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Abstract

The class of objects we consider are algebraic relations between the four kinds of classical Jacobi
theta functions θj(z|τ), j = 1, . . . , 4, and their derivatives. We present an algorithm to prove
such relations automatically where the function argument z is zero, but where the parameter τ
in the upper half complex plane is arbitrary.
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1. Introduction

The overall objective of this paper is to provide tools for the computer-assisted treat-

ment of identities among Jacobi theta functions. In the first step of development, this

amounts to zero-recognition of Taylor coefficients of the respective series expansions of

theta functions. To introduce the general idea and application domain of the method

presented in this paper, consider the following lemma that has been used in numerous

papers like Berndt et al. (1995), Hirschhorn et al. (1993) and Garvan (2010) to prove

relations between Jacobi theta series.
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Lemma 1.1. (Atkin and Swinnerton-Dyer (1954)) Given a non-zero meromorphic func-

tion f on C \ {0} and f(wx) ≡ 1 cxnf(x) for some integer n and non-zero complex

constants c and w with 0 < |w| < 1, then

# poles(f) = # zeros(f) + n

in |w| < |x| ≤ 1.

To do zero recognition of such f(x) = f(x, q), where q is a parameter, the lemma

classically is applied as follows: one cleverly chooses sufficiently many zeros x1, . . . , xm in

the domain |w| < |x| ≤ 1. According to the lemma the number m of such zeros needs to

be greater than the number of poles of f minus n, in order to show that f is identically

zero. By their clever choice of x1, . . . , xm, each f(xi, q) is a modular form when viewed as

a function of q. And, zero-recognition of modular forms is algorithmical owing to methods

using Sturm bounds or valence formula, e.g., Lemma 4.9 and Proposition 5.13.

Our approach is different and streamlines the idea above by choosing only one eval-

uation point, namely xi = 1 for all i, and by verifying that f (j)(1, q) = 0 for j ∈
{0, . . . ,m− 1}. In this way we prove that there is a zero of multiplicity at least m, which

again implies that f(x) ≡ 0.

For j ≥ 1, the Taylor coefficients are not in general modular forms anymore. A crucial

point is that, nevertheless, the task of proving relations like f (j)(1, q) = 0 can again be

carried out algorithmically for a large class of problems specified below. The functions

that are the building blocks of this class are the Jacobi theta functions θj(z|τ) (j =

1, . . . , 4) and their derivatives evaluated at z = 0. The θj(z|τ) are defined as follows.

Definition 1.2. DLMF (2016) Let τ ∈ H := {z ∈ C : Im(z) > 0} and q = eπiτ , then

θ1(z|τ) = θ1(z, q) := 2

∞∑
n=0

(−1)nq(n+ 1
2 )2 sin((2n+ 1)z),

θ2(z|τ) = θ2(z, q) := 2

∞∑
n=0

q(n+ 1
2 )2 cos((2n+ 1)z),

θ3(z|τ) = θ3(z, q) := 1 + 2

∞∑
n=1

qn
2

cos(2nz),

θ4(z|τ) = θ4(z, q) := 1 + 2

∞∑
n=1

(−1)nqn
2

cos(2nz).

To exemplify our method of using Lemma 1.1, we consider the following classical

example.

Example 1.3. DLMF (2016) For q ∈ C with 0 < |q| < 1, prove

θ3(0, q)2θ3(z, q)2 − θ4(0, q)2θ4(z, q)2 − θ2(0, q)2θ2(z, q)2 ≡ 0. (1)

1 We use the notation f1(z1, z2, . . . ) ≡ f2(z1, z2, . . . ) if we want to emphasize that the equality between

the functions holds for all possible choices of the arguments zj .
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Proof. Let fj(x) := θj(z, q) with x(z) = e2iz. Then using the series expansions in Defini-
tion 1.2 one can verify directly that f2

j (q2x) = q−2x−2f2
j (x). Define

g(x) := θ3(0, q)2f3(x)2 − θ4(0, q)2f4(x)2 − θ2(0, q)2f2(x)2.

Observing that g(q2x) = q−2x−2g(x), to prove the identity, by Lemma 1.1 it is suffi-
cient to show that g(x) has at least three more zeros than poles in |q2| < |x| ≤ 1. By
Definition 1.2, g(x) has no pole in C. The Taylor expansion of g(x) around x = 1 is

g(x) = g(1) + g′(1)(x− 1) +
g′′(1)

2
(x− 1)2 +

g(3)(1)

6
(x− 1)3 +O((x− 1)4).

We need to show

g(1) = 0, g′(1) = 0 and g′′(1) = 0. (2)

Let h(z) := LHS of (1). Because h(z) = g(e2iz) = g(x), h′(z) = 2ixg′(x) and h′′(z) =
−4xg′(x)− 4x2g′′(x), to show (2), it is sufficient to show

h(0) =θ3(0, q)4 − θ2(0, q)4 − θ4(0, q)4 ≡ 0, (3)

h′(0) =2θ3(0, q)3θ′3(0, q)− 2θ2(0, q)3θ′2(0, q)− 2θ4(0, q)3θ′4(0, q) ≡ 0, (4)

and h′′(0) =θ3(0, q)2θ′3(0, q)2 − θ2(0, q)2θ′2(0, q)2 − θ4(0, q)2θ′4(0, q)2

+ θ3(0, q)3θ′′3 (0, q)− θ2(0, q)3θ′′2 (0, q)− θ4(0, q)3θ′′4 (0, q) ≡ 0. (5)

Note that identity (4) is trivial because θ′2(0, q) ≡ θ′3(0, q) ≡ θ′4(0, q) ≡ 0. The other
two equalities will be treated below. In general, proving such identities can be done in a
purely algorithmic fashion which will be explained in this paper.

2. Problem specification

As pointed out in the Introduction, this article deals with algorithmic zero recognition
of relations arising among Taylor coefficients of theta functions. Throughout the paper
N := {0, 1, 2, . . . }, H := {z ∈ C : Im(z) > 0} and K ⊆ C is a field. We assume that K
contains all the complex constants we need (i.e., i, eπi/4, etc.). In algorithmic contexts, K
is an effectively computable field. Throughout the paper for z = ceiϕ (c > 0, 0 ≤ ϕ < 2π)
we define zr := creirϕ for r ∈ 1

2Z.
For fixed τ ∈ H, Definition 1.2 implies that the θj(z|τ) (j = 1, . . . , 4) are analytic

functions on the whole complex plane with respect to z. For fixed z ∈ C, the θj(z|τ)
(j = 1, . . . , 4) are analytic functions of τ for all τ ∈ H, and correspondingly, analytic
functions of q for |q| < 1. When z = 0, we often denote

θ
(k)
j (τ) :=

∂kθj
∂zk

(z|τ)

∣∣∣∣
z=0

(
=
∂kθj
∂zk

(z, q)

∣∣∣∣
z=0

)
, k ∈ N.

Definition 1.2 implies that θ
(k1)
1 (τ) ≡ 0 when k1 ∈ 2N, and θ

(k2)
m (τ) ≡ 0 (m = 2, 3, 4)

when k2 ∈ 2N + 1. Hence in the following setting we omit these cases.

Let {xj,k}k∈N,j=1,...,4 be a set of indeterminates. For convenience, we denote x
(k)
j :=

xj,k. Sometimes we write xj for x
(0)
j and x′j for x

(1)
j . Define RΘ := K[Θ] where

Θ :=
{
θ

(2k+1)
1 : k ∈ N

}
∪
{
θ

(2k)
j : k ∈ N and j = 2, 3, 4

}
,
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and RX := K[X] where

X :=
{
x

(2k+1)
1 : k ∈ N

}
∪
{
x

(2k)
j : k ∈ N and j = 2, 3, 4

}
.

By homomorphic extension we define the K-algebra homomorphism 2

φ : RX → RΘ,

x
(k)
j 7→ θ

(k)
j .

In this paper, we solve the following membership problem algorithmically:

Problem: Given p ∈ RX , decide whether p ∈ kerφ.

To solve this problem, we need to extend the K-algebras and the map φ as follows:

φ∗ : RX [s
1
2 ]→ RΘ[δ

1
2 ],

x
(k)
j 7→ θ

(k)
j ,

s
1
2 7→ δ

1
2 ,

where for all τ ∈ H and r ∈ 1
2N, δr(τ) := τ r. Since φ and φ∗ are surjective, we have

RX/kerφ ∼= RΘ and RX [s
1
2 ]/kerφ∗ ∼= RΘ[δ

1
2 ]. Here we consider s

1
2 as a symbol for an

indeterminate. We prefer to use s
1
2 instead of choosing a standard indeterminate like x

or y as usual for polynomial rings.

The paper is structured as follows. In Section 3, we introduce a notion of degree

in the K-algebra RX , and based on this we state a way to decompose any p ∈ RX
into homogeneous polynomials in RX . We prove that to show p ∈ kerφ is equivalent to

showing that the corresponding homogeneous polynomials are in kerφ. In Section 4 we

develop a recursive algorithm to determine for a given homogeneous g ∈ RX whether

g ∈ kerφ or g 6∈ kerφ. In Section 5 we obtain a refined non-recursive algorithm which is

more convenient to implement and with linear computational complexity in the length

of g.

3. Decomposition of p ∈ RX

Lemma 3.1. (Serre, 1973, p. 78, Thm. 2) Let

SL2(Z) :=

{(
a b

c d

)
: ad− bc = 1 and a, b, c, d ∈ Z

}
.

Then SL2(Z) is generated by S :=

(
0 −1

1 0

)
and T :=

(
1 1

0 1

)
.

2 Here a K-algebra homomorphism is a ring homomorphism and a K-vector space homomorphism.
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Definition 3.2. For γ =

(
a b

c d

)
∈ SL2(Z), k ∈ Z and f : H → C, we define f |kγ :

H→ C by

(f |kγ)(τ) := (cτ + d)−kf

(
aτ + b

cτ + d

)
.

For instance, for the generators S and T , we have

(f |kS)(τ) ≡ τ−kf(−1/τ) and (f |kT )(τ) ≡ f(τ + 1).

Note. This action f |kγ of γ on f (for fixed k) is a group action. Hence knowing the
action of generators (here S and T acting on the function space) gives the full action.

Let us consider the actions on theta functions when τ 7→ −1/τ and τ 7→ τ + 1. We
first look at the case τ 7→ −1/τ .

Lemma 3.3. (Whittaker and Watson, 1965, p. 475) For the action of S on θj(z|τ)
(j = 1, . . . , 4) we have

θ1

(
z
∣∣− 1

τ

)
≡ −i(−iτ)

1
2 e

iτz2

π θ1(zτ |τ); θ2

(
z
∣∣− 1

τ

)
≡ (−iτ)

1
2 e

iτz2

π θ4(zτ |τ);

θ3

(
z
∣∣− 1

τ

)
≡ (−iτ)

1
2 e

iτz2

π θ3(zτ |τ); θ4

(
z
∣∣− 1

τ

)
≡ (−iτ)

1
2 e

iτz2

π θ2(zτ |τ).

