e A
T

Ω
(k)
e

and f̂ e =
N∑

k=1

A
Ω

(k)
e
f (k)
e . (26)

HereA
Ω

(k)
e

denotes the Boolean patch assembling matrix for Ω(k)
e . By means of the local Schur

complements S(k)
e , see (16) and (17), we can reformulate equation (25) as

ŜeuBe = ĝe, (27)

where Ŝe and ĝe are given by

Ŝe =

(
N∑

k=1

A
Γ

(k)
e
S(k)
e A

T

Γ
(k)
e

)
and ĝe =

N∑

k=1

A
Γ

(k)
e
g(k)e . (28)

The Boolean matrixA
Γ

(k)
e

is the corresponding assembling matrix and the vector g(k) is defined

by g(k) = f
(k)
e,Be
−K(k)

e,BeI

(
K

(k)
e,II

)−1
f

(k)
e,I . Furthermore, we can express (28) in operator notation

as
N∑

k=1

〈
S(k)
e u

(k)
Be
, v(k)

〉
=

N∑

k=1

〈
g(k)e , v(k)

〉
∀v ∈ Ŵ , (29)
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where uBe ∈ Ŵ , g
(k)
e ∈ Ŵ (k)∗ and S(k)

e : Ŵ (k) → Ŵ (k)∗.

In order to formulate the IETI-DP algorithm, we also define the Schur complement and the
right-hand side functional on the “discontinuous” space W , i.e.

Se : W → W ∗, 〈Sev, w〉 :=
N∑

k=1

〈
S(k)
e v(k), w(k)

〉
∀v, w ∈ W,

and

ge ∈ W ∗, 〈ge, w〉 :=
N∑

k=1

〈
g(k)e , w(k)

〉
∀w ∈ W.

In matrix form, we can write S and g as

Se := diag(S(k)
e )Nk=1 and ge := [g(k)e ]Nk=1.

It is easy to see that problem (27) is equivalent to the minimization problem

uBe,h = argmin
w∈W,Bw=0

1

2
〈Sew,w〉 − 〈ge, w〉 . (30)

In the following we will only work with the Schur complement system. In order to to simplify
the notation, we will use u instead of uB,h, when we consider functions in VΓ,h. If we have to
made a distinction between uh, uB,h and uI,h, we will add the subscripts again.

3.4 Intermediate space and primal constraints

The key point of the dual-primal approach is the definition of an intermediate space W̃ in the
sense Ŵ ⊂ W̃ ⊂ W such that Se restricted to W̃ is positive definite. Let Ψ ⊂ V ∗Γ,h be a set of
linearly independent primal variables. Then we define the spaces

W̃ := {w ∈ W : ∀ψ ∈ Ψ : ψ(w(k)) = ψ(w(l)),∀k > l}

and

W∆ :=
N∏

k=1

W
(k)
∆ , with W

(k)
∆ := {w(k) ∈ W (k) : ∀ψ ∈ Ψ : ψ(w(k)) = 0}.

Moreover, we introduce the space WΠ ⊂ Ŵ such that W̃ = WΠ ⊕W∆. We call WΠ primal
space and W∆ dual space. If we choose Ψ such that W̃ ∩ ker(Se) = {0}, then

S̃e : W̃ → W̃ ∗, with
〈
S̃ev, w

〉
= 〈Sev, w〉 ∀v, w ∈ W̃ ,

is invertible. If a set Ψ fulfils W̃ ∩ ker(Se) = {0}, then we say that the set Ψ controls the
kernel. In the following, we will always assume that such a set is chosen. We will work with the
following typical choices for the primal variables ψ:

– Vertex evaluation: ψV(v) = v(V),

– Edge averages: ψE(v) = 1
|E|
∫
E v ds,
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– Face averages: ψF(v) = 1
|F|
∫
F v ds.

