
Parallelization of continuous and discontinuous Galerkin1

dual-primal Isogeometric tearing and interconnecting methods2

Christoph Hofer3

Johannes Kepler University (JKU), Altenbergerstr. 69, A-4040 Linz, Austria4

Abstract5

In this paper we investigate the parallelization of dual-primal isogeometric tearing and
interconnecting (IETI-DP) type methods for solving large-scale continuous and discontin-
uous Galerkin systems of equations arising from Isogeometric analysis of elliptic boundary
value problems. These methods are extensions of the finite element tearing and intercon-
necting methods to isogeometric analysis. The algorithms are implemented by means of
energy minimizing primal subspaces. We discuss how these methods can efficiently be
parallelized in a distributed memory setting. Weak and strong scaling studies presented
for two and three dimensional problems show an excellent parallel efficiency.

Keywords: Diffusion problems, Isogeometric analysis, discontinuous Galerkin,6

IETI-DP, parallelization, MPI7

1. Introduction8

Isogeometric Analysis (IgA) is a novel methodology for the numerical solution of partial9

differential equations (PDE). IgA was first introduced by Hughes, Cottrell and Bazilevs10

in [24], see also the monograph [7] for a comprehensive presentation of the IgA framework11

and the recent survey article [3]. The main principle is to use the same basis functions for12

describing the geometry and to represent the discrete solution of the PDE problem under13

consideration. The most common choices are B-Splines, Non Uniform Rational B-Splines14

(NURBS), T-Splines, Truncated Hierarchical B-Splines (THB-Splines), etc., see, e.g., [15],15

[16] and [2]. One of the strengths of IgA is the capability of creating high-order splines16

spaces, while keeping the number of degrees of freedom quite small. Moreover, having17

basis functions with high smoothness is useful when considering higher-order PDEs, e.g.,18

the biharmonic equation.19

In many cases the domain can not be represented with a single mapping, referred to20

as geometrical mapping. Complicated geometries are decomposed into simple domains,21

called patches, which are topologically equivalent to a cube. The set of patches forming the22

computational domain is called multipatch domain. The obtained patch parametrizations23

and the original geometry may not be identical. The result are small gaps and overlaps24

occurring at the interfaces of the patches, called segmentation crimes, see [25], [41] and [23]25

for a comprehensive analysis. Nevertheless, one still wants to solve PDEs on such domains.26

To do so, numerical schemes based on the discontinuous Galerkin (dG) method for elliptic27

PDEs were developed in [20], [22] and [21]. There, the corresponding error analysis is also28

Email address: christoph.hofer@ricam.oeaw.ac.at (Christoph Hofer)1

C. Hofer, Parallelization of cG and dG-IETI-DP methods 2

provided. In addition to domains with segmentation crimes, the dG formulation is very29

useful when considering different B-Splines spaces on each patch, e.g., non-matching grids30

at the interface and different spline degrees. An analysis for the dG-IgA formulation with31

extensions to low regularity solutions can be found in [37]. For a detailed discussion of32

dG for finite element methods, we refer, e.g., to [44] and [8].33

In the present paper, we are considering fast solution methods for linear systems arising34

from the discretization of elliptic PDEs by means of IgA. We investigate non-overlapping35

domain decomposition (DD) methods of the dual-primal tearing and interconnecting type.36

This type of methods are equivalent to the so called Balancing Domain Decomposition by37

Constraints (BDDC) methods, see [39], [45], [42] and references therein. The version based38

on a conforming Galerkin (cG) discretization, called dual-primal isogeometric tearing and39

interconnecting (IETI-DP) method was first introduced in [34] and the equivalent IgA40

BDDC method was analysed in [5]. Further extensions to the analysis are presented41

in [18]. The version based on the dG formulation, abbreviated by dG-IETI-DP, was42

introduced in [19], see [12], [13] and [14] for the corresponding finite element counterparts.43

We also want to mention development in overlapping Schwarz methods, see, e.g., [4] and44

[6]. The aim of this paper is to present the parallel scalability of the cG and dG IETI-DP45

methods. We investigate weak and strong scaling in two and three dimensional domains for46

different B-Spline degrees. The implemented algorithms are based on energy minimizing47

primal subspaces, which simplifies the parallelization of the solver part, but having more48

effort in the setup phase (assembling phase). We rephrase key parts of this algorithm49

and discuss how to realize the communication by means of Message Passing Interface50

(MPI). In general, FETI-DP and equivalent BDDC methods are by nature well suited51

for large-scale parallelization and has been widely studied for solving large-scale finite52

element equations, e.g., in [32], [43], [30] and [27], see also [29] for a hybrid OpenMP/MPI53

version. Considering a domain decomposition with several ten thousands of subdomains,54

the influence of the coarse grid problem becomes more and more significant. Especially,55

its LU-factorization is the bottleneck of the algorithm. The remedy is to reformulate the56

FETI-DP system in such a way that the solution of the coarse grid problem is not required57

in the application of the system matrix, but in the preconditioner. This enables the use58

of inexact methods like geometric or algebraic multigrid, see, e.g., [28], [27], [31], [32] and59

[33]. Moreover, inexact solvers can also be used in the scaled Dirichlet preconditioner and,60

if using the saddle point formulation, also for the local solvers, cf., [31], see also [32], [43]61

and references therein for alternative approaches by means of hybrid FETI. We also want62

to mention inexact version for the BDDC method, see, e.g., [46], [47], [10], [38] and [48].63

FETI-DP methods has also been successfully applied to non-linear problems my means64

of a non-linear version of FETI-DP. We want to highlight recent advances presented, e.g.,65

in [26], [28] and [27], showing excellent scalability on large-scale supercomputers.66

In the present paper, we consider the following second-order elliptic boundary value prob-67

lem in a bounded Lipschitz domain Ω ⊂ Rd, with d ∈ {2, 3}: Find u : Ω→ R such that68

69

− div(α∇u) = f in Ω, u = 0 on ΓD, and α
∂u

∂n
= gN on ΓN , (1)

with given, sufficient smooth data f, gN and α, where the coefficient α is uniformly
bounded from below and above by some positive constants αmin and αmax, respectively.
The boundary ∂Ω of the computational domain Ω consists of a Dirichlet part ΓD of
positive boundary measure and a Neumann part ΓN . Furthermore, we assume that the
Dirichlet boundary ΓD is always a union of complete patch sides (edges / face in 2D /

C. Hofer, Parallelization of cG and dG-IETI-DP methods 3

3D) which are uniquely defined in IgA. Without loss of generality, we assume homoge-
neous Dirichlet conditions. This can always be obtained by homogenization. By means
of integration by parts, we arrive at the weak formulation of (1) which reads as follows:
Find u ∈ VD = {u ∈ H1 : γ0u = 0 on ΓD} such that

a(u, v) = 〈F, v〉 ∀v ∈ VD, (2)

where γ0 denotes the trace operator. The bilinear form a(·, ·) : VD × VD → R and the
linear form 〈F, ·〉 : VD → R are given by the expressions

a(u, v) :=

∫
Ω

α∇u · ∇v dx and 〈F, v〉 :=

∫
Ω

fv dx+

∫
ΓN

gNv ds.

The remainder of the paper is organized as follows: In Section 2, we give a short intro-70

duction to isogeometric analysis, providing the basic definitions and notations. Section 371

describes the different discretizations of the model problem obtained the continuous and72

discontinuous Galerkin methods. In Section 4, we formulate the IETI-DP method for73

both discretizations and provide implementation details. The way how the algorithm is74

parallelized is explained in Section 5. Numerical examples are presented in Section 6.75

Finally we draw some conclusions in Section 7.76

2. Isogeometric Analysis77

In this section, we give a very short overview about IgA. For a more comprehensive study,78

we refer to, e.g., [7] and [37].79

Let Ω̂ := (0, 1)d, d ∈ {2, 3}, be the d-dimensional unit cube, which we refer to as the80

parameter domain. Let pι and Mι, ι ∈ {1, . . . , d}, be the B-Spline degree and the number81

of basis functions in xι-direction. Moreover, let Ξι = {ξ1 = 0, ξ2, . . . , ξnι = 1}, nι =82

Mι − pι − 1, be a partition of [0, 1], called knot vector. With this ingredients we are able83

to define the B-Spline basis N̂i,p, i ∈ {1, . . . ,Mι} on [0, 1] via Cox-De Boor’s algorithm,84

cf. [7]. The generalization to Ω̂ is realized by considering a tensor product, again denoted85

by N̂i,p, where i = (i1, . . . , id) and p = (p1, . . . , pd) are a multi-indices. For notational86

simplicity, we define I := {(i1, . . . , id) | iι ∈ {1, . . . ,Mι}} as the set of multi-indices. Since87

the tensor product knot vector Ξ provides a partition of Ω̂, it introduces a mesh Q̂, and88

we denote a mesh element by Q̂, called cell.89

The B-Spline basis functions parametrize the computational domain Ω, also called physical
domain. It is given as image of parameter domain under the geometrical mapping G :
Ω̂→ Rd, defined as

G(ξ) :=
∑
i∈I

PiN̂i,p(ξ),

with the control points Pi ∈ Rd, i ∈ I. The image of the mesh Q̂h under G defines90

the mesh on Ω, denoted by Qh with cells Q. Both meshes possess a characteristic mesh91

size ĥ and h, respectively. More complicated geometries Ω have to be represented with92

multiple non-overlapping domains Ω(k) := G(k)(Ω̂), k = 1, . . . , N , called patches, where93

each patch is associated with a different geometrical mapping G(k). We sometimes call94

