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Abstract. Pods are mechanical devices constituted of two rigid bodies, the
base and the platform, connected by a number of other rigid bodies, called
legs, that are anchored via spherical joints. It is possible to prove that the
maximal number of legs of a mobile pod, when finite, is 20. In 1904, Borel
designed a technique to construct examples of such 20-pods, but could not
constrain the legs to have base and platform points with real coordinates. We
show that Borel’s construction yields all mobile 20-pods, and that it is possible
to construct examples where all coordinates are real.

Introduction

A multipod is a mechanical linkage consisting of two rigid bodies, called the
base and the platform, and a number of rigid bodies, called legs, connecting them.
Each leg is attached to base and platform with spherical joints (see Figure 1), so
platform points are constrained to lie on spheres — the center of each sphere is then
the base point connected to the respective leg. If the platform can move respecting
the constraints imposed by the legs we say that the multipod is mobile.

Note that multipods are also studied within Rigidity Theory as so-called body-bar
frameworks [1], as two rigid bodies (platform and base) are connected by multiple
bars (legs). Mobile multipods correspond to flexible body-bar frameworks, whose
study is of great practical interest e.g. for protein folding [2].

We can model the possible configurations of a multipod using direct isometries
of R3, by associating to every configuration the isometry, which maps a reference
configuration into the respective one. At this point one can consider a motion,
namely a one-dimensional set of direct isometries, and try to construct a multipod
moving according to this motion. This approach has a long history; there are mo-
tions allowing multipods with infinitely many legs, but among those that allow only
a finite number of legs, the maximal number is 20. This was proved by Schoenflies,
see Remark 2.6 below. Borel proposed a construction for icosapods (namely mul-
tipods with 20 legs) leading to linkages whose motion is line-symmetric, i.e. whose
elements are involutions, namely rotations by 180◦ around a line (see Figure 1).

This paper provides two results on icosapods. First, we show that all mobile
icosapods (with very mild restrictions) are instances of Borel’s construction. Sec-
ond, we exhibit a mobile icosapod that is an instance of Borel’s construction (Borel,
in fact, obtained equations for the base and platform points of a mobile icosapod,
but could not prove the existence of solutions in R3). The second part is closely
related to the theory of quartic spectrahedra, which has been studied in [3].

Section 1 provides an historical overview of line-symmetric motions. In Section 2
we set up the formalism and the objects that are needed for our approach to the
problem; in particular we recall a compactification of the group of direct isometries
that has already been used by the authors to deal with problems on multipods, and
we show how the constraints imposed by legs can be interpreted as a duality between
the space of legs and the space of direct isometries. In Section 3 we use these tools
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Figure 1. Base points (pink) and platform points (yellow) of an
icosapod. Notice that for every leg there is a symmetric one ob-
tained by rotating the first one by 180◦ around the axis `. The
symmetry reverses the role of base and platform points.

to prove that, under certain generality conditions, mobile icosapods admit line-
symmetric motions. In Section 4 we show how it is possible to construct example
of mobile icosapods employing results in the theory of quartic spectrahedra.

1. Review on line-symmetric motions

Krames [4] studied special one-parametric motions, obtained by reflecting the
moving system ς in the generators of a ruled surface in the fixed system Σ. This
ruled surface is called the base surface for the motion. He showed some remarkable
properties of these motions (see [4]), which led him to name them Symmetrische
Schrotung (in German). This name was translated to English as symmetric motion
by Tölke [5], Krames motion or line-symmetric motion by Bottema and Roth [6,
page 319]. As each Symmetrische Schrotung has the additional property that it
is equal to its inverse motion (cf. Krames [7, page 415]), it could also be called
involutory motion. In this paper we use the name line-symmetry as it is probably
the most commonly used term in today’s kinematic community.

Further characterizations of line-symmetric motions (beside the cited one of
Krames [4]) where given by Tölke [5], Bottema and Roth [6, Chapter 9, § 7],
Selig and Husty [8] and Hamann [9]. If one uses the so-called Study parameters
(e0 : e1 : e2 : e3 : f0 : f1 : f2 : f3) to describe isometries, then it is possible to
characterize line-symmetric motions algebraically in the following way. Given such
a motion, there always exist a Cartesian system of coordinates, or frame (o;x, y, z)
for the moving system ς and a Cartesian frame (O;X,Y, Z) for the fixed system Σ
so that e0 = f0 = 0 holds for the elements of the motion. With this choice of
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coordinates, the latter are rotations by 180◦ around lines; the Study coordinates
(e1 : e2 : e3 : f1 : f2 : f3) of these isometries coincide with the Plücker coordinates
of the lines.

1.1. Historical results on line-symmetric motions with spherical paths. In
this paper we study line-symmetric motions that are solutions to the still open prob-
lem posed by the French Academy of Science for the Prix Vaillant of the year 1904
(cf. [10]): "Determine and study all displacements of a rigid body in which distinct
points of the body move on spherical paths." Borel and Bricard were awarded the
prize for their papers [11] and [12] containing partial solutions, and therefore this
is also known as the Borel Bricard (BB) problem.

1.1.1. Krames’s results. Krames [7, 13, 14] studied some special motions already
known to Borel and Bricard in more detail and stated the following theorem [7,
Satz 6]:

Theorem 1.1. For each line-symmetric motion, that contains discrete, 1 or 2-
dimensional spherical paths, the set f of points with spherical trajectories is congru-
ent (direct isometry) to the set F of corresponding sphere centers.

Moreover Krames noted in [7, page 409] that1 ". . .most of the solutions given
by Borel and Bricard are line-symmetric motions. In each of these motions both
geometers detected this circumstance by other means, without using the above men-
tioned result" (Theorem 1.1). In the following we will take a closer look at the
papers [11, 12], which shows that the latter statement is not entirely correct.

1.1.2. Bricard’s results. Bricard studied these motions in [12, Chapitre VIII]. His
first result in this context (see end of [12, § 32, page 70]) reads as follows (adapted
to our notation):

Dans toutes les solutions auxquelles on sera conduit, les figures liées F et f
seront évidemment égales et semblablement placées par rapport aux deux trièdres
(O;X,Y, Z) et (o;x, y, z).

In the remainder of [12, Chapitre VIII] he discussed some special cases, which
also yield remarkable results, but he did not give further information on the general
case.

1.1.3. Borel’s results. Borel discussed in [11, Case Fb] exactly the case e0 = f0 = 0
and he proved in [11, Case Fb1] that in general a set of 20 points are located
on spherical paths but without giving any result on the reality of the 20 points.
Moreover he studied two special cases in Fb2 and Fb3.