Since we are considering a non-conforming test space Ŵ and Vh we cannot literally use the
same set of primal variables as presented in [36], [34], or [21]. As proposed in [15] and [16],
we will use the following interpretation of continuity at corners, and continuous edge and face
averages.

Definition 2. Let V(k)
e , E (k) and F (k) be the set of vertices, edges and faces, respectively, for the

patch Ω(k)
e , where in 2D the set E (k) is empty.

We say that u ∈ W is continuous at V(k), k ∈ {1, . . . , N}, if the relations

(u(k))
(k)
i = (u(l))

(k)
j ∀(i, j) ∈ BV(k, l) (31)

are valid for all l ∈ I(k)F , where BV(k, l) ⊂ B(k, l) is given by all index pairs corresponding to
the vertices V(k)

e . We define the corresponding primal variable as

ψν
(kl)

(v) :=





(v(k))
(k)
i if v ∈ W (k),

(v(l))
(k)
j if v ∈ W (l),

0 else,
(32)

where l ∈ I(k)F , ν(kl) ∈ V(kl)
e and (i, j) ∈ BV(k, l) corresponds to ν(kl).

We say that u ∈ W has continuous (inter-)face averages at F (k), k ∈ {1, . . . , N}, if the rela-
tions

1

|F (kl)|

∫

F (kl)

(u(k))(k) ds =
1

|F (kl)|

∫

F (kl)

(u(l))(k) ds (33)

hold for all l ∈ I(k)F . We define the corresponding primal variable as

ψF
(kl)

(v) :=





1
|F (kl)|

∫
F (kl)(u

(k))(k) ds if v ∈ W (k),
1

|F (kl)|
∫
F (kl)(u

(l))(k) ds if v ∈ W (l),

0 else,

(34)

where l ∈ I(k)F .

We say that u ∈ W has continuous edge averages at E (k), k ∈ {1, . . . , N}, if the relations

1

|E(klm)|

∫

E(klm)

(u(k))(k) ds =
1

|E(klm)|

∫

E(klm)

(u(l))(k) ds, (35)

1

|E(klm)|

∫

E(klm)

(u(k))(k) ds =
1

|E(klm)|

∫

E(klm)

(u(m))(k) ds (36)

hold for all (l,m) ∈ E (k). We define the corresponding primal variable as

ψE
(klm)

(v) :=





1
|E(klm)|

∫
E(klm)(u

(k))(k) ds if v ∈ W (k),
1

|E(klm)|
∫
E(klm)(u

(l))(k) ds if v ∈ W (l),
1

|E(klm)|
∫
E(klm)(u

(m))(k) ds if v ∈ W (m),

0 else,

(37)

where (l,m) ∈ E (k).
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By means of Definition 2, we can now introduce different sets of primal variables Ψ :

– Algorithm A: ΨA := {ψν , ∀ν ∈ V(k)}Nk=1,

– Algorithm B: ΨB := {ψν , ∀ν ∈ V(k)}Nk=1 ∪ {ψE, ∀E ∈ E (k)}Nk=1 ∪ {ψF , ∀F ∈ E (k)}Nk=1,

– Algorithm C: ΨC := {ψν , ∀ν ∈ V(k)}Nk=1 ∪ {ψE, ∀E ∈ E (k)}Nk=1.

3.5 IETI - DP and preconditioning

Since W̃ ⊂ W , there is a natural embedding Ĩ : W̃ → W . Let the jump operator restricted to
W̃ be

B̃ := BĨ : W̃ → U∗. (38)

Then we can formulate problem (30) as saddle point problem in W̃ as follows: Find (u,λ) ∈
W̃ × U :

[
S̃e B̃

T

B̃ 0

][
u
λ

]
=

[
g̃
0

]
, (39)

where g̃ := ĨTg, and B̃T = ĨTBT . Here, ĨT : W ∗ → W̃ ∗ denotes the adjoint of Ĩ , which can
be seen as a partial assembling operator.