Ω :=
⋃N
k=1 Ω

(k) a multipatch domain. Furthermore, we denote the set of all indices l such95

C. Hofer, Parallelization of cG and dG-IETI-DP methods 4

that Ω(k) and Ω(l) have a common interface F (kl) by I(k)
F . We define the interface Γ(k) of96

Ω(k) as Γ(k) :=
⋃N

l∈I(k)
F
F (kl).97

We use B-Splines not only for defining the geometry, but also for representing the approx-
imate solution of our PDE. This motivates to define the basis functions in the physical
space Ni,p := N̂i,p ◦ G−1 and the corresponding discrete space as

Vh := span{Ni,p}i∈I . (3)

Moreover, each function uh(x) =
∑

i∈I uiNi,p(x) is associated with the coefficient vector98

u = (ui)i∈I . This map is known as Ritz isomorphism or IgA isomorphism in connection99

with IgA. One usually writes this relation as uh ↔ u. In the following, we will use the100

notation uh for the function and its vector representations. If we consider a single patch101

Ω(k) of a multipatch domain Ω, we will use the notation V (k)
h , N

(k)
i,p , N̂

(k)
i,p , G

(k), . . . with the102

analogous definitions. To keep notation simple, we will use hk and ĥk instead of h(k) and103

ĥ(k), respectively.104

3. Galerkin Methods for Isogeometric Analysis105

In this section we rephrase the variational formulation for the continuous and discontin-106

uous Galerkin method for multipatch IgA systems.107

3.1. Continuous Galerkin method108

We are considering the finite dimensional subspace V cG
h of VD, where V cG

h is given by

V cG
h := {v | v|Ω(k) ∈ V (k)

h } ∩H
1(Ω).

Since, we restrict ourselves to homogeneous Dirichlet conditions, we look for the Galerkin
approximate uh from V cG

D,h ⊂ V cG
h , where V cG

D,h contains all functions, which vanish on the
Dirichlet boundary. The Galerkin IgA scheme reads as follows: Find uh ∈ V cG

D,h such that

a(uh, vh) = 〈F, vh〉 ∀vh ∈ VD,h. (4)

There exists a unique IgA solution uh ∈ V cG
D,h of (4) that converges to the solution u ∈ VD109

of (2) if h tends to 0. Due to Cea’s lemma, the usual discretization error estimates in the110

H1 - norm follow from the corresponding approximation error estimates, see [1] or [3].111

3.2. Discontinuous Galerkin method112

In the dG-IgA scheme, we again use the spaces V (k)
h of B-Splines defined in (3), whereas

now discontinuities are allowed across the patch interfaces F (kl). The continuity of the
function value and its normal fluxes are then enforced in a weak sense by adding additional
terms to the bilinear form. We define the dG-IgA space

V dG
h := {v | v|Ω(k) ∈ V (k)

h }, (5)

where V (k)
h is defined as in (3). A comprehensive study of dG schemes for FE can be found

in [44] and [8]. For an analysis of the dG-IgA scheme, we refer to [37]. We define V dG
D,h as

the space of all functions from Vh that vanish on the Dirichlet boundary ΓD. Having these

C. Hofer, Parallelization of cG and dG-IETI-DP methods 5

definitions at hand, we can define the discrete problem based on the Symmetric Interior
Penalty (SIP) dG formulation as follows: Find uh ∈ V dG

D,h such that

ah(uh, vh) = 〈F, vh〉 ∀vh ∈ V dG
D,h, (6)

where

ah(u, v) :=
N∑
k=1

a(k)
e (u, v) and 〈F, v〉 :=

N∑
k=1

(∫
Ω(k)

fv(k)dx+

∫
Γ

(k)
N

gNv
(k) ds

)
,

a(k)
e (u, v) := a(k)(u, v) + s(k)(u, v) + p(k)(u, v),

and

a(k)(u, v) :=

∫
Ω(k)

α(k)∇u(k)∇v(k)dx,

s(k)(u, v) :=
∑
l∈I(k)

F

∫
F (kl)

α(k)

2

(
∂u(k)

∂n
(v(l) − v(k)) +

∂v(k)

∂n
(u(l) − u(k))

)
ds,

p(k)(u, v) :=
∑
l∈I(k)

F

∫
F (kl)

δα(k)

hkl
(u(l) − u(k))(v(l) − v(k)) ds.

Here the notation ∂
∂n

denotes the derivative in the direction of the outer normal vector,113

δ a positive sufficiently large penalty parameter, and hkl the harmonic average of the114

adjacent mesh sizes, i.e., hkl = 2hkhl/(hk + hl).115

We equip V dG
D,h with the dG-norm

‖u‖2
dG =

N∑
k=1

α(k)
∥∥∇u(k)

∥∥2

L2(Ω(k))
+
∑
l∈I(k)

F

δα(k)

hkl

∫
F (kl)

(u(k) − u(l))2ds

 . (7)

Furthermore, we define the bilinear forms

dh(u, v) =
N∑
k=1

d(k)(u, v) where d(k)(u, v) = a(k)(u, v) + p(k)(u, v),

for later use. We note that ‖uh‖2
dG = dh(uh, uh).116

Lemma 3.1. Let δ be sufficiently large. Then there exist two positive constants γ0 and
γ1, which are independent of hk, Hk, δ, α

(k) and uh such that the inequalities

γ0d
(k)(uh, uh) ≤ a(k)

e (uh, uh) ≤ γ1d
(k)(uh, uh), ∀uh ∈ V dG

D,h (8)

are valid for all k = 1, 2, . . . , N . Furthermore, we have the inequalities

γ0 ‖uh‖2
dG ≤ ah(uh, uh) ≤ γ1 ‖uh‖2

dG , ∀uh ∈ V dG
D,h. (9)

This Lemma is an equivalent statement of Lemma 2.1 in [13] for IgA, and the proof can117

be found in [19]. A direct implication of (9) is the well posedness of the discrete problem118

C. Hofer, Parallelization of cG and dG-IETI-DP methods 6

(6) by the Theorem of Lax-Milgram. The consistency of the method together with the119

interpolation estimates of B-Splines lead to the a-priori error estimate, established in [37].120

We note that, in [37], the results were obtained for the Incomplete Interior Penalty (IIP)121

scheme. An extension to SIP-dG and the use of harmonic averages for h and/or α are122

discussed in Remark 3.1 in [37], see also [36].123

For both the cG and dG formulation, we choose the B-Spline function {Ni,p}i∈I0 as basis
for the space V X

h , X ∈ {cG, dG}, where I0 contains all indices of I, where the correspond-
ing basis functions do not have a support on the Dirichlet boundary. In the cG case, the
basis functions on the interface are identified accordingly to obtain a conforming subspace
of VD. For the remainder of this paper, we drop the superscript X ∈ {cG, dG} and use
the symbol Vh for both formulations. Depending on the considered formulation, one needs
to use the right space V X

h , X ∈ {cG, dG}. The IgA schemes (4) and (6) are equivalent to
the system of linear IgA equations

Ku = f , (10)

where K = (Ki,j)i,j∈I0 , f = (f i)i∈I0 denote the stiffness matrix and the load vector,124

respectively, with Ki,j = a(Nj,p, Ni,p) or Ki,j = ah(Nj,p, Ni,p) and f i = 〈F,Ni,p〉, and u125

is the vector representation of uh.126

4. IETI-DP methods and their implementation127

In this section, we recall the main ingredients for the cG-IETI-DP and dG-IETI-DP128

method. We focus mainly on the implementation, since this is the relevant part for129

parallelization.130

4.1. Derivation of the method131

A rigorous and formal definition of the cG-IETI-DP and dG-IETI-DP method is quite132

technical and not necessary for the parallelization, which is the purpose of this paper.133

Therefore, we are not going to present the whole derivation of each method. We will give134

a general description, which is valid for both methods. For a detailed derivation, we refer135

to [18] and [19].136

The first step is to introduce additional dofs on the interface to decouple the local problems
and incorporate their connection via Lagrange multipliers λ. This is quite straightforward
in the case of the cG formulation, but more involved in the dG case. In any of the two
cases, we can equivalently rewrite (10) as: Find (u,λ) ∈ Vh,e × U such that[

Ke BT

B 0

] [
u
λ

]
=

[
f
0

]
, (11)

where Vh,e ⊃ Vh, is the decoupled space with additional dofs and U is the set of Lagrange
multipliers. The jump operator B enforces the “continuity” of the solution u in the sense
that ker(B) ≡ Vh. The matrix Ke is the block diagonal matrix of the patch local stiffness
matrices K(k), i.e., Ke = diag(K(k)). Since B only acts on the patch interface dofs, we
first can reorder the stiffness matrix in the following way

K(k) =

[
K

(k)
BB K

(k)
BI

K
(k)
IB K

(k)
II

]
, f (k) =

[
f

(k)
B

f
(k)
I

]

C. Hofer, Parallelization of cG and dG-IETI-DP methods 7

and then consider only the Schur complement representation: Find (uB,λ) ∈ W ×U such
that [

Se BT
B

BB 0

] [
uB
λ

]
=

[
g
0

]
, (12)

where Se = diag(S
(k)
e), S(k)

e = K
(k)
BB −K

(k)
BI (K

(k)
II)−1K

(k)
IB and g(k) = fB −K(k)

BI (K
(k)
II)−1f

(k)
I .137

The space W is the restriction of Vh,e to the interface. For completeness, we denote its138

“continuous” representation as Ŵ , i.e., ker(BB) = Ŵ . Equation (12) is valid for the139

cG-IETI-DP and dG-IETI-DP method, but the matrix Ke has difference entries and the140

number of boundary dofs (subscript B) is different. Fortunately, this does not change the141

way how the algorithm is implemented and parallelized. In the following, we will drop142

the subscript B in uB and BB for notational simplicity.143

The matrix Se is not invertible and, hence, we cannot build the Schur complement system
of (12). To overcome this, we introduce an intermediate space W̃ , such that Ŵ ⊂ W̃ ⊂ W ,
and Se restricted to W̃ , denoted by S̃, is invertible. We introduce primal variables as a
set Ψ ⊂ Ŵ ∗ and define the spaces

W̃ := {w ∈ W : ψ(w(k)) = ψ(w(l)),∀ψ ∈ Ψ, ∀k > l}

and

W∆ :=
N∏
k=1

W
(k)
∆ , with W

(k)
∆ := {w(k) ∈ W (k) : ψ(w(k)) = 0 ∀ψ ∈ Ψ}.