Borel did not mention the geometric meaning of the assumption e0 = f0 = 0. He
only stated at the beginning of case F [11, page 95] that the moving frame (o;x, y, z)
is parallel to the frame obtained by a reflection of the fixed frame (O;X,Y, Z) in a
line. This corresponds to the weaker assumption e0 = 0. He added that this implies
the same consequences as already mentioned in [11, page 47, case C], which reads
as follows (adapted to our notation):

. . . dans le cas où les trièdres sont symétriques par rapport à une droite, si deux
courbes sont représentées par des équations identiques, l’une en X,Y, Z, l’autre en
x, y, z, elles sont symétriques par rapport à cette droite.

But Borel did not mention, neither in case Fb1 nor in his conclusion section,
that f with #f = 20 is congruent to F (contrary to other special cases e.g. Fb3,
where the congruence property is mentioned explicitly.)

1The following extract as well as Theorem 1.1 has been translated from the original German
by the authors.
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1.2. Review of line-symmetric self-motions of hexapods. We denote the
platform points of the i-th leg in the moving system ς by pi and its corresponding
base points in the fixed system Σ by Pi.

For a generic choice of the geometry of the platform and the base as well as the leg
lengths di the hexapod can have up to 40 configurations. Under certain conditions
it can also happen that the direct kinematic problem has no discrete solution set but
an n-dimensional one with n > 0. Clearly these so-called self-motions of hexapods
are solutions to the BB problem.

In practice hexapods appear in the form of Stewart-Gough manipulators, which
are 6 degrees of freedom parallel robots. In these machines the leg lengths can be
actively changed by prismatic joints and all spherical joints are passive.

Moreover a hexapod (resp. Stewart-Gough manipulator) is called planar if the
points p1, . . . , p6 are coplanar and also the points P1, . . . , P6 are coplanar; other-
wise it is called non-planar. In the following we review those papers where line-
symmetric self-motions of hexapods are reported.

1.2.1. Non-planar hexapods with line-symmetric self-motions. Line-symmetric mo-
tions with spherical paths already known to Borel [11] and Bricard [12] (and also
discussed by Krames in [7, 14]) were used by Husty and Zsombor-Murray [15] and
Hartmann [16] to construct examples of (planar and non-planar) hexapods with
line-symmetric self-motions.

Point-symmetric hexapods with congruent platform and base possessing line-
symmetric self-motions were given in [17, Theorem 11]. Further non-planar hexapods
with line-symmetric self-motions can be constructed from overconstrained pen-
tapods with a linear platform [18].

1.2.2. Planar hexapods with line-symmetric self-motions. All self-motions of the
original Stewart-Gough manipulator were classified by Karger and Husty [19].
Amongst others they reported a self-motion with the property e0 = 0 (see [19,
page 208, last paragraph]), "which has the property that all points of a cubic curve
lying in the plane . . . and six additional points out of this plane have spherical tra-
jectories. This seems to be a new case of a BB motion, not known so far." Based
on this result, Karger [20, 21] presented a procedure for computing further "new
self-motions of parallel manipulators" of the type e0 = 0, where the points of a
planar cubic c have spherical paths.

Another approach was taken by Nawratil in his series of papers [22, 23, 24, 25],
by determining the necessary and sufficient geometric conditions for the existence
of a 2-dimensional motion such that three points in the xy-plane of ς move on
three planes orthogonal to the XY -plane of Σ (3-fold Darboux condition) and two
planes orthogonal to the xy-plane of ς slide through two fixed points located in the
XY -plane of Σ (2-fold Mannheim condition). It turned out that all these so-called
type II Darboux-Mannheim motions are line-symmetric. Moreover a geometric
construction of a 12-parametric set of planar Stewart-Gough platforms (cf. [25,
Corollary 5.4]) with line-symmetric self-motions was given. It was also shown that
the algorithm proposed by Karger in [20, 21] yields these solutions.

While studying the classic papers of Borel and Bricard for this historical review
we noticed that the solution set of the BB problem mentioned in the last two
paragraphs was already known to these two French geometers; cf. [11, Case Fb3]
and [12, Chapter V] (already reported by Bricard in [26, page 21]). But in contrast
to the above listed approaches (of Karger and Nawratil) both of them assumed that
the motion with spherical trajectories is line-symmetric. Each of them additionally
discovered one more property:
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Figure 2. Illustration of Duporcq’s complete quadrilaterals.

• Borel pointed out that there exist further 8 points (all 8 can be real) with spherical
trajectories. This set of points splits in four pairs, which are symmetric with
respect to the carrier plane of the cubic c.

• Bricard showed the following: If we identify the congruent planar cubics of the
platform and the base, i.e. c = C, then the tangents in a corresponding point
pair P and p with respect to c = C intersect each other in a point of the cubic
c = C (P and p form a so-called Steinerian couple).

Bricard communicated his result (published in [26, page 21]) to Duporcq, who
gave an alternative reasoning in [27], which sank into oblivion over the past 100
years. Only a footnote in the conclusion section of Borel’s work [11] points to
Duporcq’s proof (but not to the original work of Bricard [26]), which is based on
the following remarkable motion (see Figure 2):

Let P1, . . . , P6 and p1, . . . , p6 be the vertices of two complete quadrilaterals, which
are congruent. Moreover the vertices are labelled in a way that pi is the opposite
vertex of Pi for i ∈ {1, . . . , 6}. Then there exist a two-parametric line-symmetric
motion where each pi moves on a sphere centered at Pi.

It can be easily checked that this configuration of base and platform points corre-
sponds to an architecturally singular hexapod (e.g. [28] or [29]). As architecturally
singular manipulators are redundant we can remove any leg — w.l.o.g. we sup-
pose that this is the sixth leg — without changing the direct kinematics of the
mechanism. Therefore the resulting pentapod P1, . . . , P5 and p1, . . . , p5 also has a
two-parameter, line-symmetric, self-motion.

Note that this pentapod yields a counter-example to Theorem 4.2 of [30] and as
a consequence also the work [31] is incomplete as it is based on this theorem. For
the erratum to [30] please see [32] and the addendum to [31] is given in [33].

Remark 1.2. If we assume for this pentapod that the line [P1P2] is the ideal line of
the fixed plane (so [p4p5] is the ideal line of the moving plane) then we get exactly
the conditions found in [22], which the points and ideal points of the plane’s normals
must fulfill in order to get a type II Darboux-Mannheim motion. Note that P2, P3

can also be complex conjugates (so p5, p6 are complex conjugate too).

1.2.3. Computer search for mobile hexapods. In [34], Geiss and Schreyer describe
a rather non-standard way to find mobile hexapods. They set up an algebraic
system of equations equivalent to mobility, and then try random candidates, with
coordinates in a finite field of small size, by computer. After collecting statisti-
cal data indicating the existence of a family of real mobile hexapods, they try a
(computationally more expensive) lifting process in the most promising cases. The
method is extremely powerful and could still be used for finding new families of mo-
bile hexapods. However, the family reported in [34] can be seen as an instance of
Borel’s family Fb1. The line symmetry is not apparent because the method starts
by guessing 6 legs, which may not form a line symmetric configuration; only if one
adds the remaining 14 legs, or at least all real legs among them, one obtains a sym-
metric configuration. The question posed in Problem 5 in [34] is easily answered
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from this viewpoint: two legs have the same lengths because they are conjugated
by line symmetry.