We extend Lemma 3.3 to derivatives.

Proposition 3.4. DefineA := (−iτ)
1
2 and E := e

iτz2

π . For (u, v) ∈ {(1, 1), (2, 4), (3, 3), (4, 2)}
and k ∈ N define

gu(k) := (E A)−1 ∂
kθv
∂zk

(
z
∣∣− 1

τ

)
.

Then gu(k) can be written as

gu(k) = pk,0(z)θu(zτ |τ) + pk,1(z)θ′u(zτ |τ) + · · ·+ pk,k(z)θ(k)
u (zτ |τ) (∗)

with pk,j(z) = k!
j!

(
i
π

) k−j
2 τ

k+j
2 Bk,j(z) and

Bk,j(z) =

{
a0(k, j) + a2(k, j)z2 + a4(k, j)z4 + · · ·+ ak−j(k, j)z

k−j , k − j even;

a1(k, j)z + a3(k, j)z3 + a5(k, j)z5 + · · ·+ ak−j(k, j)z
k−j , k − j odd,

where for ` ∈ {0, . . . , k − j} when (u, v) = (1, 1),

a`(k, j) = −i
(
iτ

π

) `
2 2`

`!(k−j−`2 )!
; (∗∗)

and when (u, v) ∈ {(2, 4), (3, 3), (4, 2)},

a`(k, j) =

(
iτ

π

) `
2 2`

`!(k−j−`2 )!
.

Proof. We prove the statement for (u, v) = (1, 1). The other three cases are analogous.
We first prove by complete induction on k that for k ∈ N the relation (∗) holds where
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the pk,j(z) (0 ≤ j ≤ k) are polynomials in z. Then we prove that Bk,j(z) has the desired
form.

For k = 0 we have p0,0(z) = −i by Lemma 1.1. Assume that (∗) holds for k = n where
the pn,j(z) (0 ≤ j ≤ n) are polynomials in z.

Let k = n+ 1. We have

g1(n+ 1) = (E A)−1 ∂
n+1θ1

∂zn+1

(
z
∣∣− 1

τ

)
=

2iτz

π
g1(n) +

∂g1(n)

∂z
.

Since ∂g1(n)
∂z = p′n,0(z)θ1(zτ |τ)+(τpn,0(z)+p′n,1(z))θ′1(zτ |τ)+ · · ·+τpn,nθ

(n+1)
1 (zτ |τ), we

obtain g1(n + 1) = pn+1,0(z)θ1(zτ |τ) + pn+1,1(z)θ′1(zτ |τ) + · · · + pn+1,n(z)θ
(n+1)
1 (zτ |τ),

where the pn+1,j(z) (j = 0, . . . , n+ 1) are polynomials in z.
Using the fact just proven we can exploit a recursive relation for g1(k) in the following

way. On one hand, by

E Ag1(k + 1) =
∂k+1θ1

∂zk+1

(
z
∣∣− 1

τ

)
=
∂(E Ag1(k))

∂z
,

we obtain

g1(k + 1) =
2izτ

π
g1(k) +

∂g1(k)

∂z

=
2izτ

π

k∑
j=0

pk,j(z)θ
(j)
1 (zτ |τ) +

k∑
j=1

(
∂pk,j(z)

∂z
+ τpk,j−1(z)

)
θ

(j)
1 (zτ |τ)

+ τpk,k(z)θ
(k+1)
1 (zτ |τ) +

∂pk,0(z)

∂z
θ1(zτ |τ).

On the other hand,

g1(k + 1) =

k+1∑
j=0

pk+1,j(z)θ
(j)
1 (zτ |τ),

and by coefficient comparison, and defining pk,−1(z) := 0 and pk,k+1(z) := 0 we obtain,

pk+1,j(z) =
2izτ

π
pk,j(z) +

∂pk,j(z)

∂z
+ τpk,j−1(z), 0 ≤ j ≤ k. (6)

Now we can prove that Bk,j(z) has the desired form by induction on k ∈ N. By definition
we know B0,0(z) = −i. Assume for k = n, Bk,j(z) has the desired form. Let k = n + 1.
Applying (6) we have for j = 0, . . . , n+ 1,

(n+ 1)Bn+1,j(z) = 2z

(
iτ

π

) 1
2

Bn,j(z) +

(
iτ

π

)− 1
2 ∂Bn,j(z)

∂z
+ jBn,j−1(z).

Case 1: n− j is even. Then

(n+ 1)Bn+1,j(z) =2

(
iτ

π

) 1
2

(a0(n, j)z + a2(n, j)z3 + · · ·+ an−j(n, j)z
n−j+1)

+

(
iτ

π

)− 1
2

(2a2(n, j)z + 4a4(n, j)z3 + · · ·+ (n− j)an−jzn−j−1)

+ j(a1(n, j − 1)z + a3(n, j − 1)z3 + · · ·+ an−j+1(n, j − 1)zn−j+1).
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We compare this to

Bn+1,j(z) = a1(n+ 1, j)z+a3(n+ 1, j)z3 +a5(n+ 1, j)z5 + · · ·+an−j+1(n+ 1, j)zn−j+1,

and obtain for 1 ≤ 2m+ 1 ≤ n− j − 1,

a2m+1(n+ 1, j) =
1

n+ 1

(
2

(
iτ

π

) 1
2

a2m(n, j) +

(
iτ

π

)− 1
2

(2m+ 2)a2m+2(n, j) + ja2m+1(n, j − 1)

)

=
−i
n+ 1

((
iτ

π

)m+ 1
2 22m+1

(2m)!(n−j2 −m)!
+

(
iτ

π

)m+ 1
2 22m+2

(2m+ 1)!(n−j2 −m− 1)!

+ j

(
iτ

π

)m+ 1
2 22m+1

(2m+ 1)!(n−j2 −m)!

)

=(−i)
(
iτ

π

)m+ 1
2 22m+1

(2m+ 1)!(n−j2 −m)!
;

and for 2m+ 1 = n− j + 1,

a2m(n+ 1, j) =
1

n+ 1

(
2

(
iτ

π

) 1
2

a2m(n, j) + ja2m+1(n, j − 1)

)

=
−i
n+ 1

(
iτ

π

)m+ 1
2 22m+1

(2m)!(n−j2 −m)!

(
1 +

j

2m+ 1

)
=(−i)

(
iτ

π

)m+ 1
2 22m+1

(2m+ 1)!(n−j2 −m)!
.

Thus for 1 ≤ 2m+ 1 ≤ n− j + 1, a2m+1(n+ 1, j) satisfies (∗∗).

Case 2: n − t is odd. This case can be treated in the same way as Case 1, and the
computation shows that for 0 ≤ 2m ≤ n − j + 1, a2m(n + 1, j) satisfies (∗∗). Thus we
have proven that Bn+1,j(z) has the desired form. 2

Applying Proposition 1 with z = 0, we have:

Corollary 3.5. For k ∈ 2N + 1,

θ
(k)
1

(
−1

τ

)
= (−i) 3

2

k∑
j=1

j∈2N+1

(
i

π

) k−j
2 k!

j!(k−j2 )!
τ
k+j+1

2 θ
(j)
1 (τ);

for k ∈ 2N and (u, v) ∈ {(2, 4), (3, 3), (4, 2)},

θ(k)
u

(
−1

τ

)
= (−i) 1

2

k∑
j=0
j∈2N

(
i

π

) k−j
2 k!

j!(k−j2 )!
τ
k+j+1

2 θ(j)
v (τ).

We carry these analytic relations over to the symbolic algebra.
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Definition 3.6. We define two K-algebra homomorphisms:

S0 : RΘ → RΘ[δ
1
2 ]

by

(S0f)(τ) :≡ (f |0S)(τ)

(
≡ f

(
−1

τ

))
;

and
SX : RX −→ RX [s

1
2 ]

by the homomorphic extension of

SX(x
(k)
1 ) := (−i) 3

2

k∑
j=1

j∈2N+1

(
i

π

) k−j
2 k!

j!(k−j2 )!
s
k+j+1

2 x
(j)
1 ,

if k ∈ 2N + 1; and of

SX(x(k)
u ) := (−i) 1

2

k∑
j=0
j∈2N

(
i

π

) k−j
2 k!

j!(k−j2 )!
s
k+j+1

2 x
(j)
σ(u),

if k ∈ 2N and u ∈ {2, 3, 4}, where σ is the permutation on {1, 2, 3, 4} that transposes 2
and 4.

Lemma 3.7. The following diagram commutes:

RX
SX−−→ RX [s

1
2 ]

φ
y yφ∗

RΘ −→
S0

RΘ[δ
1
2 ]

Proof. The way SX was introduced in Definition 3.6 as a homomorphic extension sat-
isfies exactly the required property. 2

By Definition 3.6 we know the explicit form of SX(p) for any p ∈ RX , and can set up
the following convention.
Convention. Whenever for a non-zero p ∈ RX we write

SX(p) =

n∑
j=1

scjpj ,

we assume that

pj ∈ RX \ {0} and c1 < · · · < cn with cj ∈
1

2
N.

For c ∈ 1
2N the notation 〈sc〉q refers to the coefficient of sc in q ∈ RX [s

1
2 ].

Example 3.8. Let p = x
(4)
2 x′′4 . Then

SX(p) = p4s
7 + p3s

6 + p2s
5 + p1s

4,

where p4 := −ix′′2x(4), p3 := 2
πx2x

(4)+ 12
π x
′′
2x
′′
4 , p2 := 12i

π2 x4x
′′
2+ 24i

π2 x2x
′′
4 and p1 := 24

π3x2x4.
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Now we consider the action when τ 7→ τ + 1. One can derive from Definition 1.2 the
following lemma.

Lemma 3.9. For the action of T on θ
(k)
j (τ) (j = 1, . . . , 4) we have for k ∈ N,

θ
(k)
1 (τ + 1) ≡ eπi4 θ(k)

1 (τ); θ
(k)
2 (τ + 1) ≡ eπi4 θ(k)

2 (τ);

θ
(k)
3 (τ + 1) ≡ θ(k)

4 (τ); θ
(k)
4 (τ + 1) ≡ θ(k)

3 (τ).

Again, we carry these relations over to the algebraic side.