Moreover, we introduce the space WΠ ⊂ Ŵ such that W̃ = WΠ⊕W∆. We call WΠ primal144

space and W∆ dual space. Typically, the set Ψ corresponds to “continuous” vertex values,145

edge averages and/or face averages.146

Since W̃ ⊂ W , there is a natural embedding Ĩ : W̃ → W . Let the jump operator restricted
to W̃ be B̃ := BĨ : W̃ → U∗. Now we are in the position to reformulate problem (12) in
the space W̃ as follows: Find (u,λ) ∈ W̃ × U :[

S̃ B̃T

B̃ 0

][
u
λ

]
=

[
g̃
0

]
, (13)

where g̃ := ĨTg, and B̃T = ĨTBT . Here, ĨT : W ∗ → W̃ ∗ denotes the adjoint of Ĩ.147

By construction, S̃ is SPD on W̃ . Hence, we can define the Schur complement F and the
corresponding right-hand side as follows:

F := B̃S̃−1B̃T , d := B̃S̃−1g̃.

Hence, the saddle point system (13) is equivalent to the Schur complement problem:

Find λ ∈ U : Fλ = d. (14)

Equation (14) is solved by means of the PCG algorithm, but it requires an appropriate148

preconditioner in order to obtain an efficient solver.149

Recalling the definition of Se = diag(S
(k)
e)Nk=1, we define the scaled Dirichlet preconditioner

M−1
sD := BDSeB

T
D, where BD is a scaled version of the jump operator B. The scaled jump

operator BD is defined such that the operator enforces the constraints

δ†
(l)

j (u(k))
(k)
i − δ†

(k)

i (u(l))
(k)
j = 0 ∀(i, j) ∈ Be(k, l), ∀l ∈ I(k)

F ,

C. Hofer, Parallelization of cG and dG-IETI-DP methods 8

and

δ†
(l)

j (u(k))
(l)
i − δ†

(k)

i (u(l))
(l)
j = 0 ∀(i, j) ∈ Be(l, k), ∀l ∈ I(k)

F ,

where, for (i, j) ∈ Be(k, l), δ†
(k)
i := ρ

(k)
i /

∑
l∈I(k)

F
ρ

(l)
j is an appropriate scaling. One can

show, that the preconditioned system for the cG version has a quasi-optimal condition
number bound with respect to H/h := maxk(Hk/hk), i.e.,

κ(M−1
sDF|ker(B̃T)) ≤ C(1 + log(H/h))2, (15)

see [18] and [5]. Moreover, numerical examples show also robustness with respect to jumps150

in the diffusion coefficient and only a weak dependence on the B-Spline degree p, see, e.g.,151

[19], [18] and [5].152

4.2. Implementation of the algorithm153

Since F is symmetric and positive definite on Ũ , we can solve the linear system Fλ = d
by means of the PCG algorithm, where we use M−1

sD as preconditioner. The PCG does
not require an explicit representation of the matrices F andM−1

sD , since we just need their
application to a vector. There are different ways to provide an efficient implementation.
We will follow the concept of the energy minimizing primal subspaces. The idea is to
split the space W̃ into W̃Π ⊕

∏
W̃

(k)
∆ , such that W̃ (k)

∆ ⊥SW̃Π for all k, i.e., we choose
W̃Π := W̃⊥S

∆ , see, e.g., [42] and [9]. By means of this choice, the operators S̃ and S̃−1

have the following forms

S̃ =

[
SΠΠ 0

0 S∆∆

]
and S̃−1 =

[
S−1

ΠΠ 0
0 S−1

∆∆

]
,

where SΠΠ and S∆∆ are the restrictions of S̃ to the corresponding subspaces. We note154

that S∆∆ can be seen as a block diagonal operator, i.e., S∆∆ = diag(S
(k)
∆∆).155

The application of F and M−1
sD is summarized in Algorithm 1.156

4.2.1. Constructing a basis for the primal subspace157

First we need to provide an appropriate local basis {φ̃j}nΠ
j for W̃Π, where nΠ is the number

of primal variables. We request from the basis that it has to be nodal with respect to
the primal variables, i.e., ψi(φ̃j) = δi,j, for i, j ∈ {1, . . . , nΠ}. In order to construct such a
basis, we introduce the constraint matrix C(k) : W (k) → Rn

(k)
Π for each patch Ω(k) which

realizes the primal variables, i. e., (C(k)v)j = ψi(k,j)(v) for v ∈ W and j ∈ {1, . . . , n(k)
Π },

where n(k)
Π is the number of primal variables associated with Ω(k) and i(k, j) the global

index of the j-th primal variable on Ω(k). For each patch k, the basis functions {φ̃(k)
j }

n
(k)
Π
j=1

of W̃ (k)
Π are the solution of the systemK(k)

BB K
(k)
BI C(k)T

K
(k)
IB K

(k)
II 0

C(k) 0 0


φ̃(k)

j

·
µ̃

(k)
j

 =

 0
0

e
(k)
j

 , (16)

where e(k)
j ∈ Rn

(k)
Π is the j-th unit vector. Here we use an equivalent formulation with the158

system matrix K(k)For each patch k, the LU factorization of this matrix is computed and159

stored.160

C. Hofer, Parallelization of cG and dG-IETI-DP methods 9

Application of S(k)
∆∆

−1
: . The application of S(k)

∆∆

−1
corresponds to solving a local Neumann

problem in the space W̃∆, i.e., S(k)w(k) = f
(k)
∆ with the constraint C(k)w(k) = 0. This

problem can be rewritten as a saddle point problem in the formK(k)
BB K

(k)
BI C(k)T

K
(k)
IB K

(k)
II 0

C(k) 0 0


w(k)

·
·

 =

f (k)
∆

0
0

 .
From (16), the LU factorization of the matrix is already available.161

Application of S(k)
ΠΠ

−1
:. The matrix SΠΠ can be assembled from the patch local matrices

S
(k)
ΠΠ. Let {φ̃

(k)
j }

n
(k)
Π
j=1 be the basis of W̃ (k)

Π . The construction of {φ̃(k)
j }

n
(k)
Π
j=1 in (16) provides(

S
(k)
ΠΠ

)
i,j

=
〈
S(k)φ̃

(k)
i , φ̃

(k)
j

〉
= −

〈
C(k)T µ̃

(k)
i , φ̃

(k)
j

〉
= −

〈
µ̃

(k)
i , C(k)φ̃

(k)
j

〉
= −

〈
µ̃

(k)
i , ej

〉(k)

= −
(
µ̃

(k)
i

)
j
,

where i, j ∈ {1, . . . , n(k)
Π }. Therefore, we can reuse the Lagrange multipliers µ̃(k)

i obtained162

in (16), and can assemble S
(k)
ΠΠ from them. Once SΠΠ is assembled, the LU factorization163

can be calculated and stored.164

4.2.2. Application of Ĩ and ĨT165

The last building block is the embedding Ĩ : W̃ → W and its adjoint ĨT : W ∗ → W̃ ∗.166

Recall the direct splittingW (k) = W
(k)
∆ ⊕W

(k)
Π . Let us denote by Φ(k) = [φ̃

(k)
1 , . . . , φ̃

(k)

n
(k)
Π

] the167

coefficient representation of the basis for W (k)
Π . Given the primal part wΠ of a function in168

W̃ , we obtain its restriction to W̃ (k)
Π via an appropriately defined restriction matrix R(k),169

i.e. w(k)
Π = R(k)wΠ. The corresponding function is then given by w(k)

Π = Φ(k)R(k)w
(k)
Π .170

Following the lines in [42], we can formulate the operator Ĩ : W̃ → W as[
wΠ

w∆

]
7→ w := ΦRwΠ + w∆,

where Φ and R are block versions of Φ(k) and R(k), respectively. The second function is
its adjoint operation ĨT : W ∗ → W̃ ∗. It can be realized in the following way

f 7→
[
fΠ

f∆

]
=

[
AΦTf

f − CTΦTf

]
,

where A is the corresponding assembling operator to R, i.e., A = RT . A more extensive171

discussion and derivation can be found in [42].172

5. Parallelization of the building blocks173

Here we investigate how the single operations can be executed in parallel in a distributed174

memory setting. The parallelization of the method is performed with respect to the175

C. Hofer, Parallelization of cG and dG-IETI-DP methods 10

Algorithm 1 Algorithm for calculating ν = Fλ and ν = M−1
sDλ for given λ ∈ U

procedure F (λ)
Application of BT : {f (k)}Nk=1 = BTλ

Application of ĨT : {fΠ, {f (k)
∆ }Nk=1} = ĨT

(
{f (k)}Nk=1

)
Application of S̃−1 :
Begin

wΠ = S−1
ΠΠfΠ

w
(k)
∆ = S

(k)
∆∆

−1
f

(k)
∆ ∀k = 1, . . . , N

End
Application of Ĩ : {w(k)}Nk=1 = Ĩ

(
{wΠ, {w(k)