2. Isometries, legs and bond theory

This section illustrates the concepts and techniques that will be needed to carry
on our analysis. From now on, by an n-pod we mean a triple (~p, ~P , ~d) where ~p, ~P
are n-tuples of vectors in R3 (respectively, platform and base points), and ~d is an
n-tuple of positive real numbers. Multipods with 20 legs are called icosapods.

Remark 2.1. The description of admissible configurations that we adopt allows
independent choices for two coordinate systems, one for the base and one for the
platform: this is why also the leg lengths have to be included in the definition of
a pod. Moreover, we do not require that the identity belongs to the admissible
configurations.

2.1. Isometries and leg space. Throughout this paper we use a compactification
of the group SE3 of direct isometries that was introduced in [35] and in [36]. We
briefly recall this construction.

Consider a point a lying on a sphere centered at b and with radius d, the equation
expressing this coincidence can be written,

‖a− b‖2 − d2 = 0.

Expanding this gives (
〈a, a〉+ 〈b, b〉 − d2

)
− 2 〈a, b〉 = 0,

where 〈·, ·〉 is the Euclidean scalar product. This can be written as a scalar product
of two 5-vectors, one containing information on the sphere the other only informa-
tion about the point,

(
−2bt, (〈b, b〉 − d2), 1

) a
1
〈a, a〉

 = 0.

Now a direct isometry σ, of R3 can be described by a pair (M,y), where M is
an orthogonal matrix with det(M) = 1 and y is the image of the origin under the
isometry. If the point a remains on the sphere after the action of σ, then we have,
‖σ(a)− b‖2 − d2 = 0. In terms of the 5-vectors we can write this condition as,

(
−2b, (〈b, b〉 − d2), 1

)M y 0
0 1 0

2xt r 1

 a
1
〈a, a〉

 = 0,

where the matrix represents the action of the isometry and we have defined x :=
−M ty = −M−1y and r := 〈x, x〉 = 〈y, y〉. Notice that this determines a 5-
dimensional representation of the group SE3, displaying the direct isometries as
a subgroup of the group of conformal transformations of space.

If a, b ∈ R3 and d ≥ 0, then the condition ‖σ(a)− b‖2 − d2 = 0 on a direct
isometry σ is linear, and in particular has the following form:

(1)
(
〈a, a〉+ 〈b, b〉 − d2

)
h+ r − 2 〈a, x〉 − 2 〈y, b〉 − 2 〈Ma, b〉 = 0,

where the homogenizing variable h has been included. We will usually refer to
Equation (1) as the sphere condition imposed by (a, b, d).
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So, if we take coordinates m11, . . . ,m33, x1, x2, x3, y1, y2, y3 and r, h in P16
C
, a

direct isometry defines a point in projective space satisfying h 6= 0 and

(2)

MM t = M tM = h2 · idR3 , det(M) = h3,

M ty + hx = 0, Mx+ hy = 0,

〈x, x〉 = 〈y, y〉 = r h.

The equations in (2) define a variety X in P16
C
, whose real points satisfying h 6= 0

are in one to one correspondence with the elements of SE3. A direct calculation
shows that X is a variety of dimension 6 and degree 40.

Given an n-pod Π = (~p, ~P , ~d), we can consider its configuration space, namely
the set of direct isometries σ in SE3 such that ‖σ(pi)− Pi‖2 − d2

i = 0 for all
i ∈ {1, . . . , n}. The fact that Equation (1) is linear in the coordinates of P16

C
means

that the configuration space of Π can be compactified as the intersection of X with
a linear space Λ, determined by the n conditions imposed by its legs; we denote such
variety by KΠ. We say that the pod Π is mobile if the intersection KΠ(R)∩{h 6= 0}
—where we denoted byKΠ(R) the real points ofKΠ — has (real) dimension greater
than or equal to one. Notice that if Π is mobile, then KΠ has (complex) dimension
greater than or equal to one.

Notation. From now on, by the expression mobility one icosapod we mean a 20-
pod with mobility one which cannot be obtained by removing legs from a multipod
with the same configuration set.

Remark 2.2. For reasons of completeness it should be noted that system in Equa-
tion (2) was already used by Mourrain [37, page 293] to prove that a non-mobile
pod has at most 40 configurations. Similar systems of equations were also used by
Lazard [38, page 179] and Wampler [39, Equation (2)] for the same task.

For our purposes, it is useful to introduce another 16-dimensional projective
space, playing the role of a dual space of the one containing X, where the duality is
given by a bilinear version of Equation (1). We start by introducing a new quantity,
called corrected leg length, defined as l := 〈a, a〉 + 〈b, b〉 − d2, so that Equation (1)
becomes

l h+ r − 2 〈a, x〉 − 2 〈y, b〉 − 2 〈Ma, b〉 = 0.

We think of the points a = (a1, a2, a3) and b = (b1, b2, b3) as points in P3
C
by

introducing two extra homogenization coordinates a0 and b0. In this way, the pair
(a, b) can be considered as a point in the Segre variety Σ3,3

∼= P3
C
×P3

C
; the latter is

embedded in P15
C
, where we take coordinates {zij} so that the points of Σ3,3 satisfy

zij = ai bj for some (a0 : a1 : a2 : a3), (b0 : b1 : b2 : b3) ∈ P3
C
. If we homogenize

Equation (1) with respect to the coordinates {zij} and l, then we get

(3)

l h+ z00r − 2 (z10x1 + z20x2 + z30x3)−

− 2 (z01y1 + z02y2 + z03y3)− 2

3∑
i,j=1

mij zij = 0

Notice that the left hand side of Equation (3) is a bilinear expression in the co-
ordinates (h,M, x, y, r) and in the coordinates (z, l). We denote this expression
by BSC (for bilinear sphere condition). Hence, if we denote by P̌16

C
the projec-

tive space with coordinates (z, l), then we obtain a duality between P16
C

and P̌16
C

sending a point (h0,M0, x0, y0, r0) ∈ P16
C

to the hyperplane in P̌16
C

of equation
BSC(h0,M0, x0, y0, r0, z, l) = 0, and a point (z0, l0) ∈ P̌16

C
to the hyperplane in P16

C
of equation BSC(h,M, x, y, r, z0, l0) = 0.
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Remark 2.3. Suppose that (z0, l0) ∈ P̌16
C

belongs to the cone Y with vertex (0 :
· · · : 0 : 1) over the Segre variety Σ3,3 — namely (z0)ij = ai bj for some (a0 :
a1 : a2 : a3) and (b0 : b1 : b2 : b3). Suppose furthermore that a0 = b0 = 1 and
a2

1 + a2
2 + a2

3 + b21 + b22 + b23 − l0 ≥ 0. Then from the definition of BSC we see
that the hyperplane BSC(h,M, x, y, r, z0, l0) = 0 in P16

C
is the same hyperplane

defined by Equation (1) where we take a = (a1, a2, a3), b = (b1, b2, b3) and d =√
a2

1 + a2
2 + a2

3 + b21 + b22 + b23 − l.