Definition 3.10. For k ∈ N we define two K-algebra homomorphisms

T0 : RΘ → RΘ

by

(T0f)(τ) :≡ (f |0T )(τ) (≡ f(τ + 1));

and

TX : RX −→ RX ,

by the homomorphic extension of

TX(x
(2k+1)
1 ) := e

πi
4 x

(2k+1)
1 , TX(x

(2k)
2 ) := e

πi
4 x

(2k)
2 ,

TX(x
(2k)
3 ) := x

(2k)
4 and TX(x

(2k)
4 ) := x

(2k)
3 .

Analogous to Lemma 3.7 we have:

Lemma 3.11. The following diagram commutes:

RX
TX−−→ RX

φ
y yφ

RΘ −→
T0

RΘ

Proof. By Lemma 3.9 and Definition 3.10 we have

φ(TX(x
(k)
1 ))(τ) ≡ φ(e

πi
4 x

(k)
1 )(τ) ≡ eπi4 θ(k)

1 (τ) ≡ θ(k)
1 (τ+1) ≡ φ(x

(k)
1 )(τ+1) ≡ (T0φ(x

(k)
1 ))(τ).

Analogously we have φ(TX(x
(k)
j ))(τ) ≡ φ(x

(k)
j )(τ + 1) for j = 2, 3, 4. The rest follows

from the fact that TX is defined by homomorphic extension. 2

Example 3.12. Let p = x
(4)
2 x′′4 . Then

TX(p) = e
πi
4 x

(4)
2 x′′3 .

Note. Obviously, T 8
X = id.

A non-trivial monomial in RX is a finite product of elements in {x(k)
j : k ∈ N, j =

1, . . . , 4}. The empty product gives 1 ∈ RX ; it is considered to be the trivial monomial.
Hence a polynomial in RX is a K-linear combination of monomials in RX .

9



Definition 3.13. We define the degree of a non-trivial monomial x
(k1)
j1

x
(k2)
j2
· · ·x(kn)

jn
∈

RX where ki ∈ N and ji ∈ {1, . . . , 4} by

Deg(x
(k1)
j1

x
(k2)
j2
· · ·x(kn)

jn
) :=

n

2
+

n∑
i=1

ki,

and define the degree of the trivial monomial by Deg(1) := 0. For every polynomial
p ∈ RX , define Deg(p) := highest degree of the monomials in its K-linear representation.
If all these monomials have the same degree, we say this polynomial is a homogeneous
polynomial.

Example 3.14. Deg(−x(3)
1 ) = 7

2 , Deg(2x
(3)
1 x4) = 4, and 2x

(3)
1 x4 − 3x

(2)
4 x′1 is a homoge-

neous polynomial.

Note. This definition is related to the weight of modular forms. See Definition 4.5 and
Lemma 4.6.

According to Definition 3.13, we can write a polynomial p ∈ RX into a sum of homo-
geneous polynomials with pairwise different degrees. As mentioned in the Introduction,
we are going to show that p ∈ RX is in kerφ if and only if these homogeneous parts are
all in kerφ. The key tool we use here is the SX operation. We shall start by studying the
SX patterns on monomials of RX .

Lemma 3.15. Let p ∈ RX be a non-trivial monomial and SX(p) =
n∑
t=1

sctpt. Then the

pt are homogeneous and

Deg (〈sct〉SX(p)) = Deg(pt) = 2ct −Deg(p), 1 ≤ t ≤ n.

Moreover, we have
cn = Deg(p)

and, if p = x
(k1)
i1

x
(k2)
i2
· · ·x(km)

im
:

〈scn〉SX(p) = 〈sDeg(p)〉SX(p) = (−i)m2 +cx
(k1)
σ(i1)x

(k2)
σ(i2) · · ·x

(km)
σ(im)

where c is the number of 1s in (i1, i2, . . . , im) and σ is the permutation on {1, 2, 3, 4} that
transposes 2 and 4.

Proof. Suppose p = x
(k1)
i1

x
(k2)
i2
· · ·x(km)

im
with xi1 = xi2 = · · · = xic = x1 and xij 6= x1

for c+ 1 ≤ j ≤ m. Then, writing � for coefficients in K whose exact values are irrelevant
for the proof, we have

SX(p) =SX(x
(k1)
i1

)SX(x
(k2)
i2

) · · ·SX(x
(km)
im

)

=
(

(−i) 3
2x

(k1)
1 sk1+ 1

2 + �x(k1−2)
1 sk1−

1
2 + · · ·+ �x′1s

k1
2 +1

)
· · ·(

(−i) 1
2x

(kc+1)
σ(ic+1)s

kc+1+ 1
2 + �x(kc+1−2)

σ(ic+1) skc+1− 1
2 + · · ·+ �xσ(ic+1)s

kc+1
2 + 1

2

)
· · ·(

(−i) 1
2x

(km)
σ(im)s

km+ 1
2 + �x(km−2)

σ(im) skm−
1
2 + · · ·+ �xσ(im)s

km
2 + 1

2

)
.
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Hence

〈sDeg(p)〉SX(p) = 〈scn〉SX(p) = (−i)m2 +cx
(k1)
σ(i1)x

(k2)
σ(i2) · · ·x

(km)
σ(im)

and

cn =

m∑
j=1

(kj +
1

2
) =

m

2
+

m∑
j=1

kj = Deg(p).

In the expansion of SX(p) each monomial has the form

m∏
j=1

x
(kj−2aj)

σ(ij)
skj+

1
2−aj =s

m∑
j=1

kj+
m
2 −

m∑
j=1

aj m∏
j=1

x
(kj−2aj)

σ(ij)

=sDeg(p)−a
m∏
j=1

x
(kj−2aj)

σ(ij)
,

where the aj are integers with 0 ≤ aj ≤ kj−1
2 for 1 ≤ j ≤ c and 0 ≤ aj ≤ kj

2 for

c+ 1 ≤ j ≤ m and a :=
m∑
j=1

aj . Thus

Deg
(
〈sDeg(p)−a〉SX(p)

)
= Deg

 m∏
j=1

x
(kj−2aj)
ij

 =
m

2
+

m∑
j=1

(kj − 2aj) = Deg(p)− 2a.

Substituting Deg(p)− a by ct we obtain

Deg (〈sct〉SX(p)) = 2ct −Deg(p), 1 ≤ t ≤ n.

2

For convenience we have:

Definition 3.16. For monomials p = x
(k1)
i1

. . . x
(km)
im

∈ RX we define

µ(p) : = m;

ν1(p) : = number of 1s in (i1, . . . , im),

ν2(p) : = number of 2s in (i1, . . . , im), and

σ(p) : = x
(k1)
σ(i1) . . . x

(km)
σ(im),

where σ(ij) is defined to be the permutation on {1, 2, 3, 4} that transposes 2 and 4..

Now we study the SX operator on homogeneous polynomials.

Corollary 3.17. Let p ∈ RX be homogeneous. Then SX(p) = 0 if and only if p = 0.

Proof. “⇐= ” is obvious. So we prove “ =⇒ ”. Assume 0 6= p = a1p1 + · · ·+ anpn with

the pj ∈ RX linearly independent monomials over K \ {0} with the same degree and

the aj ∈ K \ {0}. Then the σ(pj) are also linearly independent monomials over K \ {0}

11



because the involution σ is an automorphism on RX , and

〈sDeg(p)〉SX(p) = 〈sDeg(p)〉(a1SX(p1) + · · ·+ anSX(pn))

= a1〈sDeg(p)〉SX(p1) + · · ·+ an〈sDeg(p)〉SX(pn)

= a1(−i)ν1(p1)+
µ(p1)

2 σ(p1) + · · ·+ an(−i)ν1(pn)+
µ(pn)

2 σ(pn).

Since the (−i)ν1(pj)+
µ(pj)

2 are non-zero, we obtain 〈sDeg(p)〉SX(p) 6= 0. Therefore SX(p) 6=
0. 2

Lemma 3.18. Given p ∈ RX homogeneous, and SX(p) =
n∑
t=1

sctpt with pt ∈ RX and

ct ∈ 1
2N such that c1 < · · · < cn. Then

(i) Deg(pn) = Deg(p) = cn;
(ii) for t ∈ {1, . . . , n} the pt are homogeneous ;
(iii) for i, j ∈ {1, . . . , n} with i < j we have Deg(pi) < Deg(pj).

Proof. Suppose
p = r1h1 + · · ·+ rqhq

with r` ∈ K \ {0} and pairwise different monomials h` ∈ RX . By assumption on p we
have Deg(h`) = Deg(p) =: d for all ` ∈ {1, . . . , q}. Suppose for 1 ≤ ` ≤ q:

SX(h`) =

n∑̀
t=1

sc`,tp`,t

where the c`,t and p`,t are as in Lemma 3.15.
Then

SX(p) =

q∑
`=1

r`SX(h`) =

n∑
j=1

scj
∑

(`,t)∈Cj

r`p`,t

where {c1, . . . , cn} = {c`,t : 1 ≤ ` ≤ q, 1 ≤ t ≤ n`} with the ordering c1 < c2 < · · · < cn,
and

Cj := {(`, t) ∈ {1, . . . , q} × {1, . . . , n`} : c`,t = cj}.
Now the statements follow from observing that for (`, t) ∈ Cj by Lemma 3.15:

Deg(p`,t) = 2c`,t − d = 2cj − d,

and for (`, t) ∈ Cn (i.e., t = n`) again by Lemma 3.15:

Deg(p`,t) = Deg(p`,n`) = c`,n` = Deg(h`) = d = cn.

2

Remark. Note that Lemma 3.18 actually justifies the definition of Deg and also the
Convention we introduced after Definition 3.6. Namely, the highest power of s in SX(p)
is Deg(p).

Definition 3.19. For each q ∈ RX [s
1
2 ] with q =

n∑
t=1

sctpt, using the Convention, we call

pn the leading coefficient of q, denoted by lc(q). We define lc(0) := 0.

12



Definition 3.20. Let RdX := {p ∈ RX : p homogeneous with Deg(p) = d} ∪ {0}. We
define the map

S̃ : RdX −→ RdX ,

by S̃(0) := 0 and if p 6= 0:

S̃(p) := lc(SX(p)).

Example 3.21. S̃(x
(3)
1 x4 − x(2)

4 x′2) = −x(3)
1 x2 + i x

(2)
2 x′4 by Lemmas 3.15 and 3.18.

Proposition 3.22. The map S̃ is K-linear and S̃8 = id.

Proof. The linearity of S̃ is obvious by Lemma 3.18. Let p ∈ RdX be such that p =
q∑̀
=1

r`h` with r` ∈ K \ {0} and with monomials h` ∈ RdX . Then, by Lemma 3.15, for

σ = (2, 4):

S̃8(p) =r1S̃
8(h1) + · · ·+ rqS̃

8(hq)

=r1(−i)8(
µ(h1)

2 +ν1(h1))σ8(h1) + · · ·+ rq(−i)8(
µ(hq)

2 +ν1(hq))σ8(hq)

=p

2

According to Lemma 3.18, for any homogeneous p ∈ RX , SX(p) has a presentation of
the form

SX(p) =

n∑
i=1

scipi ∈ RX [s
1
2 ] (7)

with homogeneous pi ∈ RX and where

c1 < · · · < cn and Deg(p1) < · · · < Deg(pn);

moreover,
cn = Deg(pn) = Deg(p).