∆ }Nk=1}
)

Application of B : ν = B
(
{w(k)}Nk=1

)
end procedure
procedure M−1

sD (λ)
Application of BT

D : {w(k)}Nk=1 = BT
Dλ

Application of Se :
Begin

Solve K(k)
II x

(k) = −K(k)
IBw

(k) ∀k = 1, . . . , N

v(k) = K
(k)
BBw

(k) +K
(k)
BI x

(k). ∀k = 1, . . . , N
End
Application of BD : ν = BD

(
{v(k)}Nk=1

)
end procedure

patches, i.e., one or several patches are assigned to a processor. The required communi-176

cation has to be understood as communication between patches, which are assigned to177

different processors. The majority of the used MPI methods are performed in its non-178

blocking version. We aim at overlapping computations with communications wherever179

possible.180

5.1. Parallel version of PCG181

We solve Fλ = d with the preconditioned CG method. This requires a parallel imple-182

mentation of CG, where we follow the approach presented in Section 2.2.5.5 in [42], see183

also [11]. This approach is based on the concept of accumulated and distributed vectors.184

We say a vector λacc = [λ(q)
acc] is an accumulated representation of λ, if λ(q)

acc(kq(i)) = λ(i),185

where i is the global index corresponding to the local index kq(i) on processor q. On the186

contrary, λdist = [λ
(q)
dist] is a distributed representation of λ, if the sum of all processor187

local contributions give the global vector, i.e., λdist(i) =
∑

q λ
(q)
dist(kq(i)). Hence, each188

processor only holds the part of λ, which belongs to its patches, either in a distributed or189

accumulated description. The Lagrange multipliers and the search direction of the CG are190

represented in the accumulated setting, whereas the residual is given in the distributed191

representation. In order to achieve the accumulated representation, information exchange192

between the neighbours of a patch is required. This is done after applying the matrix and193

the preconditioner, respectively and implemented via MPI_Send and MPI_Recv operations.194

The last aspect in the parallel CG implementation is the realization of scalar products.195

Given a distributed representation udist of u and an accumulated representation of vacc of196

C. Hofer, Parallelization of cG and dG-IETI-DP methods 11

v, the scalar product (u, v)l2 is then given by (u, v)l2 =
∑

q(u
(q)
dist, v

(q)
acc)l2 , i.e., first the local197

scalar products are formed, globally added, and distributed with MPI_Allreduce .198

5.2. Assembling199

The assembling routine of the IETI-DP algorithm consists of the following steps:200

1. Assemble the patch local stiffness matrices and right hand side,201

2. assemble the system matrix in (16) and calculating its LU-factorization,202

3. assemble SΠΠ and calculating its LU-factorization,203

4. calculate the LU-factorization of K(k)
II ,204

5. calculate the right hand side {gΠ, g∆} = g̃ ∈ W̃ ∗, with g(k) = fB−K(k)
BI (K

(k)
II)−1f

(k)
I .205

Most of the tasks are completely independent of each other and, hence, can be performed206

in parallel. Only the calculation of SΠΠ and g̃ = ĨTg require communication, which will207

be handled in Section 5.3.208

The LU-factorization of SΠΠ is only required at one processor, since it has to be solved209

only once per CG iteration. According to [29], it is advantageous to distribute this matrix210

to all other processors in order to reduce communication in the solver part, see [32] and211

references therein for improving scalability based on a different approach. In the current212

paper, we investigate cases, where one, several and all processor hold the LU-factorization213

of SΠΠ. Therefore, each processor is assigned to exactly one holder of SΠΠ. This relation214

is implemented by means of an additional MPI communicator.215

We note that, for extremely large scale problems with ≥ 105 subdomains, one has to216

consider different strategies dealing with S−1
ΠΠ. Most commonly one uses AMG and solves217

SΠΠuΠ = fΠ in an inexact way, see, e.g., [27] and [31]. When considering a moderate218

number of patches, i.e., 103 − 104, the approach using the LU-factorization of SΠΠ is the219

most efficient one. In this paper, we restrict ourselves to this case.220

The patch local matrix S(k)
ΠΠ is obtained as a part of the solutions of (16) and the assem-221

bling of the global matrix SΠΠ is basically a MPI_gatherv operation. In the case where222

all processors hold SΠΠ we use MPI_allgatherv. If several processors hold the LU fac-223

torization, we just call MPI_gatherv on each of these processors. A different possibility224

would be to first assemble SΠΠ on one patch, distribute it to the other holders and then225

calculate the LU-factorization on each of the processors.226

5.3. Solver and Preconditioner227

More communication is involved in the solver part. According to Algorithm1, we have to228

perform the following operations:229

1. application of B and BT and its scaled versions230

2. application of Ĩ and ĨT231

3. application of S̃−1
232

4. application of S−1
233

The only operations which require communication are Ĩ and ĨT . To be more precise,234

the communication is hidden in the operators A and R, see Section 4.2, all other oper-235

ations are block operations, where the corresponding matrices are stored locally on each236

C. Hofer, Parallelization of cG and dG-IETI-DP methods 12

processor. In principle, their implementation is given by accumulating and distributing237

values. The actual implementation depends on how many processors hold the coarse grid238

problem.239

In order to implement Ĩ, we need the distribution operation R. If all processors hold240

SΠΠ, this operations reduces to just extracting the right entries. Hence it is local and241

no communication is required. Otherwise, each holder of SΠΠ reorders and duplicates242

the entries of wΠ in such a way, that all entries corresponding to the patches of a single243

slave are in a contiguous block of memory. Then we utilize the MPI_scatter method to244

distribute only the necessary data to all slave processors. See Figure 1 for an illustration.245

We arrive at the implementation of ĨT . Each processor stores the values of w(k)
Π in a246

vector w̃(k)
Π of length nΠ already in such a way, that

∑N
k=1 w̃

(k)
Π = wΠ. Storing the entries247

in this way enables the use the MPI reduction operations to efficiently assemble the local248

contributions. If only one processor holds the coarse problem, we use the MPI_Reduce249

method to perform this operation. Similarly, if all processors hold SΠΠ, we utilize the250

MPI_Allreduce method. If several processors have the coarse grid problem, we use a251

two level approach. First, each master processor collects the local contributions from252

its slaves using the MPI_Reduce operation. In the second step, all the master processors253

perform an MPI_Allreduce operation to accumulate the contributions from each group254

and simultaneously distribute the result under them. This procedure is visualized in255

Figure 1.256

(a) Distribution operation (b) Assembling operation

Figure 1: Distribution and assembling operation, illustrated for four processors, partitioned into two
groups corresponding to two S−1

ΠΠ holder.

6. Numerical examples257

We consider the model problem (1) in the two dimensional computational domain Ω =258

(0, 1)2 formed by 32 × 32 = 1024 patches. Each of them is a square arranged in a259

uniform grid. For the three dimensional case we consider the domain Ω = (0, 1)2× (0, 2),260

partitioned into 8× 8× 16 regular cubes. Note that, in IgA framework, we cannot choose261

the number of subdomains as freely as in the finite element case since they are fixed by262

the geometry. Therefore, the number of 1024 subdomains stays constant throughout the263

C. Hofer, Parallelization of cG and dG-IETI-DP methods 13

tests. Since we are interested in the parallel scalability of the proposed algorithms, we264

assume for simplicity homogeneous diffusion coefficients α ≡ 1. In all tests we consider the265

smooth right hand side f(x, y) = 20π2 sin(4π(x+ 0.4)) sin(2π(y + 0.3)), corresponding to266

the exact solution u(x, y) = sin(4π(x+0.4)) sin(2π(y+0.3))+x+y. For the discretization,267

we use tensor B-Spline spaces Vh of different degree p. We increase the B-Spline degree in268

such a way that the number of knots stay the same, i.e., the smoothness of Vh increases.269

We investigate the scaling behaviour of the cG-IETI-DP and dG-IETI-DP method. Al-270

though, we consider also the dG variant, we restrict ourselves to matching meshes. Oth-271

erwise, it would not be possible to compare the two methods. Moreover, some patches272

would have a significant larger number of dofs, which leads to load imbalances and affects273

the scaling in a negative way. The domain is refined in a uniform way by inserting a274

single knot for each dimension on each knot span. We denote by Hk the patch diameter275

and by hk the characteristic mesh size on Ω(k). The set of primal variables is chosen by276

continuous patch vertices and interface averages for the two dimensional setting. For the277

three dimensional examples, we choose only continuous edge averages in order to keep the278

number of primal variables small.279

The preconditioned conjugate gradient method is used to solve (14) with the scaled Dirich-280

let preconditionerM−1
sD . We choose zero initial guess and a relative reduction of the resid-281

ual of 10−8. For solving the local systems and the coarse grid problem, a direct solver is282

used.283

The algorithm is realized in the isogeometric open source C++ library G+SMO [40],284

which is based on the Eigen library [17]. We utilize the PARDISO 5.0.0 Solver Project285

[35] for performing the LU factorizations. The code is compiled with the gcc 4.8.3286

compiler with optimization flag -O3. For the communication between the processors, we287

use the MPI 2 standard with the OpenMPI 1.10.2 implementation. The results are obtain288

on the RADON1 cluster at Linz. We use 64 out of 68 available nodes, each equipped with289