Remark 2.3 indicates that the cone Y in P̌16
C

plays a sort of dual role to the one of
the compactification X in P16

C
, and we will exploit this in our arguments. Since the

Segre variety Σ3,3 has dimension 6 and degree 20, we see that Y has dimension 7
and degree 20.

Definition 2.4. Let C ⊆ X be a curve. We define the leg set LC as the set of all
points (z, l) ∈ Y such that the BSC — instantiated at (z, l) — holds for all points
in C. The leg set is a compactification of the set of all triples (a, b, d) ∈ R3×R3×R≥0

such that the image of a under any point in C lying in the image of SE3 (hence
considered as an isometry) has distance d from b.

Proposition 2.5. Let C ⊆ X be a curve. If LC has only finitely many complex
points, then its cardinality is at most 20. If LC has exactly 20 points, then the
linear span of LC in P̌16

C
is a projective subspace of dimension 9.

Proof. By construction LC is defined by linear equations as a subset of Y ; in other
words LC = Y ∩ span(LC). Then the statement follows from general properties
of linear sections of projective varieties. In fact, any linear subspace of codi-
mension less than 7 intersects Y in a subvariety of positive dimension, hence
dim

(
span(LC)

)
≤ 9. A general linear subspace of dimension 9 intersects Y in

deg(Y ) = 20 points. In order to prove that dim
(
span(LC)

)
= 9 when LC has 20

points we assume the contrary, that dim
(
span(LC)

)
< 9. Then we take a gen-

eral linear superspace Λ of span(LC) of dimension 9. It intersects Y again in 20
points, which must coincide with LC . On the other hand, if the Hilbert series of Y
is P (t)

(1−t)16 , then the Hilbert series of Λ∩Y is P (t)
(1−t)9 , but this contradicts the fact that

Λ∩ Y = LC is contained in a linear space of dimension strictly smaller than 9. �

In order to show the maximal number of 20 intersections can be achieved in
Proposition 2.5, we need to find a curve C ⊆ X such that the bilinear sphere
conditions of its points define a linear subspace in P̌16

C
of dimension 9. This is

equivalent to asking dim
(
span(C)

)
= 15 − 9 = 6. We will deal with this problem

in Section 3.

Remark 2.6. The proof of Proposition 2.5 also gives a simple alternative proof for
the number of solutions (over C) of the spatial Burmester problem, which reads
as follows: Given seven poses ς1, . . . , ς7 of a moving system ς, determine all points
of ς, that are located on a sphere in all seven poses.

The given poses correspond to seven points in X, which span in the general case
a P6

C
. Therefore its dual space is of dimension 9, and so intersects Y in exactly 20

points.
This number was first computed by Schoenflies in [40, page 148] and confirmed

by Primrose (see [41, footnote 3]) as well as by Wampler et al. [42, Section 5]. We
conclude noticing that the first solution of the spatial Burmester problem using an
approach based on polynomial systems was presented by Innocenti [43], who also
gave an example with 20 real solutions.
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2.2. Bond theory. The second ingredient for our arguments is bond theory, a
technique for analyzing mobile multipods that was introduced and developed (in
the form we need here) in [36]. If KΠ is the configuration curve of a multipod Π of
mobility one, then the bonds of Π are defined as the intersections of KΠ with the
hyperplane H =

{
h = 0

}
. Note that such intersections always arise in conjugate

complex pairs since KΠ is a real algebraic variety and has no real points.
Recall, that the elements of SE3 are in 1-to-1 correspondence with the real points

of the varietyX so long as h 6= 0. So the bonds are points in the closure of SE3 in this
model of the group. The set B = H ∩X has dimension 5, and its points, although
they do not represent isometries, still have geometric meaning as conditions imposed
on the legs: we mean that if the configuration set KΠ passes through a point in B
than base and platform points of Π must satisfy a certain condition. The variety B
can be partition into five subsets, which differ by the condition imposed on base
and platform points of multipods. Detail of these subsets can be found in [36], here
we simply list the possibilities. We just point out that we are not going to use the
properties of inversion and similarity points, we report them here only for the sake
of completeness.

vertex: the only real point in B; it is never contained in a configuration curve.
inversion points: if a multipod Π has a configuration set passing through

an inversion point, then there exists two directions L and R in R3 such
that if we project the base of Π orthogonally along L and the platform of Π
orthogonally along R, we obtain two tuples in the plane that correspond
via an inversion (depending on the boundary point).

similarity points: if a multipod Π has a configuration set passing through
a similarity point, then there exists two directions L and R in R3 such that
if we project the base of Π orthogonally along L and the platform of Π
orthogonally along R, we obtain two tuples in the plane that correspond
via a similarity (depending on the boundary point).

butterfly points: these correspond to a pair of lines in R3, one for the base
and one for the platform; a multipod Π whose configuration set passes
through a butterfly point either has the base point on the base line or the
platform point on the platform line.

collinearity points: these correspond to lines; if a multipod Π has a config-
uration set passing through a collinearity points, then either its platform
points or its base points are collinear.

A mobile icosapod cannot have butterfly bonds (namely bonds that are butterfly
points), nor can it have collinearity bonds as this would imply that there are at
least 10 legs with collinear base points or platform points. Then all points of the
line carrying those base or platform points would be base or platform points for a
multipod with the same configuration set. We will not consider these cases in our
discussion.

Inversion points are smooth points of X, and their tangent spaces are contained
in H. Consequently every motion passing an inversion point is tangent to the
hyperplane H at this point. In particular, if a multipod Π of mobility one has
only inversion bonds, the degree of its configuration curve C is twice the number of
inversion bonds: the degree can be computed by intersecting C with H, and there
we see only pairs of double intersections.

Consider the projection P16
C
99K P9

C
keeping only the coordinates h and mij for

i, j ∈ {1, 2, 3}. The real points of the open subset defined by h 6= 0 in the image
of X is the group variety SO3, and the image itself is a subvariety Xm of degree 8
that is isomorphic to the Veronese embedding of P3

C
by quadrics. This follows from

the bijection between points (e0 : e1 : e2 : e3) ∈ P3
R
and orthogonal matrices (see
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[44, Section 4.5]) given by

(4)

(e0 : e1 : e2 : e3)
l

1
e20+e21+e22+e23

 e20+e21−e
2
2−e

2
3 2e1e2−2e0e3 2e0e2+2e1e3

2e1e2+2e0e3 e20−e
2
1+e22−e

2
3 −2e0e1+2e2e3

−2e0e2+2e1e3 2e0e1+2e2e3 e20−e
2
1−e

2
2+e23

 .