By construction, S̃e is SPD on W̃ . Hence, we can define the Schur complement F and the
corresponding right-hand side of equation (39) as follows:

F := B̃S̃
−1
e B̃T , d := B̃S̃

−1
e g̃.

Hence, the saddle point system (39) is equivalent to the Schur complement problem:

Find λ ∈ U : Fλ = d. (40)

Equation (40) is solved by means of the PCG algorithm, but it requires an appropriate precon-
ditioner in order to obtain an efficient solver. According to [15] and [16], the right choice for
FE is the scaled Dirichlet preconditioner, adapted for the extended set of dofs. The numerical
tests presented in Section 4 indicate that the scaled Dirichlet preconditioner works well for the
IgA setting too.

Recall the definition of Se = diag(S
(k)
e )Nk=1, we define the scaled Dirichlet preconditioner M−1

sD

as

M−1
sD = BDSeB

T
D, (41)

where BD is a scaled version of the jump operator B. The scaled jump operator BD is defined
such that the operator enforces the constraints

δ†
(l)

j (u(k))
(k)
i − δ†

(k)

i (u(l))
(k)
j = 0 ∀(i, j) ∈ Be(k, l), ∀l ∈ I(k)F , (42)

and

δ†
(l)

j (u(k))
(l)
i − δ†

(k)

i (u(l))
(l)
j = 0 ∀(i, j) ∈ Be(l, k), ∀l ∈ I(k)F , (43)
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where for (i, j) ∈ Be(k, l)

δ†
(k)

i =
ρ
(k)
i∑

l∈I(k)F
ρ
(l)
j

is an appropriate scaling. Typical choices for ρ(k)i are

– Multiplicity Scaling: ρ(k)i = 1,

– Coefficient Scaling: If α(x)|Ω(k) = α(k), choose ρ(k)i = α(k),

– Stiffness Scaling: ρ(k)i = Ke
(k)
i,i .

If the diffusion coefficient α is constant and identical on each patch, then the multiplicity and
the coefficient scaling are the same. If there is only a little variation in α, then the multiplicity
scaling provides good results. If the variation is really large, then one should use the other
scalings to obtain robustness with respect to the jumps in the diffusion coefficient across the
patch interfaces.

In order to realizes the method, one can use the same procedure as for the continuous IETI-
DP method, where one has to use the corresponding definitions described in this paper. One
possibility for the implementation can be found in [21], where the Schur complement is denoted
by S and S̃.

In [15] and [16] it is proven for FE that the condition number behaves like the condition number
of the preconditioned system for the continuous FETI-DP method, see also [14] for dG-BDDC
FE preconditioners. From [21] and [6], we know that the condition number of the continuous
IETI-DP and BDDC-IgA operators is also quasi-optimal with respect to the patch and mesh
sizes. Therefore, we expect that the condition number of the dG-IETI-DP operator behaves as

κ(M−1
sDFŨ) ≤ C max

k

(
1 + log

(
H(k)

h(k)

))2

,

whereH(k) and h(k) are the patch size and mesh size, respectively, and the positive constantC is
independent of H(k), h(k), h(k)/h(l), and α. Our numerical results presented in the next section
insistently confirm this behaviour.

4 Numerical examples

In this section, we present some numerical results documenting the numerical behaviour of the
implemented dG-IETI-DP algorithm for solving large-scale linear systems arising from higher-
order IgA discretizations of (1) in the domains illustrated in Figure 1(a) and Figure 1(b). The
computational domain consists of 21 subdomains in both 2D and 3D. In both cases, one side of
a patch boundary has inhomogeneous Dirichlet conditions, whereas all other sides have homo-
geneous Neumann conditions. We consider the case of non-matching meshes, i.e. two neigh-
bouring patches may have different mesh sizes h(k) and h(l). Due to our implementation of the
dG formulation, we only consider nested meshes on the interface, i.e. the B-Spline spaces on
the interfaces are nested. However, we note that the presented algorithm does not rely on this
assumption. Each subdomain has a diameter of H(k) and an associated mesh size of h(k). In the
following, we use the abbreviation H/h = maxkH