2x Xeon E5-2630v3 “Haswell” CPU (8 Cores, 2.4Ghz, 20MB Cache) and 128 GB RAM.290

This gives the total number of 1024 available cores.291

We investigate two quantities, the assembling phase and the solving phase. In the assem-292

bling phase, we account for the time used for293

• assembling the local matrices and right hand sides,294

• LU-factorization of KII ,295

• LU-factorization of
[
K CT

C 0

]
,296

• calculation of Φ̃ and µ̃,297

• assembling the coarse grid matrix SΠΠ and calculation of its LU factorization.298

As already indicated in Section 5, SΠΠ is only assembled on certain processors. The299

solving phase consists of the CG algorithm for (14) and the back-substitution to obtain300

the solution from the Lagrange multipliers. The main ingredients are301

• application of F ,302

• application of M−1
sD .303

C. Hofer, Parallelization of cG and dG-IETI-DP methods 14

In Section 6.1 and Section 6.2, we study the weak and strong scaling behaviour for the304

cG-IETI-DP and the dG-IETI-DP method. In this two sections, we assume that only one305

processor holds the coarse grid matrix SΠΠ. The comparison of having a different number306

of SΠΠ holders is done in Section 6.3.307

6.1. Weak scaling308

In this subsection we investigate the weak scaling behaviour, i.e., the relation of problem309

size and number of processors is constant. In each refinement step we multiply the number310

of used cores by 2d, d ∈ {2, 3}. The ideal behaviour would be a constant time for each311

refinement.312

First, we consider the two dimensional case. We apply three initial refinements and start313

with a single processor and perform up to additional 5 refinements with maximum 1024314

processors. We choose as primal variables continuous vertex values and edge averages.315

The results for degree p ∈ {2, 3, 4} are illustrated in Figure 2. The first row of figures316

corresponds to the cG-IETI-DP method, and the second one corresponds to the dG-317

IETI-DP method. The left column of Table 1 summarizes timings and the speedup for318

the cG-IETI-DP method, whereas the right column presents the results for the dG-IETI-319

DP method. For each method, we investigate the weak scaling for the assembling and320

solution phase. As in Figure 2, we present the scaling and timings for p ∈ {2, 3, 4}.321

 1 4 16 64 256 1024 1

Procs

0

1

2

3

4

5

6

7

8

9

T
im

e
 (

s
)

cG - Weak Scaling

Assembling

Solving

(a) p = 2

 1 4 16 64 256 1024 1

Procs

0

5

10

15

T
im

e
 (

s
)

cG - Weak Scaling

Assembling

Solving

(b) p = 3

 1 4 16 64 256 1024 1

Procs

0

5

10

15

20

25
T

im
e

 (
s
)

cG - Weak Scaling

Assembling

Solving

(c) p = 4

 1 4 16 64 256 1024 1

Procs

0

1

2

3

4

5

6

7

8

9

10

T
im

e
 (

s
)

dG - Weak Scaling

Assembling

Solving

(d) p = 2

 1 4 16 64 256 1024 1

Procs

0

2

4

6

8

10

12

14

16

T
im

e
 (

s
)

dG - Weak Scaling

Assembling

Solving

(e) p = 3

 1 4 16 64 256 1024 1

Procs

0

5

10

15

20

25

T
im

e
 (

s
)

dG - Weak Scaling

Assembling

Solving

(f) p = 4

Figure 2: Weak scaling of the cG-IETI-DP (first row) and dG-IETI-DP (second row) method for B-Spline
degrees p ∈ {2, 3, 4} in two dimensions. Each degree corresponds to one column.

We observe that the time used for the assembling stays almost constant, hence shows322

quite optimal behaviour. However, the time for solving the system increases when re-323

fining and increasing the number of used processors. Especially, when considering the324

largest number of processors, we see a clear increase of the solution time. One reason is325

that the number of iterations slightly increases when increasing the system size. This is326

due to the quasi optimal condition number bound of the IETI-DP type methods, cf. (15).327

C. Hofer, Parallelization of cG and dG-IETI-DP methods 15

cG-IETI-DP p = 2 dG-IETI-DP p = 2

procs #dofs Iter. Ass.
Time

Solv.
Time

Total
Time #dofs Iter. Ass.

Time
Solv.
Time

Total
Time

1 99104 7 4.8 1.9 6.7 133824 8 6.7 2.8 9.5
4 328224 8 3.0 1.8 4.8 394688 9 4.1 2.4 6.5
16 1179680 9 2.9 1.9 4.8 1309632 10 3.5 2.3 5.8
64 4455456 10 3.0 2.4 5.4 4712384 11 3.4 2.7 6.1
256 17298464 11 3.5 4.2 7.7 17809344 11 3.8 4.2 8.0
1024 68150304 11 3.8 4.4 8.2 69169088 12 4.2 4.7 8.9

cG-IETI-DP p = 3 dG-IETI-DP p = 3

procs #dofs Iter. Ass.
Time

Solv.
Time

Total
Time #dofs Iter. Ass.

Time
Solv.
Time

Total
Time

1 120576 8 7.2 2.6 9.8 159264 8 10.3 3.5 13.8
4 366080 9 5.3 2.4 7.7 436512 9 7.2 3.0 10.2
16 1250304 10 5.5 2.8 8.3 1384224 10 6.3 3.0 9.3
64 4591616 10 5.6 3.4 9.0 4852512 11 6.4 4.5 10.9
256 17565696 11 6.6 6.3 12.9 18080544 12 7.2 6.9 14.1
1024 68679680 12 7.3 7.0 14.3 69702432 12 7.9 7.3 15.2

cG-IETI-DP p = 4 dG-IETI-DP p = 4

procs #dofs Iter. Ass.
Time

Solv.
Time

Total
Time #dofs Iter. Ass.

Time
Solv.
Time

Total
Time

1 144096 8 11.7 3.0 14.7 186752 9 16.7 4.6 21.3
4 405984 9 10.0 3.3 13.3 480384 10 12.4 3.8 16.2
16 1322976 10 9.7 3.4 13.1 1460864 11 11.5 4.1 15.6
64 4729824 11 10.0 5.0 15.0 4994688 11 11.0 5.5 16.5
256 17834976 12 11.9 9.3 21.2 18353792 12 13.0 9.8 22.8
1024 69211104 13 13.0 11.3 24.3 70237824 13 13.5 11.4 24.9

Table 1: Weak scaling results for the two dimensional testcase for the cG and dG IETI-DP method. Left
column contains results for the cG variant and the right column for the dG version. Each row corresponds
to a fixed B-Spline degree p ∈ {2, 3, 4}

Secondly, as already pointed out in Section 5, the solving phase consists of more commu-328

nication between processors, which cannot be completely overlapped with computations.329

Moreover, one also has to take in account global synchronization points in the conjugate330

gradient method.331

Next, we consider the weak scaling for the three dimensional case. As already indicated332

in the introduction of this section, we choose only continuous edge averages as primal333

variables. We perform the tests in the same way as for the two dimensional case. However,334

we already start with two processors and perform two initial refinements. Multiplying335

the number of used processors by 8 with each refinement, we end up again with 1024336

processors on the finest grid. The two algorithms behave similar to the two dimensional337

case, where the assembling phase gives quite good results and the solver phase shows338

again an increasing time after each refinement. The results are visualized in Figure 3 and339

summarized in Table 2. Note, for the dG-IETI-DP method with p = 4 and ∼ 54 Mio.340

dofs, we exceeded the memory capacity of the cluster.341

6.2. Strong scaling342

Secondly, we are investigating the strong scaling behaviour. Now we fix the problem size343

and increase the number of processors. In the optimal case, the time used by a certain344

quantity reduces in the same way as the number of used processors increases. We use345

C. Hofer, Parallelization of cG and dG-IETI-DP methods 16

 2 16 128 1024

Procs

0

5

10

15

20

25

30

35

40

T
im

e
 (

s
)

cG - Weak Scaling

Assembling

Solving

(a) p = 2

 2 16 128 1024

Procs

0

20

40

60

80

100

120

T
im

e
 (

s
)

cG - Weak Scaling

Assembling

Solving

(b) p = 3

 2 16 128 1024

Procs

0

50

100

150

200

250

300

350

400

T
im

e
 (

s
)

cG - Weak Scaling

Assembling

Solving

(c) p = 4

 2 16 128 1024

Procs

0

10

20

30

40

50

60

70

T
im

e
 (

s
)

dG - Weak Scaling

Assembling

Solving

(d) p = 2

 2 16 128 1024

Procs

0

20

40

60

80

100

120

140

160

180

200

T
im

e
 (

s
)

dG - Weak Scaling

Assembling

Solving

(e) p = 3

 2 16 128 1024

Procs

0

50

100

150

200

250

300

350

400

T
im

e
 (

s
)

dG - Weak Scaling

Assembling

Solving

(f) p = 4

Figure 3: Weak scaling of the cG-IETI-DP (first row) and dG-IETI-DP (second row) method for B-
Spline degrees p ∈ {2, 3, 4} in three dimensions. Each degree corresponds to one column. No timings are
obtained in the case of 1024 cores in (f) due to memory limitations

the same primal variables for the strong scaling studies as in the weak scaling studies in346

Section 6.1.347

Again as in Section 6.1, we begin with the two dimensional example. We perform 7 initials348

refinements and end up with 17 Mio. dofs on 1024 subdomains. We start already with349

4 processors in the initial case and do 8 refinements until we reach 1024 cores. Similar350

to Section 6.1, the results for p ∈ {2, 3, 4} are illustrated in Figure 4 and summarized in351

Table 3.352

We observe that the assembling phase has a quite good scaling performance, as already353

observed for the weak scaling results in Section 6.1. Moreover, the higher the B-Spline354

degree, the better the parallel performance behaves. This holds due to increased computa-355

tional costs for the parallel part. Similar to the weak scaling results, the solver phase does356

not provide such an excellent scaling as the assembling phase. Still, we obtain a scaling357

from around 500 when using 1024 processors. We note that the degree of the B-Splines358

does not seem to have such a significant effect on the scaling for the solver phase as for359

the assembling phase.360

In the three dimensional example we perform four initial refinements and obtain around361

5 Mio. dofs. The presentation of the results is done in the same way as in the previous362

examples, see Figure 5 and Table 4. Also in three dimensions the cG-IETI-DP algorithms363

behaves very similarly to the two dimensional case, showing excellent scaling results.364

However, the dG version of the algorithm shows a good scaling but not as promising as365

cG version. Especially, when considering p = 2, we observe degraded scalability for the366

assembling phase. Having a closer look at the timings, we observe that this originates367

from small load imbalances in the interior domains, due to the additional layer of dofs368

and the larger number of primal variables. The latter one leads to an increased time in369

C. Hofer, Parallelization of cG and dG-IETI-DP methods 17

cG-IETI-DP p = 2 dG-IETI-DP p = 2

procs #dofs Iter. Ass.
Time

Solv.
Time

Total
Time #dofs Iter. Ass.