In fact, if we consider the Veronese variety that is the image of the morphism

P3
C

−→ P9
C

(e0 : e1 : e2 : e3) 7→ (e2
0 : e2

1 : e2
2 : e2

3 : e0 e1 : e0 e2 : e0 e3 : e1 e2 : e1 e3 : e2 e3)

and we apply the projective automorphism given by the matrix

(5)



1 1 1 1 0 0 0 0 0 0
1 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 −2 2 0 0
0 0 0 0 0 2 0 0 2 0
0 0 0 0 0 0 2 2 0 0
1 −1 1 −1 0 0 0 0 0 0
0 0 0 0 −2 0 0 0 0 2
0 0 0 0 0 −2 0 0 2 0
0 0 0 0 2 0 0 0 0 2
1 −1 −1 1 0 0 0 0 0 0

 ,

then a direct computation shows that we obtain Xm. The coordinates of P3
C
are

called Euler parameters and denoted by e0, e1, e2, e3. The center of the projection
P16

C
99K P9

C
intersects X in the union of the sets of similarity points, collinearity

points and the vertex.

2.3. The subvariety of involutions. We focus our attention on a particular sub-
variety of X, the compactification of the set of involutions in SE3. Involutions
in SE3 are rotations of 180◦ around a fixed axis, so their compactification — which
we will denote by Xinv — is a 4-dimensional subvariety of X, because the family
of lines in R3 is 4-dimensional. One reason why involutions are particularly useful
in the creation of mobile pods is that if p and P are a platform and a base point
of a pod Π, and σ ∈ KΠ is an involution in the configuration space of Π, then
this means that ‖σ(p)− P‖ = d, where d is the distance between p and P ; on the
other hand, since σ is an involution we have ‖σ(P )− p‖ = d. This means that if
all isometries in the configuration space of Π are involutions, then we can swap the
roles of base and platform points and obtain “for free” new legs not imposing any
further restriction to the possible configurations of Π.

If σ = (M,y) is an involution, then M = M t, that is to say M is symmetric,
and y = x. Hence we can consider the subvariety{

(h : M : x : y : r) ∈ X : M = M t and x = y
}
.

One verifies that this subvariety has two irreducible components, namely the iso-
lated point corresponding to the identity and another one of dimension 4, which is
cut out by a further linear equation, namely m11 +m22 +m33 + h = 0.

Definition 2.7. The subvariety of X defined by the equations M = M t and x = y
and m11 +m22 +m33 + h = 0 is denoted Xinv.

3. Mobile icosapods are line-symmetric

In this section we will show that if an icosapod of mobility one admits an ir-
reducible configuration curve, then its motion is line-symmetric (Theorem 3.10).
We start by translating this concept into our formalism. Recall from [36, Sec-
tion 2.2] that the group SE3 acts on its compactification X: every isometry in SE3

determines a projective automorphism of P16
C

leaving X invariant.
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Definition 3.1. Let C ⊆ X be a curve. Then C is called an involutory motion
if C ⊆ Xinv. The curve C is called a line-symmetric motion if there exists an
isometry τ such that the automorphism associated to τ maps C inside Xinv.

From Proposition 2.5 we know that the configuration curve of an icosapod spans
a linear subspace of dimension 6. To get an overview of possible examples of
irreducible curves C ⊆ X with dim

(
span(C)

)
= 6, we consider the projection

P16
C
99K P9

C
described at the end of Subsection 2.2. Let Cm ⊆ Xm be the projection

of C, which can be either a point or a curve. It is possible to prove (see [45]) that if
Cm is a point, then there exists a multipod with infinitely many legs admitting C
as configuration set. Since we are interested in pods with finitely many legs, from
now we suppose that Cm is a curve. Let Ce ⊆ P3

C
be its isomorphic preimage under

the Veronese map.

Proposition 3.2. If C ⊆ X is an irreducible curve such that dim
(
span(C)

)
= 6,

then Ce is either planar or a twisted cubic.

Proof. The projection of span(C) in P9
C
is a linear subspace of dimension at most 6.

Hence the ideal of Cm contains at least 3 linear independent linear forms. Hence
the ideal of Ce contains at least 3 linear independent quadratic forms. If any of
such quadratic form is reducible, namely splits into the union of two planes, the
statement follows; thus from now on we can suppose that all of them are irreducible.
Then the intersection of the zero sets of two of these quadrics is a quartic curve D
such that Ce ⊆ D. It cannot happen that Ce = D, because this would contradict
the fact that there are three independent quadrics passing through Ce. Therefore
the degree of Ce can only be 1, 2 or 3. If the degree is 1 or 2, then Ce is planar; if
the degree is 3, then Ce is either planar or a twisted cubic, because by construction
Ce is irreducible. The proposition then follows. �

From now on, since we aim for a result on mobile icosapods, we will consider
curves C allowing exactly 20 legs, that is satisfying the following condition:

(†)
{
C is an irreducible real curve with real points,
LC consists of exactly 20 real finite points.

Here by real “finite” points we mean that their z00-coordinates are not zero; in other
terms, such points determine pairs of base and platform points in R3 (and not at
infinity).

Remark 3.3. Notice that condition (†) does not comprise every mechanical device
that one could name a “mobile icosapod”: there may exist a device admitting in-
finitely many complex points in its leg space, of which only 20 are real and finite;
we believe that such situation cannot occur, but we were not able to provide an
argument for this. Still, we believe that condition (†) is a good compromise because
it will allow a uniform treatment of the topic.

Remark 3.4. Notice that condition (†) implies that dim
(
span(C)

)
= 6. Moreover,

from Section 2.2 it follows that C does not pass through any butterfly or collinearity
point.

Lemma 3.5. Suppose that C ⊆ X satisfies condition (†). Then Ce cannot be a
cubic (neither a twisted cubic, nor a plane cubic).

Proof. Suppose that C satisfies condition (†) and Ce is a twisted cubic. Then the
curve Cm, isomorphic to Ce under the Veronese embedding, is a rational normal
sextic, and therefore spans a linear space of dimension 6. This means that the
projection C −→ Cm is a projective isomorphism — since by Remark 3.4 also the
curve C spans a linear space of dimension 6. This forces the center of the projection
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to be disjoint from span(C). By Section 2.2, this implies that C does not admit
similarity or collinearity points. Recall from Remark 3.4 that the curve C does
not admit butterfly points, so the only ones left are the inversion points. However,
since the degree of C is twice the number of inversion points, we would get 3 of
them, and this is not possible, since they occur in conjugate pairs.