(k)/h(k). We consider B-Splines, where its
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degree is chosen as p = 2 and p = 4. In all numerical examples when increasing the degree
from 2 to 4, we keep the smoothness of the space, i.e. increasing the multiplicity of the knots
on the coarsest mesh. In order to solve the linear system (40), a PCG algorithm with the scaled
Dirichlet preconditioner (41) is performed. We use a zero initial guess, and a reduction of the
initial residual by a factor of 10−6 as stopping criterion. The numerical examples illustrate the
dependence of the condition number of the IETI-DP preconditioned system on jumps in the dif-
fusion coefficient α, patch size H , mesh size h and the degree p. In Section 4.3, we investigate
the special case of increasing h(k)/h(l) and its influence on the condition number. In all other
tests we consider a fixed the ratio h(k)/h(l).

We use the C++ library G+SMO1 for describing the geometry and performing the numerical
tests, see also [25] and [30]. The stars “∗” in Tables 2, 4 and 5 mean that the problem size
doesn’t fit into our Desktop PC with an Intel(R) Xeon(R) CPU E5-1650 v2 @ 3.50GHz and 16
GB main memory, on which we performed all numerical experiments.

(a) 2D YETI-footprint (b) 3D YETI-footprint (c) Pattern of jumping coefficients

Fig. 1. Figure (a) and (b) show an illustration of the computational domain and its initial mesh in 2D and 3D, respectively.
Figure (c) presents the pattern of the jumping diffusion coefficient.

4.1 The case of homogeneous diffusion coefficient

We first consider the case of homogeneous diffusion coefficient, i.e. α = 1 onΩ. The 2D results
are summarized in Table 1, whereas the 3D results are presented in Table 2. We observe, that
the condition number of the preconditioned system grows logarithmically with respect to H/h.
Moreover, the numerical results indicate a dependence of the condition number on the degree
p, which will be investigated in more detail in Section 4.4.

4.2 The case of inhomogeneous diffusion coefficient

In this subsection, we investigate the case of patchwise constant diffusion coefficient, but with
jumps across the patch interfaces. The diffusion coefficient takes values α(k) ∈ {10−4, 104},

1 https://ricamsvn.ricam.oeaw.ac.at/trac/gismo/wiki/WikiStart
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Degree p = 2 Degree p = 4

ALG. A coeff. scal. stiff. scal. ALG. A coeff. scal. stiff. scal.
#dofs H/h κ It. κ It. #dofs H/h κ It. κ It.

1610 8 3.07 17 3.16 17 4706 8 4.56 20 4.75 20
4706 16 4.06 19 4.22 19 9370 16 5.64 22 5.89 22

15602 32 5.22 21 5.45 21 23402 32 7.01 23 7.35 23
56210 64 6.55 23 6.86 23 70282 64 8.56 24 9.00 24

212690 128 8.04 24 8.45 24 239306 128 10.3 26 10.8 26
ALG. C ALG. C
1610 8 1.35 9 1.34 9 4706 8 1.78 11 1.79 12
4706 16 1.64 11 1.64 11 9370 16 2.11 13 2.11 13

15602 32 1.99 12 1.99 12 23402 32 2.54 15 2.53 15
56210 64 2.41 14 2.41 14 70282 64 3.03 16 3.00 16

212690 128 2.88 16 2.88 16 239306 128 3.57 17 3.54 18
Table 1. 2D example with p = 2 (left) and p = 4 (right), and homogeneous diffusion coefficient. Dependence of the condition
number κ and the number It. of iterations on H/h for the preconditioned system with coefficient and stiffness scaling. Choice
of primal variables: vertex evaluation (upper table), vertex evaluation and edge averages (lower table).