Time
Solv.
Time

Total
Time

2 220896 16 8.8 3.8 12.6 396932 26 23.3 14.0 37.3
16 1023200 17 8.0 4.7 12.7 1551400 27 16.9 12.3 29.2
128 5969376 17 9.0 7.5 16.5 7730288 28 17.5 17.0 34.5
1024 40238048 19 17.7 21.0 38.7 46577920 28 26.2 41.2 67.4

cG-IETI-DP p = 3 dG-IETI-DP p = 3

procs #dofs Iter. Ass.
Time

Solv.
Time

Total
Time #dofs Iter. Ass.

Time
Solv.
Time

Total
Time

2 350840 17 36.2 7.9 44.1 598405 29 85.3 28.1 113.4
16 1361976 18 34.5 8.4 42.9 2005737 30 64.2 26.5 90.7
128 7020728 18 40.0 15.0 55.0 8985265 30 65.4 31.3 96.7
1024 43894200 21 69.4 48.4 117.8 50613825 31 92.6 91.0 183.6

cG-IETI-DP p = 4 dG-IETI-DP p = 4

procs #dofs Iter. Ass.
Time

Solv.
Time

Total
Time #dofs Iter. Ass.

Time
Solv.
Time

Total
Time

2 523776 18 146.6 14.8 161.4 853878 32 307.3 55.1 362.4
16 1768320 18 149.2 15.9 165.1 2538650 32 250.7 49.8 300.5
128 8188800 20 163.6 25.6 189.2 10367970 34 232.0 55.4 287.4
1024 47765376 22 259.7 96.9 356.6 ∼54000000 x x x x

Table 2: Weak scaling results for the three dimensional testcase for the cG and dG IETI-DP method. Left
column contains results for the cG variant and the right column for the dG version. Each row corresponds
to a fixed B-Spline degree p ∈ {2, 3, 4}. No timings are available for the dG-IETI-DP method with p = 4
on 1024 cores due to memory limitations.

solving (16), due to a larger number of right hand sides on the interior subdomains. One370

can further optimize the three dimensional case, by considering different strategies for371

the primal variables, where one aims for smaller and more equally distributed numbers of372

primal variables.373

6.3. Study on the number of S−1
ΠΠ holders374

In this last section of the numerical experiments, we want to investigate the influence of375

the number of holders of S−1
ΠΠ on the scaling behaviour. As already indicated in Section 5.3,376

if more processors hold the LU-factorization of the coarse grid matrix, it is possible to377

decrease the communication effort after applying S−1
ΠΠ, while having more communication378

before the application. The advantage of this strategy is to be able to have a better379

overlap of communication with computations. However one has to take into account, that380

this also increases the communication in the assembling phase, since the local contribution381

S
(k)
ΠΠ has to be sent to all the master processors.382

We only consider the two dimensional domain, where we perform 7 initials refinements,383

but on a decomposition with 4096 subdomains and end up with around 70 Mio. dofs.384

This gives a comparable setting as in Section 6.1 having the most refined domain. In order385

to better observe the influence of the number of S−1
ΠΠ holders, we increase the number of386

subdomains, leading to a larger coarse grid problem. We only investigate the case of using387

1024 processors and the number of SΠΠ holders given by 2n, n ∈ {0, 1, . . . , 10}. Hence, we388

obtain the number of master processors ranging from 1 to 1024, such that each master389

has the same number of slaves. The results are summarized in Figure 6 and Table 5.390

We observe that choosing several holders of the coarse grid problem in the cG version391

C. Hofer, Parallelization of cG and dG-IETI-DP methods 18

100 200 300 400 500 600 700 800 900 1000

Processors

100

200

300

400

500

600

700

800

900

1000
S

p
e

e
d

u
p

cG - Strong Scaling

Ideal Scaling
Assembling
Solving

(a) cG-IETI-DP

100 200 300 400 500 600 700 800 900 1000

Processors

100

200

300

400

500

600

700

800

900

1000

S
p

e
e

d
u

p

dG - Strong Scaling

Ideal Scaling
Assembling
Solving

(b) dG-IETI-DP

Figure 4: Strong scaling of the cG-IETI-DP (left column) and dG-IETI-DP (right column) method for
B-Spline degrees p ∈ {2, 3, 4} in two dimensions. The markers {◦, ∗,♦} as well as different shades of red
(assembling phase) and blue (solver phase) correspond to the degrees {2, 3, 4}.

100 200 300 400 500 600 700 800 900 1000

Processors

100

200

300

400

500

600

700

800

900

1000

S
p

e
e

d
u

p

cG - Strong Scaling

Ideal Scaling
Assembling
Solving

(a) cG-IETI-DP

100 200 300 400 500 600 700 800 900 1000

Processors

100

200

300

400

500

600

700

800

900

1000

S
p

e
e

d
u

p

dG - Strong Scaling

Ideal Scaling
Assembling
Solving

(b) dG-IETI-DP

Figure 5: Strong scaling of the cG-IETI-DP (left column) and dG-IETI-DP (right column) method for
B-Spline degrees p ∈ {2, 3, 4} in three dimensions. The markers {◦, ∗,♦} as well as different shades of red
(assembling phase) and blue (solver phase) correspond to the degrees {2, 3, 4}.

does not really have a significant effect. However, in the dG version, due to an increased392

number of primal variables, the use of several holders actually increases the performance393

of the solver by around 10%. Nevertheless, what is gained in the solving part does not pay394

off with the additional effort in the assembling phase. Considering the total computation395

time in Table 5, the best options is still either using only a single coarse grid problem on396

one processor or making a redundant factorization on each processor.397

7. Conclusion398

We have investigated the parallel scalability of the cG-IETI-DP and dG-IETI-DP method,399

respectively. Numerical tests showed a very good scalability in the strong and weak scal-400

ing for the assembling phase for both methods. We reached a speedup of approximately401

900 when using 1024 cores. Although the speedup of the solver phase is not as good as the402

one for the assembler phase, we still reached a speedup of around 500 when using 1024403

C. Hofer, Parallelization of cG and dG-IETI-DP methods 19

2d p = 2 p = 3 p = 4

cG-IETI-DP
assembling

phase
solving
phase

assembling
phase

solving
phase

assembling
phase

solving
phase

procs Time Sp. Time Sp. Time Sp. Time Sp. Time Sp. Time Sp.
4 190.8 4 138.2 4 364.5 4 202.6 4 653.7 4 279.1 4
8 94.8 8 88.8 6 181.2 8 141.8 6 325.9 8 202.7 6
16 47.1 16 45.9 12 89.9 16 71.9 11 162.3 16 102.6 11
32 23.1 32 22.9 24 44.5 32 35.7 23 80.4 32 51.3 22
64 11.6 65 11.8 46 22.4 65 18.5 44 40.2 64 26.3 42
128 5.9 127 7.3 75 11.3 128 11.1 73 20.4 128 14.8 75
256 3.0 247 4.1 133 5.7 251 6.1 131 10.4 250 8.7 128
512 1.6 471 2.1 257 2.9 487 3.2 250 5.3 493 4.7 235
1024 0.9 819 1.1 472 1.6 891 1.6 494 2.8 917 2.4 456

dG-IETI-DP
assembling

phase
solving
phase

assembling
phase

solving
phase

assembling
phase

solving
phase

procs Time Sp. Time Sp. Time Sp. Time Sp. Time Sp. Time Sp.
4 216.6 4 144.0 4 402.2 4 225.5 4 711.8 4 294.2 4
8 106.9 8 92.9 6 199.5 8 156.8 5 352.6 8 210.6 5
16 52.5 16 47.9 12 98.1 16 80.4 11 174.3 16 106.4 11
32 25.1 34 25.7 22 47.5 33 42.2 21 84.9 33 55.2 21
64 12.7 68 12.2 47 23.9 67 20.4 44 42.9 66 27.0 43
128 6.5 132 7.6 75 12.0 134 11.6 77 21.7 131 15.1 77
256 3.4 252 4.1 140 6.2 255 6.6 135 11.4 249 9.0 129
512 1.9 455 2.2 260 3.4 472 3.3 267 6.0 474 4.9 236
1024 1.1 777 1.1 498 1.9 846 1.7 528 3.2 885 2.3 494

Table 3: Strong scaling results: Time (s) and Speedup for p ∈ {2, 3, 4} in two dimensions having approx-
imately 17 Mio. dofs. First row shows results for the cG variant of the IETI-DP method, whereas the
second row contains results for the dG version. Each column corresponds to a degree p.