Now, suppose that Ce is a planar cubic. Then the curve Cm spans a linear
space of dimension 5. This means that the center of the projection C −→ Cm

intersects span(C) in a single point. Since similarity points occur in pairs, as
remarked at the beginning of Section 2.2, such intersection cannot be a similarity
point; as before, Remark 3.4 ensures that the curve C does not admit butterfly or
collinearity points, so C has only inversion points. Hence we can conclude as in the
previous case. �

We focus therefore on curves C satisfying (†) such that Ce is planar of degree
different from 3. First we rule out the case when Ce is a line or a conic.

Lemma 3.6. Suppose that C ⊆ X satisfies condition (†). Then Ce cannot be a
line.

Proof. If Ce is a line the corresponding motion can only be a Schoenflies motion2.
These motions with points moving on spheres where previously studied by Husty
and Karger in [46]. It is not difficult to see that no discrete solution can exist, as any
leg can be translated along the axis of the Schoenflies motion without restricting
the self-motion. Therefore we always end up with an ∞-pod. �

Lemma 3.7. Suppose that C ⊆ X satisfies condition (†). Then Ce cannot be a
conic.

Proof. Assume that Ce is a conic. The bilinear spherical condition BSC determines
a subspace P̌9

C
⊆ P̌16

C
as dual to the linear projection P16

C
99K P9

C
. By a direct

inspection of Equation (3) one notices that the subvariety Y∞ ⊆ Y composed of
those pairs (a, b) of points with a0 = b0 = 0 (namely legs for which both the base
and the platform point are at infinity) is contained in P̌9

C
. The dimension of Y∞

is 5 and its degree is 6, since it is a cone over the Segre variety P2
C
× P2

C
.

Consider now the set of linear forms in P9
C
vanishing on Cm: this is a vector

space of dimension 5, since it is isomorphic to the vector space of all quadratic
forms on P3

C
that vanish along Ce. In this way we get a linear space P̌4

C
⊆ P̌9

C
. The

intersection P̌4
C
∩ Y∞ ⊆ LC is non-empty and is in general constituted of 6 points.

Thus the number of real legs not at infinity is at most 14, and this contradicts the
assumption that LC has 20 real finite points. �

For the remaining cases, when Ce is a planar curve of degree greater than or
equal to 4, we want to prove that there exists an isometry τ such that the image
of C under the corresponding projective automorphism is contained in Xinv. Recall
from Section 2.2 that we denoted e0, . . . , e3 the coordinates of the P3

C
where Ce lives.

We may assume without loss of generality that e0 = 0 holds for the points of Ce;
this can be achieved by a suitable rotation of the coordinate frame of the platform
— specifically by acting on C with a suitable rotation — since by assumption
Ce is planar. In terms of the coordinates of X, this means that we can apply
an automorphism of P16

C
induced by an isometry so that the points of C satisfy

mij = mji and m11 +m22 +m33 +h = 0: this follows from the relations between the
variables (h : M) and the variables (e0 : e1 : e2 : e3) (see in particular Equations (4)
and (5) when e0 = 0).

2These motions can be composed by a rotation about a fixed axis and an arbitrary translation.
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We can use the assumption e0 = 0 in order to simplify the embedding. Let X1

be the intersection of X with the linear space{
(h : M : x : y : r) ∈ P16

C
: mij = mji and m11 +m22 +m33 + h = 0

}
.

Notice that X1 is the set-theoretical preimage of the locus {e0 = 0} under the
projection X 99K P3

C
, where such projection is obtained composing the projection

to P9
C
on the (h : M)-coordinates with the inverse of the Veronese embedding

P3
C
−→ P9

C
. We project X1 from the point (0 : · · · 0 : 1) in P16

C
— the only singular

point of X of order 20 — obtaining a subvariety X2 of P15
C
, which is actually

contained in a linear subspace isomorphic to P11
C

because of the linear equations
imposed on X1.

If we express the coordinates h and mij for i, j ∈ {1, 2, 3} in terms of the Euler
coordinates e1, e2, e3, and apply the coordinate change

pi = xi + yi, qi = xi − yi, for i ∈ {1, 2, 3},

then we obtain a map from X2 to the weighted projective space PC(~1,~2) (see
[47, Example 10.27] for a reference for weighted projective space). Here ~1 =

(1, 1, 1) and ~2 = (2, 2, 2, 2, 2, 2) and we take coordinates e1, e2, e3 of weight 1 and
p1, p2, p3, q1, q2, q3 of weight 2. The image of X2 is a weighted projective variety
Z ⊆ PC(~1,~2) of dimension 5 defined by the equations

e1 p1 + e2 p2 + e3 p3 = p1 q1 + p2 q2 + p3 q3 =

e1 q2 − e2 q1 = e1 q3 − e3 q1 = e2 q3 − e3 q2 = 0,

as a direct computation using computer algebra confirms. Therefore, for a curve C ⊆
P16

C
for which Ce is planar and satisfies e0 = 0 we get a map C −→ Cz ⊆ Z that is

the composition of a projection, a linear change of variables and a Veronese map.

Remark 3.8. At the beginning of the section we pointed out that isometries deter-
mine automorphisms of P16

C
leaving X invariant. Notice that the automorphisms

corresponding to translations leave X1 invariant, since its equations comprise only
the rotational part of isometries. Therefore translations also act on Z.

Lemma 3.9. Suppose that C ⊆ X satisfies condition (†). Let Cz ⊆ Z be the image
of the curve C under the previously defined maps. Then there exists a translation
of the platform such that the corresponding automorphism maps Cz to a curve C ′z
whose points satisfy q1 = q2 = q3 = 0.

Proof. From the discussion so far we may infer that deg(Ce) > 3. We are especially
interested in the q-vector, so let W ⊆ PC(1, 1, 1, 2, 2, 2) be the projection of Z to
the e and q-coordinates and let Cw be the image of Cz under such projection. The
set W has dimension 4, and its equations are

(6) e1 q2 − e2 q1 = e1 q3 − e3 q1 = e2 q3 − e3 q2 = 0.

By a direct inspection of the map C −→ Cw one notices that forms of weighted
degree 2 on Cw correspond to linear form on C. It follows that the vector space
of weighted degree 2 forms on Cw has dimension at most 7. There are 9 forms of
weighted degree 2 on PC(1, 1, 1, 2, 2, 2) and they are all linear independent as forms
on W because the latter is defined by equations of weighted degree 3. Hence Cw

satisfies at least 2 equations E1 = E2 = 0 of weighted degree 2.
By construction, the polynomials Ei are of the form Ei = Li (~q) +Qi (~e), where

Li is linear and Qi is quadratic. Notice that L1 (~q)L2 (~e) − L1 (~e)L2 (~q) vanishes
onW , because it is a multiple of the polynomials in Equation (6). Therefore on Cw

we have

E1 (~e, ~q) L2 (~e)− E2 (~e, ~q) L1 (~e) = Q1 (~e) L2 (~e)−Q2 (~e) L1 (~e) = 0.
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The latter is a cubic equation only in the variables ~e, thus it is satisfied by Ce. On
the other hand, Ce is a planar curve of degree greater than 3, so Ce cannot satisfy a
nontrivial cubic equation. Therefore we conclude that Q1 (~e) L2 (~e)−Q2 (~e) L1 (~e)
is zero on P2

C
. Since L1 and L2 cannot be proportional (otherwise we would be able

to obtain from E1 and E2 a quadratic equation in ~e satisfied by Ce) we conclude
by unique factorization that Li is a factor of Qi for i ∈ {1, 2}. Hence Qi (~e) =
L (~e) Li (~e) for some linear polynomial L.