Definition 3.23. A sum presentation of SX(p) as in (7) is called S-form presentation.
We also say that SX(p) written as in (7) is in S-form.

Lemma 3.24. Suppose p ∈ RX with p =
n∑
t=1

pt, where the pt are homogeneous and

Deg(pi) < Deg(pj) if i < j. If SX(p) =
m∑
t=1

sctqt is in S-form then S̃(pn) = qm.

Proof. First, by Lemma 3.18, we observe that

Deg(pi) = highest power of s in SX(pi). (8)

One has

qm = lc(SX(p)) = lc(SX(p1) + · · ·+ SX(pn)) = lc(SX(pn)) = S̃(pn),

where we used (8) together with Deg(pi) < Deg(pn) for i ∈ {1, . . . , n− 1}. 2
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For our context a special case of the slash operator, introduced in Definition 2, is of
special importance.

Recall S0 from Definition 3.6.

Lemma 3.25. Given F (τ) ∈ RΘ, let (S0F )(τ) ≡
n∑
t=1

τ ctft(τ) (ct ∈ 1
2N) with ft(τ) ∈ RΘ

and c1 < c2 < · · · < cn. Then F (τ) ≡ 0 if and only if ft(τ) ≡ 0 for all t ∈ {1, . . . , n}.

Proof. “⇐= ” is immediate.
“ =⇒ ”. If F (τ) ≡ 0 then (S0F )(τ) ≡ 0. Since ft(τ) ≡ ft(τ + 8), the rest can be done by
using the same method as used to prove Lemma 1.1 in Radu (2015). 2

Applying Lemma 3.7, we carry Lemma 3.25 over to the symbolic world RX .

Lemma 3.26. Let p ∈ RX and SX(p) =
n∑
t=1

sctpt in S-form. Then p ∈ kerφ if and only

if pt ∈ kerφ for all t ∈ {1, . . . , n}.

Proof. The definitions of φ and φ∗ imply that φ∗
∣∣
RX

= φ. Hence for τ ∈ H,

φ∗(SX(p))(τ) ≡
n∑
t=1

φ∗(sctpt)(τ) ≡
n∑
t=1

τ ctφ(pt)(τ) ≡ S0(φ(p))(τ),

where the last equality is by Lemma 3.7. Using also Lemma 3.25, we have the following
chain of equivalences:

p ∈ kerφ ⇐⇒ φ(p) = 0 ⇐⇒ S0(φ(p)) = 0 ⇐⇒ ∀t : φ(pt) = 0,

which completes the proof. 2

Theorem 3.27. Let p ∈ RX with p =
n∑
t=1

pt, where the pt ∈ RX are homogeneous and

Deg(pi) < Deg(pj) if i < j. Then p ∈ kerφ if and only if pt ∈ kerφ for all t ∈ {1, . . . , n}.

Proof. “⇐= ” is immediate.

“ =⇒ ”. Suppose p ∈ kerφ with SX(p) =
n1∑
t=1

sc1,tp1,t in S-form. By Lemma 3.24, S̃(pn) =

p1,n1
, and by Lemma 3.26, p1,n1

∈ kerφ. Next, if SX(p1,n1
) =

n2∑
t=1

sc2,tp2,t in S-form, then

S̃(p1,n1
) = p2,n2

and p2,n2
∈ kerφ. Iterating this process after k steps gives S̃k(pn) = pk,nk

with pk,nk ∈ kerφ. For k = 8, Proposition 2 gives pn = S̃8(pn) = p8,n8
∈ kerφ. Because of

p ∈ kerφ we conclude that
n−1∑
t=1

pt ∈ kerφ. Applying the same procedure to this element we

obtain pn−1 ∈ kerφ. Iterating we eventually obtain pt ∈ kerφ for all t ∈ {1, 2, . . . , n}. 2

Note. Theorem 1 is fundamental for our kernel membership test.
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4. Membership recognition for homogeneous p ∈ RX

Definition 4.1. Given p ∈ RX homogeneous, define:

LT(p) := {S̃k1T k2X S̃k3T k4X · · · (p) : ki ∈ N}.

We call LT(p) the leading term orbit of p.

Proposition 4.2. For homogeneous p ∈ RX , one has |LT(p)| ≤ 27 · 3 and the bound is
sharp.

Proof. Since p ∈ RX , p is a polynomial in infinitely many variables, that is p =

f(x1, . . . , x4, x
(1)
1 , . . . , x

(1)
4 , . . . ). Assume q ∈ LT(p), then q = σ̂f(x1, . . . , x4, x

(1)
1 , . . . , x

(1)
4 , . . . )

where σ̂ = S̃k1T k2X S̃k3T k4X · · · S̃kn−1T knX . One can verify that

σ̂f(x1, . . . , x4, x
(1)
1 , . . . , x

(1)
4 , . . . ) = f(σ̂x1, . . . , σ̂x4, σ̂x

(1)
1 , . . . , σ̂x

(1)
4 , . . . ).

Therefore the number of possible σ̂f is bounded by the number of possible infinite vectors

of the form (σ̂x1, . . . , σ̂x4, σ̂x
(1)
1 , . . . , σ̂x

(1)
4 , . . . ). Such a vector is uniquely determined by

the first four entries. We checked by computer that there are 384 possible values for the
first four entries. Therefore there are at most 384 = 27 · 3 different σ̂f . 2

Note. In fact, in view of T 8
X = id = S̃8, LT(p) is the p-orbit of a corresponding group

action. For instance,

if p1 ∈ LT(p) then LT(p1) = LT(p).

Lemma 4.3. Suppose p ∈ RX . If p ∈ kerφ then TX(p) ∈ kerφ.

Proof. If p ∈ kerφ then φ(p) = 0. Hence φ(TX(p))(τ) ≡ φ(p)(τ +1) ≡ 0 by Lemma 3.11.
Therefore TX(p) ∈ kerφ. 2

Lemma 4.4. Suppose p ∈ RX and g ∈ LT(p). Then p ∈ kerφ if and only if g ∈ kerφ.

Proof. “ =⇒ ”. Suppose SX(p) =
n∑
t=1

sctpt in S-form. From Lemma 3.26 we know that if

p ∈ kerφ, then S̃(p) = pn ∈ kerφ. By Lemma 4.3, TX(p) ∈ kerφ. According to Definition

8, for each g ∈ LT(p), there exist kj ∈ N such that g = S̃k1T k2X S̃k3T k4X · · · S̃kn−1T knX (p).
Thus if p ∈ kerφ then g ∈ kerφ. “ ⇐= ”. Noting that p ∈ LT(p) = LT(g) we can apply
“ =⇒ ”. 2

Definition 4.5. (Freitag and Busam, 2005, p.317) Let q = eπiτ , τ ∈ H. Given k ∈ N, a
modular form of weight k is an analytic function f on H such that

f

(
aτ + b

cτ + d

)
≡ (cτ + d)kf(τ) for all

(
a b

c d

)
∈ SL2(Z), (9)
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and where f(τ) can be written as a Taylor series in powers of q with complex coefficients;

i.e.,

f(τ) ≡
∞∑
n=0

ane
πiτn ≡

∞∑
n=0

anq
n. (10)

Note. Substituting

(
a b

c d

)
7→

(
1 1

0 1

)
in (9) we obtain f(τ + 1) ≡ f(τ). Therefore

f(τ + 1) ≡
∞∑
n=0

an(−q)n ≡
∞∑
n=0

anq
n ≡ f(τ), which implies by comparison of coefficients

that an = −an for all odd n ∈ N. Consequently,

f(τ) ≡
∞∑
n=0

a2nq
2n.

Lemma 4.6. Given p ∈ RX homogeneous, if φ(p) ∈M(k) \ {0} then Deg(p) = k.

Proof. By Lemma 3.18, the highest power of s in SX(p) is Deg(p). Thus by Lemma 3.7

we know that the highest power of τ in (S0φ(p))(τ) is Deg(p). If φ(p) ∈M(k)\{0}, then

(S0φ(p))(τ) = φ(p)(−1/τ) = τkφ(p)(τ). Therefore Deg(p) = k. 2

Example 4.7. Let p = − 1
9 (x4

2 + x4
3)(x4

3 + x4
4)(x4

2 − x4
4). One can easily verify that

p is homogeneous and Deg(p) = 6. On the other hand, φ(p) = e1e2e3 where e1 :=
1
3 (θ3(0, q)4 + θ4(0, q)4), e2 := − 1

3 (θ2(0, q)4 + θ3(0, q)4) and e3 := 1
3 (θ2(0, q)4 − θ4(0, q)4).

One also verifies that the product e1e2e3 is a modular form of weight 6.

Definition 4.8. The K-vector space of modular forms of weight k ∈ N is denoted by

M(k).

By the valence formula (Freitag and Busam, 2005, Th. VI.2.3), one deduces the following

lemma.

Lemma 4.9. Given f ∈ RΘ ∩M(k):

if f(τ) ≡
∑
t> k

6

atq
t, then f = 0.

According to Lemma 4.9, to prove that f ∈ RΘ is identically zero we follow two steps:

first check if f is a modular form, then check if the first few coefficients of the q-expansion

of f are zero.

But usually the f ∈ RΘ given in out context is not a modular form in the sense of

Definition 4.5. To be able to apply Lemma 4.9, instead of directly dealing with f = φ(p)

(with homogeneous p ∈ RX) we deal with
∏

u∈LT(p)

φ(u). We first check if this product is

a modular form, and then we check whether the first few coefficients of the q-expansion

of this product are zero. We will also show that if this product is zero then each single

φ(u) is zero. This will imply f = φ(p) = 0 because p ∈ LT(p).

16



Lemma 4.10. Let p ∈ RX be homogeneous and LT(p) = {p1, . . . , pm} with SX(pj) =
nj∑
t=1

scj,tpj,t in S-form. If pj,1, pj,2, . . . , pj,nj−1 ∈ kerφ for all j ∈ {1, . . . ,m} then

m∏
j=1

φ(pj)(τ) ∈M(mDeg(p)).

Proof. By Lemma 3.7 we have for j ∈ {1, . . . ,m},

(φ(pj)|0S)(τ) ≡ φ∗(SX(pj))(τ) ≡ φ∗
(

nj∑
t=1

scj,tpj,t

)
≡

nj∑
t=1

τ cj,tφ(pj,t)(τ).