cores. One can even increase the parallel performance of the solver part by increasing404

the number of processors, which are holding the coarse grid problem. However, numer-405

ical examples have shown that this does not really pay off in the total time, due to an406

increased assembling time. To summarize, we saw that the proposed methods are well407

suited for large scale parallelization of assembling and solving IgA equations in two and408

three dimensions.409

Acknowledgements410

This work was supported by the Austrian Science Fund (FWF) under the grant W1214-411

N15, project DK4. This support is gratefully acknowledged. Moreover, the author wants412

to thank Prof. Ulrich Langer for the valuable comments and support during the prepara-413

tion of the paper. He also gratefully acknowledges the support of Katharina Rafetseder414

of the Institute of Numerical Mathematics, Johannes Kepler University Linz (JKU) and415

Ioannis Toulopoulos and Angelos Mantzaflaris, Radon Institute of Computational and416

Applied Mathematics Linz (RICAM).417

References418

[1] Y. Bazilevs, L. Beirão da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli.419

Isogeometric analysis: Approximation, stability and error estimates for h-refined420

meshes. Math. Models Methods Appl. Sci., 16(7):1031–1090, 2006.421

C. Hofer, Parallelization of cG and dG-IETI-DP methods 20

3d p = 2 p = 3 p = 4

cG-IETI-DP
assembling

phase
solving
phase

assembling
phase

solving
phase

assembling
phase

solving
phase

procs Time Sp. Time Sp. Time Sp. Time Sp. Time Sp. Time Sp.
8 140.4 8 93.7 8 624.8 8 205.3 8 2565.7 8 382.6 8
16 70.5 16 47.7 16 312.8 16 103.4 16 1285.6 16 182.5 17
32 35.2 32 25.0 30 157.0 32 53.7 31 643.3 32 93.7 33
64 17.5 64 11.9 63 78.6 64 27.2 60 322.5 64 46.6 66
128 9.0 125 7.9 95 40.2 124 14.9 110 163.0 126 26.4 116
256 4.8 236 4.2 178 20.4 245 8.8 187 82.1 250 13.9 221
512 2.5 452 2.6 294 10.3 483 5.6 296 41.4 496 10.0 305
1024 1.4 807 1.5 506 5.5 906 3.2 509 21.4 961 5.8 526

dG-IETI-DP
assembling

phase
solving
phase

assembling
phase

solving
phase

assembling
phase

solving
phase

procs Time Sp. Time Sp. Time Sp. Time Sp. Time Sp. Time Sp.
8 249.6 8 210.8 8 985.8 8 433.2 8 3588.1 8 854.8 8
16 126.2 16 106.6 16 498.6 16 217.1 16 1792.9 16 405.7 17
32 65.0 31 56.6 30 255.4 31 110.3 31 913.5 31 205.0 33
64 33.1 60 30.5 55 128.5 61 58.2 60 460.0 62 105.9 65
128 17.4 115 17.0 99 65.5 120 30.7 113 234.3 123 56.4 121
256 9.4 212 9.6 175 33.8 233 18.4 188 117.8 244 35.4 193
512 5.1 391 6.1 277 17.4 453 11.5 302 59.9 479 21.4 320
1024 3.1 653 3.5 481 9.6 822 7.1 491 31.3 917 13.2 517

Table 4: Strong scaling results: Time (s) and Speedup for p ∈ {2, 3, 4} in three dimensions having
approximately 5 Mio. dofs. First row shows results for the cG variant of the IETI-DP method, whereas
the second row contains results for the dG version. Each column corresponds to a degree p.

[2] Y. Bazilevs, V. Calo, J. Cottrell, J. Evans, T. Hughes, S. Lipton, M. Scott, and422

T. Sederberg. Isogeometric analysis using T-splines. Computer Methods in Applied423

Mechanics and Engineering, 199(5–8):229 – 263, 2010. Computational Geometry and424

Analysis.425

[3] L. Beirão da Veiga, A. Buffa, G. Sangalli, and R. Vázquez. Mathematical analysis426

of variational isogeometric methods. Acta Numerica, 23:157–287, 2014.427

[4] L. Beirão da Veiga, D. Cho, L. F. Pavarino, and S. Scacchi. Overlapping Schwarz428

methods for isogeometric analysis. SIAM J. Numer. Anal., 50(3):1394–1416, 2012.429

[5] L. Beirão Da Veiga, D. Cho, L. F. Pavarino, and S. Scacchi. BDDC preconditioners430

for isogeometric analysis. Math. Models Methods Appl. Sci., 23(6):1099–1142, 2013.431

[6] L. Beirão da Veiga, D. Cho, L. F. Pavarino, and S. Scacchi. Isogeometric Schwarz432

preconditioners for linear elasticity systems. Comput. Methods Appl. Mech. Eng.,433

253:439–454, 2013.434

[7] J. A. Cotrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis, Toward435

Integration of CAD and FEA. John Wiley and Sons, 2009.436

[8] D. A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods.437

Berlin: Springer, 2012.438

[9] C. R. Dohrmann. A preconditioner for substructuring based on constrained energy439

minimization. SIAM J. Sci. Comput., 25(1):246–258, 2003.440

C. Hofer, Parallelization of cG and dG-IETI-DP methods 21

cG-IETI-DP p = 2 p = 3 p = 4

S−1
ΠΠ

Holder
Assemble
Time

Solving
Time

Total
Time

Assemble
Time

Solving
Time

Total
Time

Assemble
Time

Solving
Time

Total
Time

1 3.61 3.66 7.27 6.50 5.52 12.02 11.23 8.30 19.53
2 4.49 3.58 8.07 7.97 5.57 13.54 13.83 8.02 21.85
4 4.53 3.82 8.35 7.65 5.40 13.05 13.60 8.09 21.69
8 4.46 3.63 8.09 7.72 5.76 13.48 13.32 8.15 21.47
16 4.34 3.49 7.83 7.64 5.61 13.25 13.16 7.93 21.09
32 4.33 3.73 8.06 7.74 5.39 13.13 13.15 8.78 21.93
64 4.34 3.59 7.93 7.62 5.45 13.07 13.10 8.04 21.14
128 4.49 4.06 8.55 7.60 6.05 13.65 13.06 8.47 21.53
256 4.31 4.64 8.95 7.63 6.43 14.06 13.02 8.81 21.83
512 4.34 3.61 7.95 7.55 5.71 13.26 13.23 8.09 21.32
1024 3.73 3.80 7.53 6.56 5.77 12.33 11.19 8.26 19.45

dG-IETI-DP p = 2 p = 3 p = 4

S−1
ΠΠ

Holder
Assemble
Time

Solving
Time

Total
Time

Assemble
Time

Solving
Time

Total
Time

Assemble
Time

Solving
Time

Total
Time

1 4.57 5.09 9.66 7.28 7.16 14.44 12.44 10.01 22.45
2 5.23 4.16 9.39 9.10 6.26 15.36 15.02 9.01 24.03
4 5.25 4.18 9.43 9.12 6.58 15.70 14.93 8.73 23.66
8 5.19 4.28 9.47 8.97 6.29 15.26 14.95 9.30 24.25
16 5.26 4.20 9.46 8.78 6.41 15.19 14.79 9.16 23.95
32 5.11 4.64 9.75 8.82 6.29 15.11 14.96 9.05 24.01
64 5.35 4.75 10.1 9.06 6.87 15.93 14.85 9.37 24.22
128 5.07 6.06 11.13 8.88 8.25 17.13 14.61 10.65 25.26
256 5.07 5.89 10.96 8.66 7.77 16.43 14.52 11.32 25.84
512 5.03 6.15 11.18 8.66 8.29 16.95 14.43 11.16 25.59
1024 4.70 5.33 10.03 7.45 7.68 15.13 12.89 10.60 23.49

Table 5: Influence of the number of processors having an LU-factorization of SΠΠ. Timings in seconds
for 1024 Processors on a domain with around 70 Mio. dofs and 2048 subdomains.

[10] C. R. Dohrmann. An approximate BDDC preconditioner. Numerical Linear Algebra441

with Applications, 14(2):149–168, 2007.442

[11] C. C. Douglas, G. Haase, and U. Langer. Tutorial on Elliptic PDE Solvers and Their443

Parallelization. Society for Industrial and Applied Mathematics, Philadelphia, PA,444

USA, 2003.445

[12] M. Dryja, J. Galvis, and M. Sarkis. BDDC methods for discontinuous Galerkin446

discretization of elliptic problems. J. Complexity, 23(4-6):715–739, 2007.447

[13] M. Dryja, J. Galvis, and M. Sarkis. A FETI-DP preconditioner for a composite finite448

element and discontinuous Galerkin method. SIAM J. Numer. Anal., 51(1):400–422,449

2013.450

[14] M. Dryja and M. Sarkis. 3-d feti-dp preconditioners for composite finite element-451

discontinuous galerkin methods. In Domain Decomposition Methods in Science and452

Engineering XXI, pages 127–140. Springer, 2014.453

[15] C. Giannelli, B. Jüttler, and H. Speleers. THB-splines: the truncated basis for454

hierarchical splines. Comput. Aided Geom. Design, 29, 2012.455

[16] C. Giannelli, B. Jüttler, and H. Speleers. Strongly stable bases for adaptively refined456

multilevel spline spaces. Advances in Computational Mathematics, 40:459–490, 2014.457