From Equation (6) we infer that L1 (~q) ej = L1 (~e) qj for j ∈ {1, 2, 3}. Since E1

is zero on Cw, we have −L1 (~q) = L (~e) L1 (~e) on Cw. Multiplying by ej the last
equation yields:

−L1 (~e) qj = −L1 (~q) ej = L (~e) L1 (~e) ej ,

implying that qj = L (~e) ej holds on Cw for j ∈ {1, 2, 3}.
One can verify that the automorphism corresponding to the translation by a

vector ~a = (a1, a2, a3) ∈ R3 acts on the coordinates of PC(1, 1, 1, 2, 2, 2) by sending

(~e, ~q) 7→ (~e, ~q + `~a ~e) ,

where `~a = a1 e1 +a2 e2 +a3 e3. Hence, if L (~e) = α1 e1 +α2 e2 +α3 e3, it is enough
to apply to Cw the automorphism corresponding to the translation by the vector
α = (α1, α2, α3) to get that q1 = q2 = q3 = 0 holds on Cw. This proves the
statement. �

We are now ready to prove our main result.

Theorem 3.10. Let Π be a mobile icosapod such that its configuration curve KΠ

is irreducible and satisfies (†). Then KΠ is a line-symmetric motion.

Proof. From the discussion so far (Proposition 3.2, Lemma 3.5 and the paragraph
following Lemma 3.7) we know that it is possible to apply a projective automor-
phism to KΠ so that the equations mij = mji and m11 + m22 + m33 + h = 0
hold. Hence we only need to ensure x = y. However, in the new embedding
in PC(1, 1, 1, 2, 2, 2) defined in Lemma 3.9 those equations correspond to q1 = q2 =
q3 = 0, so Lemma 3.9 shows the claim. �

Remark 3.11. From Theorem 3.10 the set of base and platform points of the icosa-
pod possesses a line-symmetry during the complete self-motion. But this property
holds for any pod with a line-symmetric self-motion (see Theorem 1.1). As a con-
sequence one could call these mechanical linkages "line-symmetric icosapods" by
analogy to the "line-symmetric Bricard octahedra".

4. Construction of real icosapods

Borel proposed the construction of line-symmetric icosapods simply by intersect-
ing Xinv with a general linear subspace T of dimension 7 in P10

C
, as explained in

Section 4.1. Since Xinv is a variety of codimension 6 and degree 12 in P10
C
, the

intersection C = Xinv ∩ T is an irreducible curve of degree 12. Indeed, C is a
canonical curve of genus 7, as one can read off from the Hilbert series of Xinv.
The projection Ce of C to the Euler parameters is a planar sextic. Recall that the
leg set LC is the intersection of Y with the dual of span(C), a linear subspace of
codimension 7; this is, in general, a set of 20 complex points. It was not previously
known whether there are examples with 20 real legs, and the goal of this section
is to show that there are instances of such curves C for which this is the case. We
reduce the problem to a question on spectrahedra whose answer is well-known.
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4.1. Borel’s construction. We rephrase Borel’s construction using the terminol-
ogy and concepts introduced in this paper. Let S be the linear subspace defined
by the equations M = M t and x = y. Notice that S has projective dimension 10
and contains Xinv, although span(Xinv) is a linear subspace of dimension 9. The
restriction of the bilinear sphere condition from Equation (3) can be written in a
symmetric way as

(7) l h+ z00r − 2

3∑
i=1

s0ixi − 2

3∑
i=1

ziimii − 2

3∑
1≤i<j

sijmij = 0,

where sij = zij + zji for 1 ≤ i < j ≤ 3. We denote this equation by SBSC, for
symmetric bilinear sphere condition. It defines a duality between S and a linear
subspace P̌10

C
⊆ P̌16

C
whose projective coordinates are l,z00, . . . , z33,s01, . . . , s23. The

intersection of the leg variety Y with such a P̌10
C

parametrizes pairs of legs obtained
by swapping the roles of the base and the platform points. Denote by π : P̌10

C
99K P̌9

C
the projection defined by removing the l-coordinate. We denote by Yinv the image
of the map α : P3

C
× P3

C
−→ P̌9

C
,(

(a0 : · · · : a3), (b0 : · · · : b3)
)
7→ (a0 b0︸︷︷︸

z00

: · · · : a3 b3︸︷︷︸
z33

: a0 b1 + a1 b0︸ ︷︷ ︸
s01

: · · · : a2 b3 + a3 b2︸ ︷︷ ︸
s23

).

One can easily prove that Yinv is nothing but the projection under π of the inter-
section Y ∩ P̌10

C
. Note that α is a 2 : 1 map, since α(a, b) = α(b, a) for all a, b ∈ P3

C
.

Because of this, it might happen that two pairs of complex points are sent by α to
a real point of Yinv.

For any curve C ⊆ Xinv, the leg set LC is equal to the intersection of the linear
space Γ̃, dual to span(C), with the cone over Yinv in P̌10

C
, namely π−1 (Yinv). If

dim span(C) = 6, then dim Γ̃ = 3. Since Xinv is contained in the hyperplane m11 +

m22+m33+h = 0, it follows that Γ̃ passes through the point pe with coordinates l =
−2, z11 = z22 = z33 = 1 and all other coordinates being zero. Borel’s construction
can be rephrased as simply choosing a 3-space passing through pe and intersecting
with the cone over Yinv. This cone has degree 10 and codimension 3 in P̌10

C
, so

generically there are 10 solutions (possibly complex), each corresponding to a pair
of legs. For a general 3-space Γ̃ passing through pe, one can ask three questions on
reality:

(1) How many of the 10 points of Γ̃ ∩ π−1 (Yinv) are real?
(2) How many of the real points above have real preimages under α? Namely,

how many real legs does the curve C admit?
(3) Does the curve Xinv ∩ Λ have real components, where Λ is the dual to Γ̃

under SBSC?
The answers to Question (1) and (2) only depend on the projection of Γ̃ to P̌9

C
. In

order to obtain positive answers for Question 3, it is also convenient to start with
the projection to P̌9

C
.