Degree p = 2 Degree p = 4

ALG. A coeff. scal. stiff. scal. ALG. A coeff. scal. stiff. scal.
#dofs H/h κ It. κ It. #dofs H/h κ It. κ It.

2800 3 49.9 44 49.3 44 22204 3 203 77 199 79
9478 6 72.3 48 70.3 49 42922 6 248 82 240 83

42922 12 169 70 165 69 116110 12 506 104 488 104
244594 25 376 91 368 92 443926 25 ∗ ∗ ∗ ∗

ALG. B ALG. B
2800 3 1.49 9 1.45 9 22204 3 23.3 33 21.5 34
9478 6 15.8 17 14.7 17 42922 6 26.7 34 24.7 34

42922 12 19.8 30 18.4 29 116110 12 31.3 42 29.1 41
244594 25 24 37 22.4 36 443926 25 ∗ ∗ ∗ ∗

Table 2. 3D example with p = 2 (left) and p = 4 (right), and homogeneous diffusion coefficient. Dependence of the condition
number κ and the number It. of iterations on H/h for the preconditioned system with coefficient and stiffness scaling. Choice
of primal variables: vertex evaluation (upper table), vertex evaluation and edge averages and face averages (lower table).

with a jumping pattern according to Figure 1 (c). The 2D results are summarized in Table 3,
and the 3D results are presented in Table 4. First of all, one clearly sees the robustness with re-
spect to jumping coefficients of the considered method and the quasi optimal dependence of the
condition number on H/h. The dependence of the degree will again be studied in Section 4.4.

Degree p = 2 Degree p = 4

ALG. A coeff. scal. stiff. scal. ALG. A coeff. scal. stiff. scal.
#dofs H/h κ It. κ It. #dofs H/h κ It. κ It.

1610 8 3.82 12 4.02 12 4706 8 5.72 14 6.16 14
4706 16 5.11 13 5.47 13 9370 16 7.08 14 7.7 15

15602 32 6.58 15 7.12 15 23402 32 8.77 15 9.64 17
56210 64 8.23 15 9 16 70282 64 10.7 18 11.8 18

212690 128 10.1 17 11.1 18 239306 128 12.8 18 14.2 18
ALG. C ALG. C
1610 8 1.4 7 1.43 7 4706 8 1.85 8 1.94 8
4706 16 1.7 7 1.78 7 9370 16 2.17 8 2.32 8

15602 32 2.06 8 2.19 8 23402 32 2.58 9 2.81 9
56210 64 2.46 8 2.65 8 70282 64 3.05 9 3.36 9

212690 128 2.9 9 3.18 9 239306 128 3.55 10 3.97 10
Table 3. 2D example with p = 2 (left) and p = 4 (right), and jumping diffusion coefficient. Dependence of the condition
number κ and the number It. of iterations on H/h for the preconditioned system with coefficient and stiffness scaling. Choice
of primal variables: vertex evaluation (upper table), vertex evaluation and edge averages (lower table).
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Degree p = 2 Degree p = 4

ALG. A coeff. scal. stiff. scal. ALG. A coeff. scal. stiff. scal.
#dofs H/h κ It. κ It. #dofs H/h κ It. κ It.

2800 3 50.3 28 57.9 25 22204 3 203 44 236 45
9478 6 72.2 29 83.4 29 42922 6 250 43 290 42

42922 12 176 43 203 42 116110 12 520 58 605 57
244594 25 400 52 463 58 443926 25 ∗ ∗ ∗ ∗

ALG. B ALG. B
2800 3 2.11 11 2.17 11 22204 3 17.7 15 20.7 15
9478 6 12.6 17 14.6 18 42922 6 20.5 17 23.9 17

42922 12 15.7 22 18.2 24 116110 12 24 19 28 21
244594 25 18.9 28 22 30 443926 25 ∗ ∗ ∗ ∗

Table 4. 3D example with p = 2 (left) and p = 4 (right), and jumping diffusion coefficient. Dependence of the condition
number κ and the number It. of iterations on H/h for the preconditioned system with coefficient and stiffness scaling. Choice
of primal variables: vertex evaluation (upper table), vertex evaluation and edge averages and face averages (lower table).