Let d = Deg(p). Applying Lemma 3.18 we have c1,n1
= c2,n2

· · · = cm,nm = d. Suppose
j ∈ {1, . . . ,m} is fixed. If pj,1, pj,2, . . . , pj,nj−1 ∈ kerφ then

(φ(pj)|0S)(τ) ≡ τdφ(pj,nj ).

Note that pj,nj ∈ LT(p) by Definitions 3.20 and 4.4. Thus

(φ(pj)|0S)(τ) ≡ τdφ(pi)

for some pi ∈ LT(p). Moreover, by Definition 4.4 we have TX(pj) = pt for some pt ∈ LT(p)
and thus, by Lemma 3.11,

(φ(pj)|0T )(τ) ≡ φ∗(TX(pj))(τ) ≡ φ(pt)(τ).

Therefore
(φ(pj)|dS)(τ) ≡ φ(pi)(τ) and (φ(pj)|dT )(τ) ≡ φ(pt)(τ).

Thus for all γ ∈ SL2(Z): m∏
j=1

φ(pj)

∣∣∣∣
dm

γ

 (τ) ≡
m∏
j=1

(
φ(pj)

∣∣∣∣
d

γ

)
(τ) ≡

m∏
j=1

φ(pj)(τ). (11)

In fact the functions θ
(k)
i are analytic on H, which can be seen from their q-expansion.

Therefore the above product is analytic on H. Again by Definition 1.2, each of the func-

tions θ
(k)
i is a Taylor series in powers of q1/4, therefore also the above product is a Taylor

series in powers of q1/4. Setting γ =

(
1 2

0 1

)
in (11) implies that the above product is

invariant under the mapping τ 7→ τ + 2. It is known that analytic functions with this
property may be written as a Laurent series in q; by the uniqueness of Laurent series
we must have that the product is a Taylor series in q as required from the definition of
modular form. 2

Theorem 4.11. Let p ∈ RX be homogeneous, LT(p) = {p1, . . . , pm} with SX(pj) =
nj∑
t=1

scj,tpj,t in S-form. If for all j ∈ {1, . . . ,m},

pj,1, pj,2, . . . , pj,nj−1 ∈ kerφ and ord

 m∏
j=1

φ(pj)

 >
mDeg(p)

6
,
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where ord is the order of a power series in q in the usual sense, then p ∈ kerφ.

Proof. If for all j ∈ {1, . . . ,m}, pj,1, pj,2, . . . , pj,nj−1 ∈ kerφ, then by Lemma 4.10

we have
m∏
j=1

φ(pj) ∈ M(mDeg(p)). This together with ord

(
m∏
j=1

φ(pj)

)
> mDeg(p)

6 , by

Lemma 4.9, we obtain φ

(
m∏
j=1

pj

)
=

m∏
j=1

φ(pj) = 0. Thus for some j, pj ∈ kerφ, which by

Lemma 4.4 implies that for any h ∈ LT(pj) = LT(p), h ∈ kerφ. Therefore p ∈ kerφ. 2

Algorithm 4.12. Let p, LT(p) and SX(pj) be the same as in Theorem 4.11, and d :=
Deg(p). Define

Prove(p) :=

{
True, if p ∈ kerφ;

False, if p 6∈ kerφ.

We have the following algorithm to prove or disprove p ∈ kerφ.

Input: homogeneous p ∈ RX ; output: True or False.

If d = 0 then Prove(p) =True if p = 0; else Prove(p)= False.

If d > 0 then

Prove(p) =True if ord

 m∏
j=1

φ(pj)

 >
dm

6

and Prove(pj,1) = True and . . . and Prove(pj,nj−1) = True;

else Prove(p) = False.

Theorem 4.13. Algorithm 4.12 is correct.

Proof. Suppose p ∈ kerφ. Using LT(p) = LT(pj) and Lemma 4.4 we have the equiva-
lences

p ∈ kerφ ⇐⇒ pj ∈ kerφ for all j ∈ {1, . . . ,m}
⇐⇒ pj ∈ kerφ for some j ∈ {1, . . . ,m}

⇐⇒
m∏
j=1

φ(pj)(τ) ≡ 0.

According to Theorem 4.11, this together with
(1) True=Prove(pj,1) = · · · =Prove(pj,nj−1), j = 1, . . . ,m, gives Prove(p) =True; i.e.,

p ∈ kerφ. We note that owing to Lemma 3.18 the procedure terminates; namely

Deg(pj,1) < · · · < Deg(pj,nj−1) < Deg(pj,nj ) = d.

Suppose p 6∈ kerφ. This is equivalent to
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(2) pj 6∈ kerφ for all j ∈ {1, . . . ,m}. In case (1) holds, then by Lemma 4.10,

f(τ) :=

m∏
j=1

φ(pj)(τ) ∈M(dm).

Because of (2) we know that f(τ) 6≡ 0; thus ord(f) ≤ dm
6 and Algorithm 4.12 returns

Prove(p) =False. If at least one of the pj,1, . . . , pj,nj−1 (j = 1, . . . ,m) is not in kerφ,
the algorithm detects this in a base case (i.e., p ∈ K \ {0}) when applying its steps
recursively. 2

Example 4.14. Let us return to the task to do zero-recognition for (5) from Example 1.3.
Since θ′2(0, q) ≡ θ′3(0, q) ≡ θ′4(0, q) ≡ 0, we needed to prove the following identity.

θ2(τ)3θ′′2 (τ)− θ3(τ)3θ′′3 (τ) + θ4(τ)3θ′′4 (τ) ≡ 0.

Proof. For p := x3
2x

(2)
2 − x3

3x
(2)
3 + x3

4x
(2)
4 ∈ R4

X we want to prove p ∈ kerφ. We compute

LT(p) = {p1, p2} = {x3
2x

(2)
2 − x3

3x
(2)
3 + x3

4x
(2)
4 ,−(x3

2x
(2)
2 − x3

3x
(2)
3 + x3

4x
(2)
4 )}.

Since Deg(p) = 4 and |LT(p)| = 2, we need to show that φ(p1p2)(τ) has the form∑
t> 8

6
atq

t, which holds because

φ(p1p2)(τ) ≡(θ2(τ)3θ′′2 (τ)− θ3(τ)3θ′′3 (τ) + θ4(τ)3θ′′4 (τ))

(−θ2(τ)3θ′′2 (τ) + θ3(τ)3θ′′3 (τ)− θ4(τ)3θ′′4 (τ))

≡�q2 + �q3 + . . . .

Moreover we have

SX(p1) = (−x3
2x

(2)
2 + x3

3x
(2)
3 − x3

4x
(2)
4 )s4 +

2i

π
(−x4

2 + x4
3 − x4

4)s3 = p2s
4 +

2i

π
p1,2s

3

and

SX(p2) = (x3
2x

(2)
2 − x3

3x
(2)
3 + x3

4x
(2)
4 )s4 +

2i

π
(x4

2 − x4
3 + x4

4)s3 = p1s
4 +

2i

π
p2,2s

3.

According to Theorem 2, it is now left to show that p1,2, p2,2 ∈ kerφ. We compute

LT(p1,2) = LT(p2,2) = {−x4
2 + x4

3 − x4
4, x

4
2 − x4

3 + x4
4} = {p1,2, p2,2}.

Since Deg(p1,2) = 2 and |LT(p1,2)| = 2, we need to show φ(p1,2p2,2)(τ) has the form∑
t> 4

6
atq

t, which holds because

φ(p1,2p2,2)(τ) ≡ (θ2(τ)4− θ3(τ)4 + θ4(τ)4)(−θ2(τ)4 + θ3(τ)4− θ4(τ)4) ≡ �q+�q2 + . . . .

We also have

SX(p1,2) = (x4
2 − x4

3 + x4
4)s2 = p1s

2 and SX(p2,2) = (−x4
2 + x4

3 − x4
4)s2 = p2s

2.

Thus p1,2, p2,2 ∈ kerφ. Consequently we obtain p ∈ kerφ. 2

Example 4.15. As another example we present an identity from the famous book by
Rademacher, (93.22) in Rademacher (1973), which was used to derive the formula for
the number of presentations of a natural number as a sum of 10 squares:

θ
(4)
3 (τ)θ3(τ)− 3(θ′′3 (τ))2 − 2θ3(τ)2θ2(τ)4θ4(τ)4 ≡ 0.
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The algorithmic effort to prove this identity is as simple as in Example 4.14; in contrast,

Rademacher used three pages of clever arguments.

5. A Refined Algorithm

Definition 5.1. For any k̄ = (k1, . . . , km) ∈ Nm and t ∈ N we define

D(k̄, t) :=

{
(b1, . . . , bm) ∈ Nm :

m∑
i=1

bi =

m∑
i=1

ki − 2t, bi ≤ ki and bi ≡ ki (mod 2)

}
.

Lemma 5.2. Let p = x
(k1)
i1
· · ·x(km)

im
∈ RX . Then there exists an r ∈ N such that

SX(p) = sDeg(p)p0 + sDeg(p)−1p1 + · · ·+ sDeg(p)−rpr

is in S-form. Furthermore, r = Deg(p)
2 − m

4 −
ν1(p)

2 and for 0 ≤ t ≤ r,

pt = (−i)ν1(p)+m
2

(
i

π

)t ∑
b̄∈D(k̄,t)

m∏
v=1

kv!

bv!(
kv−bv

2 )!
x

(b1)
σ(i1) · · ·x

(bm)
σ(im),

where σ is the permutation on {1, 2, 3, 4} that transposes 2 and 4.

Proof. Suppose SX(p) = scngn + · · ·+ sc1g1 with gj ∈ RX \ {0}, and xi1 = xi2 = · · · =
xiν1(p)

= x1 and xij 6= x1 for ν1(p) + 1 ≤ j ≤ m. By Definition 3.6, for every x
(k)
` ,

regardless that ` is even or odd, in the S-form SX(x
(k)
` ) the power of s decreases by 1

when the j in Definition 3.6 increases by 2. By Lemma 3.18 we have cn = Deg(p). Thus

there exists r ∈ N such that

SX(p) = sDeg(p)p0 + sDeg(p)−1p1 + · · ·+ sDeg(p)−rpr,

where pt ∈ RX for t ∈ {0, . . . , r} and pr 6= 0. By the proof of Lemma 3.15 we find

cn − c1 =

ν1(p)∑
j=1

(
kj +

1

2

)
+

m∑
j=ν1(p)+1

(
kj +

1

2

)−
ν1(p)∑

j=1

(
kj
2

+ 1

)
+

m∑
j=ν1(p)+1

(
kj
2

+
1

2

)
=

ν1(p)∑
j=1

(
kj
2
− 1

2

)
+

m∑
j=ν1(p)+1

kj
2

=
Deg(p)

2
− m

4
− ν1(p)

2
.