Definition 4.1. A Borel subspace Γ is a 3-space in P̌9
C
passing through π(pe).

The following proposition settles Question (3).

Proposition 4.2. Let Γ be a Borel subspace. Then there exists a 3-space Γ̃ passing
through pe such that π(Γ̃) = Γ and Xinv ∩ Λ has real components, where Λ is the
dual of Γ̃ under SBSC.

Proof. Let f : S 99K P4
C
be the projection from the linear subspace U dual to π−1(Γ).

Note that U is contained in the hyperplane m11 + m22 + m33 + h = 0. Hence
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Table 1. Points in Γ̃ ∩ π−1(Yinv).

no. of real points 2 4 6 8 10
frequency 22 1067 3638 4035 1238

Table 2. Points in α−1
(
Γ̃ ∩ π−1(Yinv)

)
.

no. of real points 2 4 6 8 10 12 14 16 18 20
frequency 0 4107 0 5240 0 650 0 3 0 0

the image of Xinv under f is contained in a linear 3-space, and f |Xinv
has one-

dimensional fibers. Since Xinv has real components, it follows that there exist fibers
(f |Xinv)−1(q) with real components, for some q ∈ P4

C
. We just need to choose Γ̃

dual to f−1(q); then Xinv ∩ Λ coincides with (f |Xinv
)−1(q) and therefore has real

components. �

In order to get some statistical data on the answers to Question (1) and (2),
we tested 10000 random examples3 of Borel subspaces. The results are shown in
Tables 1 and 2.

As one can see, the experimental data do not reveal any example of pods with 20
real legs. This is, however, misleading; see the next section.

4.2. Icosapods via spectrahedra. We conclude our work by showing how it is
possible to construct a mobile icosapod with 20 real legs using some result in convex
algebraic geometry.

Consider a 4-dimensional vector space A of symmetric 4 × 4-matrices over R.
Classically, the spectrahedron defined by A is the subset of A comprised of positive
semidefinite matrices. One can also consider the spectrahedron as a subset of the
projective space P(A) ∼= P3. The boundary of the spectrahedron consists of the
semidefinite matrices with determinant 0, and hence its Zariski closure is a quartic
surface in P3, called the symmetroid defined by A. In general, a symmetroid has
10 double points, corresponding to matrices of rank 2.

Given a spectrahedron whose symmetroid has 10 complex double points, its type
is the pair of integers (a, b), where a is the number of real double points of the
symmetroid and b is the number of real double points of the symmetroid that are
also contained in the spectrahedron.

Theorem 4.3. There is a bijective correspondence between quartic spectrahedra

containing the matrix E :=

(
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
and Borel subspaces. For a spectrahedron

defined by a vector space A and the corresponding Borel subspace Γ, the following
statement holds: if the spectrahedron has type (a, b), then Γ intersects Yinv in a real
points, and a− b of them have real preimages under α.

Proof. We identify P̌9
C
with the projectivization of the vector space of symmetric 4×

4 matrices in the following way: a point with homogeneous coordinates z00, . . . , s23

corresponds to the class of the matrix
2 z00 s01 s02 s03

s01 2 z11 s12 s13

s02 s12 2 z22 s23

s03 s13 s23 2 z33

 .

3The Maple code used to perform such experiments can be downloaded from http://
matteogallet.altervista.org/main/papers/icosapods2015/Icosapods.mpl

http://matteogallet.altervista.org/main/papers/icosapods2015/Icosapods.mpl
http://matteogallet.altervista.org/main/papers/icosapods2015/Icosapods.mpl
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A linear subspace A of dimension 3 in the space of symmetric matrices containing
the matrix E corresponds then to a Borel subspace Γ.

The subvariety Yinv corresponds to the subvariety of matrices of rank 2. A real
matrix of rank 2 does not lie on the spectrahedron if and only if the quadratic form
defined by it is a product of two distinct real linear forms, and this is true if and
only if its preimage under α is real. �

Degtyarev and Itenberg in [48] determined all possible types of quartic spectra-
hedra. In particular, spectrahedra of type (10, 0) do exist, hence by Theorem 4.3
they provide Borel subspaces intersecting Yinv in 10 real points, each of them having
two real preimages under the map α. This implies that there exist Borel icosapods
with 20 real legs.

In [3], the authors give explicit examples of spectrahedra for all possible types.
The given example of type (10, 0) does not contain the matrix E, but it is easy to
adapt their example to one of the same type that does contain E.

4.3. Example. Starting from [3, Section 2, Case (10, 0)] we computed4 the follow-
ing example, which is suitable for graphical representation:

P1 = p4 =
(
− 19493

142100 ,−
2088
94325 ,−

24
9625

)
, p1 = P4 =

(
− 36411

267844 ,−
1608

177793 ,
504

25399

)
,

P2 = p5 =
(
− 269

5000 ,
39

1000 ,
17
500

)
, p2 = P5 =

(
− 47

368 ,−
12

1771 ,
21

1265

)
,

P3 = p6 =
(
− 1863

14645 ,−
106851
1555400 ,

2509
222200

)
, p3 = P6 =

(
− 15185

112462 ,−
120

149303 ,
48

3047

)
.

We apply a half-turn to the platform about a line ` through the point (− 1
10 , 0, 0)

in direction (1, 7003716944
10000000000 ,

8
10 ). In the resulting initial position, which is illustrated

in Figure 1, the squared leg lengths of the first six legs read as follows:

d2
1 = d2

4 = 1081643179736912972309543483891375692
276669953748621822688942197018838171875 ,

d2
2 = d2

5 = 219482305781081742844809989061
29002829339836395492656900000000 ,

d2
3 = d2

6 = 4185335506762812187908674782558830797
636621874987061375644008358435317156000 .

For this input data the self-motion consists of two components. The trajecto-
ries of the component which passes through the initial position are illustrated
in Figures 3 and 4. In the latter figure also the associated basic surface is dis-
played. An animation of this line-symmetric self-motion can be downloaded from
www.geometrie.tuwien.ac.at/nawratil/icosapod.gif.

We close the paper by mentioning two open questions that we find of interest:
- Starting from spectrahedra of type (a, b) with a− b ≥ 4 one may construct
mobile pods with 16, 12 or 8 legs: is it true that a general mobile pod with
16, 12 or 8 legs is line-symmetric? (It is known that a, b have to be even
numbers.)

- Identify all cases where more than 20 points move on spheres during a
line-symmetric motion; i.e. (a) 1-dim, (b) 2-dim or even (c) 3-dim set of
points with spherical trajectories. Case (c) is completely known due to
Bricard [12], but cases (a) and (b) are still open. Examples for both cases
are known (cf. Section 1.2.2 and [11, 12, 14, 18]).
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Figure 3. The 20 spherical trajectories passing through the initial
position of the icosapod.
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