4.3 Dependence in h(k)/h(l)

In this subsection, we deal with dependence of the condition number on the ratio h(k)/h(l) of
mesh sizes corresponding to neighbouring patches, The initial domain is the same as given in
Figure 1, but without the additional refinements in certain patches, i.e. h(k)/h(l) = 1. Then we
consequently perform uniform refinement in the considered patches and obtain h(k)/h(l) = 2−r,
where r is the number of refinements. In the numerical tests, we only consider the cases α ∈
{10−4, 104} and p = 4. The results for 2D and 3D are summarized in Table 5 and indicate that
the condition number is independent of the ratio h(k)/h(l) for 2D and 3D, as also predicted for
FE in [15]. We note that the increasing condition number and number of iterations come along
with the increased ratio H/h and comparing the numbers of this test with the corresponding
ones from Table 4 we observe an agreement. Thus, it is noteworthy that, although in 2D the
ratio H/h is increasing, the condition number stays constant.

dim = 2 dim = 3
ALG. A coeff. scal. stiff. scal. ALG. C coeff. scal. stiff. scal.

#dofs h(k)/h(l) H/h κ It. κ It. #dofs h(k)/h(l) H/h κ It. κ It.
1816 1 2 4.92 13 5.21 14 9362 1 1 14.8 21 14.9 21
2134 2 4 4.93 13 5.36 14 11902 2 3 17.7 23 22.1 24
2962 4 8 4.93 13 5.55 14 20426 4 6 29.2 24 37.5 27
5386 8 16 4.93 13 5.69 14 56626 8 12 52.2 26 67.2 27

13306 16 32 4.93 13 5.71 14 345268 16 25 ∗ ∗ ∗ ∗
41434 32 64 4.92 13 5.66 14 1758004 32 50 ∗ ∗ ∗ ∗

ALG. C ALG. B
1816 1 2 1.67 7 1.72 7 9362 1 1 14.8 15 16.6 15
2134 2 4 1.67 7 1.77 7 11902 2 3 19.5 15 28.7 17
2962 4 8 1.67 7 1.81 7 20426 4 6 29.2 16 37.5 18
5386 8 16 1.67 7 1.85 7 56626 8 12 52.2 17 67.2 18

13306 16 32 1.67 7 1.85 7 345268 16 25 ∗ ∗ ∗ ∗
41434 32 64 1.67 7 1.84 7 1758004 32 50 ∗ ∗ ∗ ∗

Table 5. 2D (left) and (3D)example with p = 4, and jumping diffusion coefficient. Dependence of the condition number κ and
the number It. of iterations on the ratio h(k)/h(l) for the preconditioned system with coefficient and stiffness scaling. Choice
of primal variables: in 2D vertex evaluation (upper table), vertex evaluation and edge averages (lower table), in 3D vertex
evaluation and edge averages (upper table), vertex evaluation, edge averages and face averages (lower table).
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4.4 Dependence on p

In this subsection, we study the dependence of the condition number on the degree p of the
B-Spline space. There are two ways to dealing with degree elevation. One method is to keep
the smoothness of the space, i.e., the multiplicity of the knots is increased in each step. The
other way keeps the multiplicity of the knots, while increasing the smoothness of the B-Spline.
The first method retains the support of the B-Spline basis small, with the drawback of a larger
number of dofs, while the second method does it vice versa, i.e., increasing the support of the
B-Spline, while having a smaller number of dofs. The aim of this section is to investigate the
effect of the two different elevation techniques on the condition number.