Since kj ∈ 2N when j ∈ {1, . . . , ν1(p)} and kj ∈ 2N + 1 when j ∈ {ν1(p) + 1, . . . ,m}, we

confirm that r = cn − c1 = Deg(p)
2 − m

4 −
ν1(p)

2 ∈ N.

Now we show that pt 6= 0 for all t ∈ {0, . . . , r}. By fully invoking Definition 3.6, for
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0 ≤ t ≤ r we derive

〈sd−t〉SX(p) =〈sd−t〉SX(x
(k1)
i1

)SX(x
(k2)
i2

) · · ·SX(x
(km)
im

)

=(−i)ν1(p)+m
2

∑
b̄∈D(k̄,t)

(
i

π

) m∑
i=1

ki−bi
2

m∏
v=1

kv!

bv!(
kv−bv

2 )!
x

(b1)
σ(i1) · · ·x

(bm)
σ(im)

=(−i)ν1(p)+m
2

(
i

π

)t ∑
b̄∈D(k̄,t)

m∏
v=1

kv!

bv!(
kv−bv

2 )!
x

(b1)
σ(i1) · · ·x

(bm)
σ(im),

where b̄ = (b1, . . . , bm) and k̄ = (k1, . . . , km). Since kv ≥ bv ≥ 0, we have
m∏
v=1

kv !

bv !( kv−bv
2 )!

>

0, which implies 〈sd−t〉SX(p) 6= 0. Therefore the expression of SX(p) in the statement is
in S-form. 2

We shall see that the following refined sets of compositions of numbers play a crucial
role. Throughout b̄ ∈ Nm has to be interpreted as b̄ = (b1, . . . , bm).

Definition 5.3. Given d̄ ∈ Nm, k̄ ∈ Nm, and j, t ∈ N:

B(d̄, k̄, t, j) :=

{
b̄ ∈ D(k, t) :

m∑
i=1

bi =

m∑
i=1

di + 2j, di ≤ bi and di ≡ bi (mod 2)

}
Lemma 5.4. Given j, t ∈ N and d̄ ∈ Nm and k̄ ∈ Nm, then

j
∑

b̄∈B(d̄,k̄,t,j)

m∏
v=1

α(kv, bv)β(bv, dv) = (t+ 1)
∑

ē∈B(d̄,k̄,t+1,j−1)

m∏
v=1

α(kv, ev)β(ev, dv), (12)

where

α(kv, ev) :=
kv!

(kv−ev2 )!
and β(bv, cv) :=

1

cv!(
bv−cv

2 )!
.

Proof. Let

M1 := {(b̄, b̄− 2zi) : b̄ ∈ B(d̄, k̄, t, j), 1 ≤ i ≤ m and bi ≥ di + 2}

and

M2 := {(ē+ 2zi, ē) : ē ∈ B(d̄, k̄, t+ 1, j − 1), 1 ≤ i ≤ m and ei ≤ ki − 2},

where zi = (a1, . . . , am) with ai = 1 and aj = 0 (j 6= i). Then

LHS of (12) =
∑

b̄∈B(d̄,k̄,t,j)

(
m∑
i=1

bi − di
2

m∏
v=1

α(kv, bv)β(bv, dv)

)

=
∑

b̄∈B(d̄,k̄,t,j)

m∏
v=1

α(kv, bv)

m∑
i=1

β(bi − 2, di)

m∏
v=1
v 6=i

β(bv, dv)

=
∑

(b̄,ē)∈M1

m∏
v=1

α(kv, bv)β(ev, dv)
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and

RHS of (12) =
∑

ē∈B(d̄,k̄,t+1,j−1)

(
m∑
i=1

ki − ei
2

m∏
v=1

α(kv, ev)β(ev, dv)

)

=
∑

ē∈B(d̄,k̄,t+1,j−1)

m∏
v=1

β(ev, dv)

m∑
i=1

α(kv, ei + 2)

m∏
v=1
v 6=i

α(kv, ev)

=
∑

(b̄,ē)∈M2

m∏
v=1

α(kv, bv)β(ev, dv),

where we define β(bi − 2, di) := 0 if bi = di, and define α(ki, ei + 2) := 0 if ei = ki.
To prove the lemma we finally prove that M1 = M2.
Take (b̄, ē) := (b̄, b̄− 2zi) ∈M1 for some i ∈ {1, . . . ,m}. Then b̄ = ē+ 2zi, and we can

write (b̄, ē) = (ē+ 2zi, ē). Additionally, from the definition of M1 we have b̄ ∈ B(d̄, k̄, t, j)
and di + 2 ≤ bi ≤ ki, which implies ē+ 2zi ∈ B(d̄, k̄, t, j) and di + 2 ≤ ei + 2 ≤ ki. Then
di ≤ ei ≤ ki − 2 and by Definition 5.3 we have

m∑
v=1

ev + 2 =

m∑
v=1

kv − 2t =

m∑
v=1

dv + 2j.

Hence
m∑
v=1

ev =

m∑
v=1

kv − 2(t+ 1) =

m∑
v=1

dv + 2(j − 1)

and di ≤ ei ≤ ki−2, which implies ē ∈ B(d̄, k̄, t+1, j−1) and di ≤ ei ≤ ki−2. Therefore
(b̄, ē) = (ē+ 2zi, ē) ∈M2. The other direction goes analogously. 2

Theorem 5.5. Given p = x
(k1)
i1
· · ·x(km)

im
∈ RX , according to Lemma 5.2 let SX(p) =

sDeg(p)p0 + · · ·+ sDeg(p)−rpr with non-zero pi ∈ RX and r = Deg(p)
2 − m

4 −
ν1(p)

2 . We have

(1) SX(pr) = sDeg(pr)g for some non-zero g ∈ RX ; and
(2) for any neighboring pair (pt, pt+1), t ∈ {0, . . . , r − 1},

SX(pt+1) =
1

t+ 1

r−t∑
j=1

sDeg(pt)−j−1jqt,j

and

SX(pt) =
r−t∑
j=0

sDeg(pt)−jqt,j .

with qt,j ∈ RX .

Proof. (1) According to Lemma 5.2, pr 6= 0. Therefore the statement is implied by
Definition 3.6.

(2) We first prove that the low degree of SX(pt) with respect to s is Deg(pt)− r + t,
then we prove the coefficient relation

〈sDeg(pt)−j〉SX(pt)

〈sDeg(pt)−j−1〉SX(pt+1)
=
t+ 1

j
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is true for j ∈ {0, . . . , r − t}. Suppose xi1 = xi2 = · · · = xia = x1 and xij 6= x1 for

a+ 1 ≤ j ≤ m. Let C(p) := (−i)ν1(p)+m
2 . Applying Lemma 5.2 we have

SX(pt) = SX

C(p)

(
i

π

)t ∑
b̄∈D(k̄,t)

m∏
v=1

α(kv, bv)x
(b1)
σ(i1) · · ·x

(bm)
σ(im)


= C(p)

(
i

π

)t ∑
b̄∈D(k̄,t)

m∏
v=1

α(kv, bv)SX

(
x

(b1)
σ(i1) · · ·x

(bm)
σ(im)

)
, (13)

where σ(ij) is the permutation on {1, 2, 3, 4} that transposes 2 and 4. Now let dt :=

Deg(pt). Concerning (13), for b̄ ∈ D(k̄, t) we apply Lemma 5.2 and obtain

SX

(
x

(b1)
σ(i1) · · ·x

(bm)
σ(im)

)
=sdtC(p)x

(b1)
i1
· · ·x(bm)

im

+ sdt−1C(p)

(
i

π

) ∑
c̄∈D(b̄,1)

m∏
v=1

β(bv, cv)x
(c1)
i1
· · ·x(cm)

im

+ sdt−2C(p)

(
i

π

)2 ∑
c̄∈D(b̄,2)

m∏
v=1

β(bv, cv)x
(c1)
i1
· · ·x(cm)

im

+ . . .

+ sdt−rtC(p)

(
i

π

)rt ∑
c̄∈D(b̄,rt)

m∏
v=1

β(bv, cv)x
(c1)
i1
· · ·x(cm)

im
, (14)

where rt := dt
2 −

m
4 −

ν1(p)
2 according to Lemma 5.2 and ν1(p) = ν1

(
x

(b1)
σ(i1) · · ·x

(bm)
σ(im)

)
.

Since b̄ ∈ D(k̄, t), i.e.,
m∑
i=1

bi =
m∑
i=1

ki − 2t, we have
m∑
i=1

bi + m
2 =

m∑
i=1

ki + m
2 − 2t, which

means dt = Deg(p)− 2t. This together with r = Deg(p)
2 − m

4 −
ν1(p)

2 implies

rt =
Deg(p)− 2t

2
− m

4
− ν1(p)

2
= r − t.
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Plugging (14) into (13) we get

SX(pt) =C(p)2

(
i

π

)tsdt ∑
b̄∈D(k̄,t)

m∏
v=1

α(kv, bv)

m∏
v=1

β(bv, cv)x
(b1)
i1
· · ·x(bm)

im

+ sdt−1

(
i

π

) ∑
b̄∈D(k̄,t)

m∏
v=1

α(kv, bv)
∑

c̄∈D(b̄,1)

m∏
v=1

β(bv, cv)x
(c1)
i1
· · ·x(cm)

im

+ sdt−2

(
i

π

)2 ∑
b̄∈D(k̄,t)

m∏
v=1

α(kv, bv)
∑

c̄∈D(b̄,2)

m∏
v=1

β(bv, cv)x
(c1)
i1
· · ·x(cm)

im

+ . . .

+sdt−rt
(
i

π

)rt ∑
b̄∈D(k̄,t)

m∏
v=1

α(kv, bv)

m∏
v=1

β(bv, cv)(x
′
1)axia+1 · · ·xim


=sdth0 + sdt−1h1 + · · ·+ sdt−rthrt ,

where for j ∈ {0, . . . , rt}

hj = C(p)2

(
i

π

)t+j ∑
b̄∈D(k̄,t)

m∏
v=1

α(kv, bv)
∑

c̄∈D(b̄,j)

m∏
v=1

β(bv, cv)x
(c1)
i1
· · ·x(cm)

im
.

Analogously we have

SX(pt+1) =C(p)2

(
i

π

)t+1
sdt−2

∑
ē∈D(k̄,t+1)

m∏
v=1

α(kv, ev)x
(e1)
i1
· · ·x(em)

im

+ sdt−3

(
i

π

) ∑
ē∈D(k̄,t+1)

m∏
v=1

α(kv, ev)
∑

ū∈D(ē,1)

m∏
v=1

β(ev, uv)x
(u1)
i1
· · ·x(um)

im

+ sdt−4

(
i

π

)2 ∑
ē∈D(k̄,t+1)

m∏
v=1

α(kv, ev)
∑

ū∈D(ē,2)

m∏
v=1

β(ev, uv)x
(u1)
i1
· · ·x(um)

im

+ . . .