C. Hofer, Parallelization of cG and dG-IETI-DP methods 22

 1 2 4 8 16 32 64 128 256 512 1024

Number of S
ΠΠ

-1
 holder

0

1

2

3

4

5

6

7

8

9

T
im

e
 (

s
)

cG - formulation

Total Time
Assembling
Solving

(a) p = 2

 1 2 4 8 16 32 64 128 256 512 1024

Number of S
ΠΠ

-1
 holder

0

5

10

15

T
im

e
 (

s
)

cG - formulation

Total Time
Assembling
Solving

(b) p = 3

 1 2 4 8 16 32 64 128 256 512 1024

Number of S
ΠΠ

-1
 holder

0

5

10

15

20

25

T
im

e
 (

s
)

cG - formulation

Total Time
Assembling
Solving

(c) p = 4

 1 2 4 8 16 32 64 128 256 512 1024

Number of S
ΠΠ

-1
 holder

0

2

4

6

8

10

12

T
im

e
 (

s
)

dG - formulation

Total Time
Assembling
Solving

(d) p = 2

 1 2 4 8 16 32 64 128 256 512 1024

Number of S
ΠΠ

-1
 holder

0

2

4

6

8

10

12

14

16

18

T
im

e
 (

s
)

dG - formulation

Total Time
Assembling
Solving

(e) p = 3

 1 2 4 8 16 32 64 128 256 512 1024

Number of S
ΠΠ

-1
 holder

0

5

10

15

20

25

30

T
im

e
 (

s
)

dG - formulation

Total Time
Assembling
Solving

(f) p = 4

Figure 6: Influence of the number of S−1
ΠΠ holders on the scaling. First row corresponds to cG-IETI-DP,

second row to dG-IETI-DP. Each column has a fixed degree p ∈ {2, 3, 4}. Figures (a-c) summarizes the
cG version and Figures (d-f) the dG version, respectively.

[17] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.458

[18] C. Hofer and U. Langer. Dual-primal isogeometric tearing and interconnecting meth-459

ods. In P. Neittanmakki, J. Periaux, and O. Pironneau, editors, Contributions to460

PDE for Applications, Springer-ECCOMAS series ”Computational Methods in Ap-461

plied Sciences”. Springer, Berlin, Heidelberg, New York, 2016. to appear.462

[19] C. Hofer and U. Langer. Dual-primal isogeometric tearing and intercon-463

necting solvers for multipatch dG-IgA equations. Computer Methods in Ap-464

plied Mechanics and Engineering, 2016. In Press, Accepted Manuscript,465

http://dx.doi.org/10.1016/j.cma.2016.03.031.466

[20] C. Hofer, U. Langer, and I. Toulopoulos. Discontinuous Galerkin Isogeometric Anal-467

ysis of Elliptic Diffusion Problems on Segmentations with Gaps. SIAM J. Sci. Com-468

put., 2016. Accepted Manuscript, available also at: http://arxiv.org/abs/1511.05715.469

[21] C. Hofer, U. Langer, and I. Toulopoulos. Discontinuous Galerkin Isogeo-470

metric Analysis on non-matching segmentation: error estimates and efficient471

solvers. RICAM-Report 23, Johann Radon Institute for Computational and472

Applied Mathematics, Austrian Academy of Sciences, 2016. available at473

https://www.ricam.oeaw.ac.at/publications/ricam-reports/Report No. 2016-23.474

[22] C. Hofer and I. Toulopoulos. Discontinuous Galerkin Isogeometric Analysis of elliptic475

problems on segmentations with non-matching interfaces. Computers & Mathematics476

with Applications, 72(7):1811 – 1827, 2016.477

[23] J. Hoschek and D. Lasser. Fundamentals of Computet Aided Geometric Design. A478

K Peters, Wellesley, Massachusetts, 1993. Translated by L. Schumaker.479

C. Hofer, Parallelization of cG and dG-IETI-DP methods 23

[24] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite480

elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl.481

Mech. Engrg., 194:4135–4195, 2005.482

[25] B. Jüttler, M. Kapl, D.-M. Nguyen, Q. Pan, and M. Pauley. Isogeometric segmen-483

tation: The case of contractible solids without non-convex edges. Computer-Aided484

Design, 57:74–90, 2014.485

[26] A. Klawonn, M. Lanser, and O. Rheinbach. Nonlinear FETI-DP and BDDC methods.486

SIAM J. Sci. Comput., 36(2):737–765, 2014.487

[27] A. Klawonn, M. Lanser, and O. Rheinbach. Toward extremely scalable nonlinear488

domain decomposition methods for elliptic partial differential equations. SIAM J.489

Sci. Comput., 37(6):c667–c696, 2015.490

[28] A. Klawonn, M. Lanser, and O. Rheinbach. A nonlinear FETI-DP method with an491

inexact coarse problem. In Domain decomposition methods in science and engineering492

XXII. Proceedings of the 22nd international conference on domain decomposition493

methods, Lugano, Switzerland, September 16–20, 2013, pages 41–52. Cham: Springer,494

2016.495

[29] A. Klawonn, M. Lanser, O. Rheinbach, H. Stengel, and G. Wellein. Hybrid496

MPI/OpenMP Parallelization in FETI-DP Methods, pages 67–84. Springer Inter-497

national Publishing, Cham, 2015.498

[30] A. Klawonn and O. Rheinbach. A parallel implementation of Dual-Primal FETI499

methods for three-dimensional linear elasticity using a transformation of basis. SIAM500

Journal on Scientific Computing, 28(5):1886–1906, 2006.501

[31] A. Klawonn and O. Rheinbach. Inexact FETI-DP methods. International journal502

for numerical methods in engineering, 69(2):284–307, 2007.503

[32] A. Klawonn and O. Rheinbach. Highly scalable parallel domain decomposition meth-504

ods with an application to biomechanics. ZAMM - Journal of Applied Mathematics505

and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 90(1):5–32,506

2010.507

[33] A. Klawonn, O. Rheinbach, and L. F. Pavarino. Exact and inexact FETI-DP methods508

for spectral elements in two dimensions. In Domain decomposition methods in science509

and engineering XVII. Selected papers based on the presentations at the 17th inter-510

national conference on domain decomposition methods, St. Wolfgang/Strobl, Austria,511

July 3–7, 2006., pages 279–286. Berlin: Springer, 2008.512

[34] S. Kleiss, C. Pechstein, B. Jüttler, and S. Tomar. IETI–isogeometric tearing and513

interconnecting. Computer Methods in Applied Mechanics and Engineering, 247:201–514

215, 2012.515

[35] A. Kuzmin, M. Luisier, and O. Schenk. Fast methods for computing selected ele-516

ments of the greens function in massively parallel nanoelectronic device simulations.517

In F. Wolf, B. Mohr, and D. Mey, editors, Euro-Par 2013 Parallel Processing, vol-518

ume 8097 of Lecture Notes in Computer Science, pages 533–544. Springer Berlin519

Heidelberg, 2013.520

C. Hofer, Parallelization of cG and dG-IETI-DP methods 24

[36] U. Langer, A. Mantzaflaris, S. E. Moore, and I. Toulopoulos. Multipatch dis-521

continuous Galerkin isogeometric analysis. In B. Jüttler and B. Simeon, editors,522

Isogeometric Analysis and Applications IGAA 2014, volume 107 of Lecture Notes523

in Computer Science, pages 1–32, Heidelberg, 2015. Springer. also available at524

http://arxiv.org/abs/1411.2478.525

[37] U. Langer and I. Toulopoulos. Analysis of multipatch discontinuous Galerkin IgA526

approximations to elliptic boundary value problems. Computing and Visualization527

in Science, 17(5):217–233, 2015.528

[38] J. Li and O. B. Widlund. On the use of inexact subdomain solvers for BDDC529

algorithms. Comput. Methods Appl. Mech. Eng., 196(8):1415–1428, 2007.530

[39] J. Mandel, C. R. Dohrmann, and R. Tezaur. An algebraic theory for primal and dual531

substructuring methods by constraints. Appl. Numer. Math., 54(2):167–193, 2005.532

[40] A. Mantzaflaris, C. Hofer, et al. G+Smo (Geometry plus Simulation modules) v0.8.1.533

http://gs.jku.at/gismo, 2015.534

[41] M. Pauley, D.-M. Nguyen, D. Mayer, J. Speh, O. Weeger, and B. Jüttler. The535

isogeometric segmentation pipeline. In B. Jüttler and B. Simeon, editors, Isogeo-536

metric Analysis and Applications IGAA 2014, Lecture Notes in Computer Science,537

Heidelberg, 2015. Springer. to appear, also available as Technical Report no. 31 at538

http://www.gs.jku.at.539

[42] C. Pechstein. Finite and boundary element tearing and interconnecting solvers for540

multiscale problems. Berlin: Springer, 2013.541

[43] O. Rheinbach. Parallel iterative substructuring in structural mechanics. Arch. Com-542

put. Methods Eng., 16(4):425–463, 2009.543

[44] B. Rivière. Discontinuous Galerkin methods for solving elliptic and parabolic equa-544

tions. Theory and implementation. Philadelphia, PA: Society for Industrial and Ap-545

plied Mathematics (SIAM), 2008.546

[45] A. Toselli and O. B. Widlund. Domain decomposition methods – algorithms and547

theory. Berlin: Springer, 2005.548

[46] X. Tu. Three-level BDDC in three dimensions. SIAM Journal on Scientific Comput-549

ing, 29(4):1759–1780, 2007.550

[47] X. Tu. Three-level BDDC in two dimensions. International journal for numerical551

methods in engineering, 69(1):33–59, 2007.552

[48] S. Zampini. Inexact BDDC Methods for the Cardiac Bidomain Model, pages 247–255.553

Springer International Publishing, Cham, 2014.554