We choose the computational domain as the 2D and 3D YETI-footprint presented in Figure 1
and the diffusion coefficient is chosen to be globally constant. The results are summarized in
Table 6 and in Table 7 for the 2D and 3D domain, respectively. The numerical results indicate
a at most linear dependence of the condition number of the preconditioned system on the B-
Spline degree p. When considering the 2D domain, the dependence on the degree seems to
be also logarithmic, see Figure 2. One observes a significant increase of the condition number,
when increasing the degree from 2 to 3 in 3D as illustrated in Figure 2 (b).

Increasing the multiplicity Increasing the smoothness
ALG. C coeff. scal stiff. scal. ALG. C coeff. scal stiff. scal.

#dofs degree κ It. κ It. #dofs degree κ It. κ It.
1610 2 1.36 9 1.37 9 1610 2 1.36 9 1.37 9
4706 3 1.68 11 1.69 11 2006 3 1.55 10 1.57 11
9370 4 1.95 12 1.96 13 2444 4 1.74 11 1.77 12

15602 5 2.19 13 2.2 14 2924 5 1.88 12 1.93 12
23402 6 2.4 15 2.4 15 3446 6 2.03 13 2.09 13
32770 7 2.59 15 2.59 16 4010 7 2.14 14 2.22 14
43706 8 2.77 16 2.76 16 4616 8 2.27 14 2.36 14
56210 9 2.93 17 2.92 17 5264 9 2.36 15 2.47 15
70282 10 3.08 17 3.06 17 5954 10 2.48 15 2.59 15

Table 6. 2D example with fixed initial mesh and homogeneous diffusion coefficient. Dependence of the condition number κ
and the number It. of iterations on H/h for the preconditioned system with coefficient and stiffness scaling. Choice of primal
variables: vertex evaluation and edge averages.

Increasing the multiplicity Increasing the smoothness
ALG. B coeff. scal stiff. scal. ALG. B coeff. scal stiff. scal.

#dofs degree κ It. κ It. #dofs degree κ It. κ It.
2800 2 1.49 9 1.45 9 2800 2 1.49 9 1.45 9
9478 3 17.9 20 16.6 20 4864 3 17.1 18 16.4 18

22204 4 23.3 33 21.5 34 7714 4 21.7 32 21 33
42922 5 29.0 39 26.9 39 11476 5 27.0 45 26.3 46
73576 6 34.4 51 32.0 49 16276 6 31.9 47 31.3 47

116110 7 40.2 54 37.6 55 22240 7 37.5 51 36.9 50
Table 7. 3D example with fixed initial mesh and homogeneous diffusion coefficient. Dependence of the condition number κ
and the number It. of iterations on H/h for the preconditioned system with coefficient and stiffness scaling. Choice of primal
variables: vertex evaluation, edge averages and face averages.
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Fig. 2. Dependence of the condition number on the B-Spline degree p for the 2D and 3D domain. We compare the influence of
the considered scaling strategy and method for increasing the degree.

4.5 Performance and OpenMP

As already explained in the beginning of this section, we use the open source C++ library
G+SMO for materialising the code. The LU-factorizations for the local solvers were performed
by means of the PARDISO 5.0.0 Solver Project, see [27]. In Table 8, we investigate the runtime
of a serial implementation and compare it with the timings of the cG-IETI-DP algorithm as pre-
sented in [21]. In order to compare the timings for the continuous IETI-DP and discontinuous
IETI-DP method, we use the setting as described in [21]. More precisely, the computational
domain is the 2D example from Figure 1, but with fully matching patches, i.e. no additional
refinements on selected patches. We observe from Table 8 that the dG-IETI-DP method shows
a very similar performance. The increased number of primal variables and the extended ver-
sion of the stiffness matrixKe leads to a slightly larger runtime. As already mentioned, we use
the PARDISO Solver Project instead of the SparseLU factorization of the open source library
“Eigen”2 as in Subsection 5.4 in [21]. This change led to a significant speed-up in the computa-
tion time for the LU-factorization. Small deviations in the timings compared to Table 6 in [21]
might be due to some changes regarding the parallel implementation.