+sdt−rt−1

(
i

π

)rt−1 ∑
ē∈D(k̄,t+1)

m∏
v=1

α(kv, ev)

m∏
v=1

β(ev, uv)(x
′
1)axia+1 · · ·xim


=sdt−2q1 + sdt−3q2 + · · ·+ sdt−rt−1qrt ,

where for j ∈ {1, . . . , rt}

qj = C(p)2

(
i

π

)t+j ∑
ē∈D(k̄,t+1)

m∏
v=1

α(kv, ev)
∑

ū∈D(ē,j−1)

m∏
v=1

β(ev, uv)x
(u1)
i1
· · ·x(um)

im
.

Thus proving the statement to be true is equivalent to proving that

hj
qj

=
t+ 1

j
.
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For any fixed c̄ = (c1, . . . , cm) ∈ Nm, the set of all possible b̄ contributing to the coefficient

of x
(c1)
i1
· · ·x(cm)

im
in hj is equal to B(c̄, k̄, t, j), and for any fixed ū = (u1, . . . , um) ∈ Nm

the set of all possible ē contributing to the coefficient of x
(u1)
i1
· · ·x(um)

im
in qj is equal to

B(ū, k̄, t+ 1, j − 1). Therefore

hj = C(p)2

(
i

π

)t+j ∑
c̄∈Nm

 ∑
b̄∈B(c̄,k̄,t,j)

m∏
v=1

α(kv, bv)β(bv, cv)

x
(c1)
i1
· · ·x(cm)

im

and

qj = C(p)2

(
i

π

)t+j ∑
ū∈Nm

 ∑
ev∈B(ū,k̄,t+1,j−1)

m∏
v=1

α(kv, ev)β(ev, uv)

x
(u1)
i1
· · ·x(um)

im
.

Now fix (d1, d2, . . . , dm) ∈ Nm. We need to prove that

〈x(d1)
i1
· · ·x(dm)

im
〉hj

〈x(d1)
i1
· · ·x(dm)

im
〉qj

=
t+ 1

j
.

Applying Lemma 5.4 we immediately obtain the correctness of this equality.
2

Corollary 5.6. Let p ∈ RX be homogeneous and SX(p) = sDeg(p)p0 + · · ·+ sDeg(p)−γpγ
with γ ∈ N, pt ∈ RX and pγ 6= 0. Then

(1) SX(pγ) = sDeg(pγ)g for some non-zero g ∈ RX ; and
(2) for any neighboring pair (pt, pt+1), t ∈ {0, . . . , γ}, defining pγ+1 := 0, there exists

γt ∈ N such that

SX(pt+1) =
1

t+ 1

γt∑
j=1

sDeg(pt)−j−1jpt,j

and

SX(pt) =

γt∑
j=0

sDeg(pt)−jpt,j

with pt,j ∈ RX .

Proof. We first prove statement (2). Suppose

p = a1h1 + · · ·+ anhn

where the hj are monomials in RX with the same degree and the aj ∈ K \ {0}.
Let d := Deg(p) = Deg(hj). By Lemma 5.2, there exists an integer rj such that

SX(hj) = sdhj,0 + sd−1hj,1 + · · ·+ sd−rjhj,rj

in S-form. Let r := max
j=1,...,n

{rj}. Then

SX(p) =sd(a1h1,0 + · · ·+ anhn,0) + · · ·+ sd−r(a1h1,r + · · ·+ anhn,r)

=sdp0 + · · ·+ sd−rpr,
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where pt = a1h1,t + · · ·+ anhn,t for t = 0, . . . , r and hj,t = 0 when t > rj .
Since the pt are homogeneous by Lemma 3.18.2, we can define dt := Deg(pt). Hence

we can suppose for t ∈ {0, . . . , r} that

SX(hj,t) = sdtqj,0 + sdt−1qj,1 + · · ·+ sdt−rj,tqj,rj,t (15)

where the qj,i ∈ RX and qj,rj,t 6= 0. Therefore by letting γt := max
j=1,...,m

{rj,t} we obtain

SX(pt) = a1SX(h1,t) + · · ·+ anSX(hn,t) = sdtq0 + sdt−1q1 · · ·+ sdt−γtqγt

where qi = a1q1,i + · · · + anqn,i and qj,i = 0 if i > γt. Furthermore, since the hj are
monomials we immediately obtain from (15) by Theorem 5.5:

SX(hj,t+1) = sdt−2 1

t+ 1
qj,1 + · · ·+ sdt−rj,t−1 rj,t

t+ 1
qj,rj,t .

Hence

SX(pt+1) =a1SX(h1,t+1) + · · ·+ anSX(hn,t+1)

=a1

(
sdt−2 1

t+ 1
q1,1 + · · ·+ sdt−r1,t−1 r1,t

t+ 1
q1,r1,t

)
+ . . .

+ an

(
sdt−2 1

t+ 1
qn,1 + · · ·+ sdt−γt−1 rn,t

t+ 1
qn,rn,t

)
=sdt−2 1

t+ 1
q1 + · · ·+ sdt−γt−1 γt

t+ 1
qγt .

It remains to prove statement (1). This follows immediately from statement (2). 2

Now we introduce a definition that will serve to increase readability.

Definition 5.7. For half integers a, b ∈ 1
2Z, such that a ≤ b and b− a ∈ N:

{a, . . . , b} := {a, a+ 1, a+ 2, . . . , b}

and
b∑

j=a

h(j) := h(a) + h(a+ 1) + · · ·+ h(b).

Corollary 5.8. Given p ∈ RX homogeneous, suppose SX(p) =
Deg(p)∑
j=γ

sjpj with pj ∈ RX

and pγ 6= 0. Then the sum is in S-form.

Proof. Assume pj 6= 0 for j ≥ γ. Then SX(pj) 6= 0 by Corollary 3.17, which by Corollary
5.6. (2) implies SX(pj+1) 6= 0, which again implies pj+1 6= 0. 2

By Definition 5.7 and Corollary 5.8, for homogeneous p ∈ RX , the notation of S-form

SX(p) =
n∑
i=1

sciqi turns into SX(p) =
Deg(p)∑
j=γ

sjpj where γ ∈ 1
2Z such that γ = c1. The

next theorem is crucial for refining Algorithm 4.12.
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Theorem 5.9. Let p, g ∈ RX be homogeneous and assume that both sums

SX(p) =

Deg(p)∑
j=γp

sjpj and SX(g) =

Deg(g)∑
j=γg

sjgj

are in S-form. If g ∈ LT(p) then Deg(p) = Deg(g), γp = γg, and

gj ∈ LT(pj), j ∈ {γp, . . . ,Deg(p)}.

Proof. By Definition 4.1, the LT orbit is built up by the powers of S̃ and TX . Since S̃
and TX both keep the degree, we deduce that if g ∈ LT(p) then Deg(p) = Deg(g).

The proof of the remaining part proceeds by induction on the length of

g = Sk1T `1 · · ·SkmT `m(p).

For the induction step, it suffices to prove the statement for two neighboring situations:

g = S̃(p) and g = TX(p).

Assume g = S̃(p). Let p = a1h1 + a2h2 + · · · + anhn where the ht are monomials in

RX with the same degree and the at ∈ K \ {0}. Suppose SX(ht) =
d∑

j=rt

sjht,j in S-form

with d := Deg(p).
We first prove that SX(σ(ht)) = σ(SX(ht)). Since σ and SX are homomorphisms, it

suffices to show this is true for the generators, which means we have to prove SX(σ(x
(k)
i )) =

σ(SX(x
(k)
i )) for any i ∈ {1, . . . , 4} and k ∈ N. This is implied immediately by Definitions

3.6 and 3.16.
Let r := max

t=1,...,n
{rt} and ht,j := 0 when j < rt. Then by Lemma 5.2 we have

SX(p) =a1SX(h1) + · · ·+ anSX(hn)

=a1

d∑
j=r1

sjh1,j + · · ·+ an

d∑
j=rn

sjhn,j

=sd(a1h1,d + · · ·+ anhn,d) + · · ·+ sr(a1h1,r + · · ·+ anhn,r).

By Definitions 3.6, 3.16 and the linearity of S̃ we also have

g = S̃(p) = a1S̃(h1) + · · ·+ anS̃(hn) = a1(−i)k1σ(h1) + · · ·+ an(−i)knσ(hn),

where the kt := ν1(ht) + µ(ht)
2 . Then

SX(g) =a1(−i)k1SX(σ(h1)) + · · ·+ an(−i)k1SX(σ(hn))

=a1(−i)k1σ

 d∑
j=r1

sjh1,j

+ · · ·+ an(−i)knσ

 d∑
j=rn

sjhn,j


=sd(a1(−i)k1σ(h1,d) + · · ·+ an(−i)knσ(hn,d))

+ . . .

+ sr(a1(−i)k1σ(h1,r) + · · ·+ an(−i)knσ(hn,r)).
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Since for j ∈ {r, r + 1, . . . , d},

S̃(a1h1,j + · · ·+ anhn,j) = a1S̃(h1,j) + · · ·+ anS̃(hn,j)

= a1(−i)k1σ(h1,j) + · · ·+ an(−i)knσ(hn,j),

we obtain

a1(−i)k1σ(h1,j) + · · ·+ an(−i)knσ(hn,j) ∈ LT(a1h1,j + · · ·+ anhn,j).

Hence
gj ∈ LT(pj).

Then gj = 0 if and only if pj = 0. Therefore γp = γg.
For g = TX(p) the proof is analogous. 2

Applying Corollary 5.6 and Theorem 5.9 we can simplify Algorithm 4.12 substantially.
The essence of the simplification is the following theorem.

Theorem 5.10. Given p ∈ RX homogeneous and SX(p) =
Deg(p)∑
j=r

sjqj in S-form, then

p ∈ kerφ if and only if ord

 ∏
g∈LT(qj)

φ(g)

 >
Deg(qj)|LT(qj)|

6
for all j ∈ {r . . . ,Deg(p)}.

Proof. Assume p ∈ kerφ. By Lemma 3.26, qj ∈ kerφ for all j ∈ {r, . . . ,Deg(p)}. There-
fore, for any g ∈ LT(qj), by Lemma 4.4 we have g ∈ kerφ. This implies

∏
g∈LT(qj)

φ(g)(τ) ≡

0. And hence

∞ = ord

 ∏
g∈LT(qj)

φ(g)

 >
Deg(qj)|LT(qj)|

6
.