The IETI-DP method is well suited for a parallel implementation, since most of the computa-
tions are independent of each other. Only the assembly and application of the Schur complement
SΠΠ corresponding to the primal variables requires communication with neighbouring patches.
Although the structure of the algorithm perfectly suits the framework of distributed memory
models, hence, using MPI, we first implemented a version using OpenMP. We want to men-
tion that the numerical examples in Section 4.1 and Section 4.2 are performed by means of the
parallel implementation. The major problem for obtaining a scaleable method is the unequally
distributed workload. This arises from the fact that in IgA the partition of the domain is mostly
based on geometric aspect, where as in FE the mesh is partitioned in such a way, that each patch
has a similar number of dofs. Especially, the cases considered in Section 4.1 and Section 4.2,
where we have non-matching meshes, lead to very unequally distributed workloads. To sum-
marize, in order to achieve a scalable IETI type solver one has to spend some time in finding
an equally distributed workload for each thread, e.g. performing further subdivisions of certain
patches and optimal assignment of patches to threads.

2 http://eigen.tuxfamily.org/index.php?title=Main_Page



dG-IETI-DP on multipatch dG-IgA 21

Wall-clock time relative time in %
cG-IETI-DP dG-IETI-DP cG-IETI-DP dG- IETI-DP

Preparing the bookkeeping 0.012 s 0.02 s 0.06 0.11

Assembling all patch local K(k) 6.4 s 6.8 s 35.56 35.79
Partitioning w.r.t. B and I 0.085 s 0.12 s 0.48 0.63
Assembling C 0.017 s 0.034 s 0.09 0.18
Calculating LU -fact. of K(k)

II 2.5 s 2.5 s 13.89 13.16

Calculating LU -fact. of

[
K(k) C(k)T

C(k) 0

]
3.9 s 4 s 21.67 21.05

Assembling and LU-fact of SΠΠ 0.78 s 1.1 s 4.33 5.79
Assemble rhs. 0.13 s 0.13 s 0.72 0.68
Total assembling 14 s 15 s 77.78 78.95
One PCG iteration 0.34 s 0.36 s - -
Solving the system 3.4 s 3.6 s 18.89 18.95
Calculating the solution u 0.33 s 0.33 s 1.83 1.74
Total spent time 18 s 19 s 100.00 100.00

Table 8. Serial computation times of the 2D example with coefficient scaling and Algorithm C. The discrete problem consists
of 121824 total degrees of freedom, 1692 Lagrange multipliers, and on each patch approximate 4900 local degrees of freedom
according to the setting in [21], Section 5. Column 2 and 3 present the absolute spent time, whereas column 4 and 5 present the
relative one for the cG-IETI-DP and dG-IETI-DP method.

5 Conclusions and outlook

In this paper, we investigated an adaption of the IETI-DP method to dG-IgA equations, i.e.
we used dG techniques to couple non-matching meshes across patch interfaces. The numerical
examples in Section 4 indicate the same quasi-optimal behaviour of the condition number of the
dG-IETI-DP operator with respect to H/h, and show robustness with respect to jumps in the
diffusion coefficient. Additionally, the condition number in 2D and 3D seems to be independent
of the ratio h(k)/h(l). Moreover, we examined the dependence of the condition number on the
B-Spline degree. We found that in 2D the dependence is quite weak, while in 3D one observes
a more significant increase. As illustrated in Figure 2, the dependence seems to be linear or
even logarithmic in 2D, while it is clearly linear in 3D. Finally, we investigated the performance
of the dG-IETI-DP in comparison with the cG-IETI-DP method, which turns out to be very
similar. The theoretical analysis, that was done for cG-IETI-DP in [21], is more technical for
dG-IETI-DP, cf. [15] for dG-FETI-DP. The dG-IETI-DP can be generalized to dG-IgA schemes
on segmentations with non-matching interfaces (segmentation crimes) studied in [22] and [23].
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