Assume p 6∈ kerφ. According to Lemma 3.26, at least one of the qj is not in kerφ.
Take t ∈ {r, . . . ,Deg(p)} such that qt 6∈ kerφ and qi ∈ kerφ when i < t. We prove that∏
g∈LT(qt)

φ(g)(τ) is a modular form.

Case 1: t = r. By Corollary 5.6.1, SX(qt) = SX(qr) = srth in S-form, where h 6∈ kerφ
because qt 6∈ kerφ. Hence for every g ∈ LT(qt), by Theorem 5.9, there exists q ∈ RX
such that SX(g) = srtq in S-form and q 6∈ kerφ. By Lemma 4.10,

∏
g∈LT(qt)

φ(g)(τ) ∈

M(Deg(qt)|LT(qt)|).

Case 2: t > r. Suppose SX(qt) =
Deg(qt)∑
j=rt

sjhj in S-form. Since qt 6∈ kerφ, at least one

of the hj is not in kerφ. By rewriting of Corollary 5.6.2,

SX(qt−1) =

Deg(qt)−1∑
j=rt

sj−1 Deg(qt)− j − 1

t+ 1
hj in S-form,

where, again by Lemma 3.26, hj ∈ kerφ for rt ≤ j ≤ Deg(qt) − 1 because qt−1 ∈ kerφ.
Thus hDeg(qt) 6∈ kerφ. Hence for g ∈ LT(qt), applying Theorem 5.9 we have SX(g) =
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Deg(qt)∑
j=rt

sjgj in S-form with gj ∈ LT(hj), which yields gj ∈ kerφ for rt ≤ j ≤ Deg(qt)− 1

and gDeg(qt) 6∈ kerφ. Again by Lemma 4.10,
∏

g∈LT(qt)

φ(g)(τ) ∈M(Deg(qt)|LT(qt)|).

In addition, qt 6∈ kerφ implies
∏

g∈LT(qt)

φ(g)(τ) 6= 0. Therefore by Lemma 4.9 we obtain

ord

 ∏
g∈LT(qt)

φ(g)

 ≤ Deg(qt)|LT(qt)|
6

.

2

The algorithmic content of Theorem 5.10 is the following:

Algorithm 5.11. Given p ∈ RX homogeneous and SX(p) =
Deg(p)∑
j=r

sjqj in S-form, we

have the following algorithm to prove or disprove p ∈ kerφ.

Input: homogeneous p ∈ RX ; output: True or False.

If Deg(p) > 0 set j := r. While j ≤ Deg(p) do

if ord

 ∏
g∈LT(qj)

φ(g)

 >
Deg(qj)|LT(qj)|

6

then j := j + 1;

else return False;

exit;

end do;

return True.

If Deg(p) = 0 then True if p = 0; False if p ∈ K \ {0}.

One can connect our method to classical methods using “Sturm bounds”. Namely, in

Theorem 5.10 one can replace |LT(qj)| with 384, owing to Proposition 4.2. Moreover, for

every g ∈ LT(qj), the q-expansion of φ(g) only contains non-negative powers of q. Thus

to show ord

( ∏
g∈LT(qj)

φ(g)

)
is greater than a certain number, it suffices to show that

ord(φ(qj)) is greater than this number. Summarizing, we have the following corollary.

Corollary 5.12. Let p ∈ RX be homogeneous and SX(p) =
Deg(p)∑
j=r

sjqj in S-form. Then

p ∈ kerφ if and only if ord(φ(qj)) > 26 ·Deg(p) for all j ∈ {r . . . ,Deg(p)}.

We also present a modular form version.
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Proposition 5.13. Let p ∈ RX be homogeneous. If φ(p) ∈M(k) \ {0} then

ord(φ(p)) ≤ 26 · k.

Proof. Let SX(p) =
Deg(p)∑
j=r

sjqj in S-form. If φ(p) 6= 0, by Corollary 5.12 we have

ord(φ(qj)) ≤ 26 ·Deg(p) for all j ∈ {r . . . ,Deg(p)}. (16)

If φ(p) ∈M(k) \ {0}, by Definition 3.6 and Definition 4.5 we have

(S0φ(p))(τ) = φ(p)(−1/τ) = τkφ(p)(τ). (17)

This together with Lemma 3.7 implies that SX(p) = skS̃(p). Then (16) can be stated as

ord(φ(S̃(p))) ≤ 26 ·Deg(p)

= 26 · k,

where the last equality follows from Lemma 4.6. In the end we show that φ(S̃(p)) = φ(p).
Again by using Lemma 3.7 we have

S0φ(p) = φ∗(SX(p)) = φ∗(skS̃(p)) = τkφ∗(S̃(p)) = τkφ(S̃(p)). (18)

We plug (17) into (18) and complete the proof. 2

Next we do the complexity analysis.

Definition 5.14. For homogeneous p ∈ RX define s(p) to be the number of SX opera-
tions required to run Algorithm 4.12 on p.

Definition 5.15. For homogeneous p ∈ RX define o(p) to be the number of LT opera-
tions required to run Algorithm 4.12 on p. An LT operation is a function that computes
the elements of the leading term orbit of a given polynomial in RX .

Definition 5.16. Let p ∈ RX be homogeneous with SX(p) = p1s
Deg(p) + p2s

Deg(p)−1 +
· · ·+ prs

Deg(p)−r+1 in S-form. We define `(p) := r to be the length of p.

Lemma 5.17. Let p ∈ RX be homogeneous with SX(p) = p1s
Deg(p) + p2s

Deg(p)−1 +
· · · + prs

Deg(p)−r+1 in S-form and |LT(pj)| = 384. Then the number of o(p̃) and s(p̃)
applications on any polynomial p̃ appearing when running Algorithm 4.12 on p depends
only on the length of p̃.

Proof. Suppose M = {p̃1, . . . , p̃m} are the polynomials appearing when running Algo-
rithm 4.12 on p. Consider M = M1 ∪M2 ∪ · · · ∪Mn where Mj := {p̃ ∈ M : `(p̃) = j}.
By Corollary 5.6 (1) it is clear that for any p̃ ∈ RX with `(p̃) = 1 we have o(p̃) = 1.
Then by induction on j we prove that for every f, g ∈ Mj : o(f) = o(g). Assume this is
true for j < k. We prove that this is also true for j = k. Define õ : {1, . . . , k − 1} → N
by õ(j) := o(q) where q ∈ Mj , which by the induction hypothesis is well-defined. Let
p̃ ∈ Mk. Then by Theorem 5.9 we have p̃ ∈ LT(pj) for some j ∈ {1, . . . , r}, hence

|LT(p̃)| = 384. Suppose LT(p̃) = {q1, . . . , q384} with SX(qj) =
Deg(qj)∑
t=rj

stqj,t in S-form.
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Note that Deg(qj) − rj + 1 = k. We know from Theorem 5.5 that `(qj,rj ) = 1 and
`(qj,i) = `(qj,i−1) + 1 for all j ∈ {1, . . . , 384}. Therefore running Algorithm 4.12 on p̃
results in one orbit computation on p̃ and triggers a running of Algorithm 4.12 on qj,t
for all j ∈ {1, . . . , 384} and for all t ∈ {1, . . . ,Deg(qj)− 1}. For the operation count this
means,

o(p̃) = 1 +

384∑
j=1

Deg(pj)−1∑
t=rj

o(qj,t) = 1 +

384∑
j=1

Deg(pj)−1∑
t=rj

õ(`(qj,t))

= 1 +

384∑
j=1

Deg(pj)−1∑
t=rj

õ(t− rj + 1) = 1 + 384

Deg(pj)−rj∑
t=1

õ(t)

= 1 + 384

k−1∑
t=1

õ(t).

Since this shows that o(p̃) is only dependent on k = `(p̃), this completes the induction
proof for the o(p) statement. The s(p) statement is proven analogously. 2

Corollary 5.18. Let N1(p) and N2(p), respectively, be the total number of LT and SX
operations when running Algorithm 4.12 and Algorithm 5.11 on a given homogeneous
p ∈ RX . Let k be the length of p. Then in the worst case N1(p) is exponential and N2(p)
is linear in k.

Proof. According to Proposition 4.2, in the worst case |LT(p̃)| = 384 for every polyno-
mial p̃ appearing when running Algorithm 4.12 on p. By Lemma 5.17 we have

o(p) = õ(k) = 1 + 384

k−1∑
t=1

õ(t)

with õ(1) = 1. Analogously we define s̃ : {1, . . . , k − 1} → N by s̃(j) := s(q) where
q ∈Mj . Then by doing the same induction steps as Lemma 5.17 one can prove that

s(p) = s̃(k) = 384

k−1∑
t=1

s̃(t)

with s̃(1) = 1. Thus we obtain o(p) = 385k−1 and s(p) = 385k−1 − 385k−2 for k ≥ 2.
Therefore

N1(p) = o(p) + s(p) =

 2 · 385k−1 − 385k−2 if k ≥ 2

2 if k = 1
.

For Algorithm 5.11, since only one SX operation and k LT operations happen, we have
N2(p) = 1 + k. 2

6. Conclusion

There are several natural extensions and generalizations of our algorithmic approach.
First, one could extend from q to powers of q as, for instance,

θ3(0, q)θ3(0, q3)− θ4(0, q)θ4(0, q3)− θ2(0, q)θ2(0, q3) ≡ 0
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from (3.8) Joyce (1998). Another direction deals with the argument z; we are preparing
a paper that uses our algorithmic setting not only for z = 0 but also for identities in
arbitrary z. This concerns identities like those presented in Example 1.3, with possible

further extensions to identities involving derivatives θ
(k)
j (z, q). A further generalization

concerns identities involving θj(w + z, q) like

θ4(0, q)2θ4(w + z, q)θ4(w − z, q)− θ3(w, q)2θ3(z, q)2 + θ2(w, q)2θ2(z, q)2 ≡ 0

from (20.7.9) DLMF (2016).
Another aspect is the computer-assisted discovery of relations among Jacobi theta

functions. Based on the homogeneous decomposition described in this paper, we are
able to derive all homogeneous polynomials p ∈ RX with given degree d which map to
identities φ(p) = 0 in RΘ. Two examples of degree 3 and 4, respectively, are:

θ3
4θ
′
1 + θ3θ

′′
2 − θ2θ

′′
3 ≡ 0

and
θ3θ

2
4θ
′′
2 + θ2θ

2
4θ
′′
3 + θ′1θ

′′
4 − θ4θ

(3)
1 ≡ 0

where θ
(k)
j := θ

(k)
j (0, q). In Chapter 6 of Ye (2016) we present the method in detail. In

addition, in this context one can derive an upper bound for the dimension of kerφ where
φ is restricted to the C-vector space of the homogeneous polynomials in RdX . Details will
be presented in a forthcoming paper.
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