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Abstract. The (asymptotic) behaviour of the second moment of solutions to stochastic
differential equations is treated in mean-square stability analysis. This property is discussed
for approximations of infinite-dimensional stochastic differential equations and necessary
and sufficient conditions ensuring mean-square stability are given. They are applied to typ-
ical discretization schemes such as combinations of spectral Galerkin, finite element, Euler–
Maruyama, Milstein, Crank–Nicolson, and forward and backward Euler methods. Further-
more, results on the relation to stability properties of corresponding analytical solutions are
provided. Simulations of the stochastic heat equation illustrate the theory.

1. Introduction

An interesting quantity of a stochastic differential equation (SDE) or a stochastic partial
differential equation (SPDE) is the qualitative behaviour of its second moment for large
times. Both types of equations can be interpreted as SDEs on a (here separable) Hilbert
space (H, 〈·, ·〉H). More specifically, let us consider a complete filtered probability space
(Ω,A, (Ft, t ≥ 0), P ) satisfying the “usual conditions” and the model problem

(1) dX(t) = (AX(t) + FX(t)) dt+G(X(t)) dL(t)

with F0-measurable, square-integrable initial condition X(0) = X0. Here, A : D(A) → H
is the generator of a C0-semigroup S = (S(t), t ≥ 0) on H and F is a linear and bounded
operator on H, i.e., F ∈ L(H). Furthermore, L denotes a U -valued Q-Lévy process that
is assumed to be a square-integrable martingale as considered in [27] on the real separable
Hilbert space (U, 〈·, ·〉U ) with covariance Q ∈ L(U) of trace class and let G ∈ L(H;L(U ;H)).

We recall from [24] that an equilibrium (solution) of (1) is the zero solution (Xe(t) =
0, t ≥ 0). It is called mean-square stable if, for every ε > 0, there exists δ > 0 such that
E[‖X(t)‖2H ] < ε for all t ≥ 0 whenever E[‖X0‖2H ] < δ. It is further asymptotically mean-
square stable if it is mean-square stable and there exists δ > 0 such that E[‖X0‖2H ] < δ
implies limt→∞ E[‖X(t)‖2H ] = 0. A lot of effort has been dedicated to the asymptotic mean-
square stability analysis in finite and infinite dimensions, see e.g., [17, 26, 2, 24].

Since analytical solutions to SDEs are rarely available, approximations in time and possibly
in space by numerical methods have to be considered. The main focus of research in recent
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years has been on strong and weak convergence when the discretization parameters ∆t in time
and h in space tend to zero. However, this property does not guarantee that the approximation
shares the same (asymptotic) mean-square stability properties as the analytical solution. For
finite-dimensional SDEs it is known that the specific choice of ∆t is essential. The goal of this
manuscript is to generalize the theory of asymptotic mean-square stability analysis to a Hilbert
space setting. We develop a theory for approximation schemes that has apriori no relation to
the original equation (1) and its properties. Later on, we will discuss which conditions on (1)
and its approximation lead to similar behaviour. An important application of mean-square
stability is in multilevel Monte Carlo methods, where combinations of approximations on
different space and time grids are computed. If the solution is mean-square unstable on any
of the included levels, this is enough for the estimator to not behave as it should, see, e.g.,
[1].

The mean-square stability analysis of numerical approximations of SDEs started by con-
sidering the approximations of the one-dimensional geometric Brownian motion, see e.g., [29,
14, 15]. As it has been pointed out in [10, 11], the analysis of higher-dimensional systems and
their approximations is also necessary, since the asymptotic behaviour of the corresponding
mean-square processes of systems with commuting and non-commuting matrices often differs.
The tools to perform mean-square stability analysis of SDE approximations presented in [11]
could in principle be used for approximations of infinite-dimensional SDEs by a method of
lines approach: After projection on an Nh-dimensional space the mean-square stability prop-
erties of the resulting finite-dimensional SDEs and their approximations can be determined
by considering the eigenvalues of N2

h×N2
h-dimensional matrices. However, due to the compu-

tational complexity as Nh →∞, neither the symbolic nor the numerical computation of these
eigenvalues can be done for arbitrarily large systems. For this reason, we use an approach
based on tensor-product-space-valued processes and properties of tensorized linear operators.

The outline of this article is as follows: Section 2 sets up a theory of mean-square stability
analysis for discrete stochastic processes derived from recursions as they appear in approxi-
mations of infinite-dimensional SDEs. In the main result, necessary and sufficient conditions
for asymptotic mean-square stability are shown. These results are then applied in Section 3
to numerical approximations of (1) based on spatial Galerkin discretization schemes and time
discretizations with Euler–Maruyama and Milstein methods using backward/forward Euler
and Crank–Nicolson as rational semigroup approximations. We conclude this work presenting
simulations of stochastic heat equations with spectral Galerkin and finite element methods in
Section 4 that illustrate the theory.

2. Asymptotic mean-square stability analysis

This section is devoted to the setup of asymptotic mean-square stability for families of
stochastic processes in discrete time given by recursion schemes as they typically show up
in approximations of (1). We derive necessary and sufficient conditions ensuring asymptotic
mean-square stability that can be checked in practice as it is shown later in Section 3.

Let (Vh, h ∈ (0, 1]) be a family of finite-dimensional subspaces Vh ⊂ H with dim(Vh) =
Nh ∈ N indexed by a refinement parameter h. With an inner product induced by 〈·, ·〉H , Vh
becomes a Hilbert space with norm ‖ · ‖H . For a linear operator D : Vh → Vh, the operator
norm ‖D‖L(Vh) is therefore given by supv∈Vh ‖Dv‖H/‖v‖H and can be seen to coincide with
‖DPh‖L(H), where Ph denotes the orthogonal projection onto Vh.
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Let us further consider the time interval [0,∞) and for convenience equidistant time steps
tj = j∆t, j ∈ N0, with fixed step size ∆t > 0. Hence, t→∞ is equivalent to j →∞. Assume

that we are given a sequence of Vh-valued random variables (Xj
h, j ∈ N0) determined by the

linear recursion scheme

Xj+1
h = Ddet

∆t,hX
j
h +Dstoch,j

∆t,h Xj
h(2)

with F0-measurable initial condition X0
h ∈ L2(Ω;Vh), i.e., E[‖X0

h‖2Vh ] < ∞. Here Ddet
∆t,h ∈

L(Vh) and Dstoch,j
∆t,h is an L(Vh)-valued random variable for all j.

In terms of SDE (1), one can think of Ddet
∆t,h as the approximation of the solution operator

of the deterministic part

dX(t) = (AX(t) + FX(t)) dt, t ∈ [tj , tj+1)

and Dstoch,j
∆t,h approximates the stochastic part

dX(t) = G(X(t)) dL(t), t ∈ [tj , tj+1).

Although, in general, any not necessarily equidistant time discretization (tj , j ∈ N0) that
satisfies tj → ∞ if j → ∞ would be sufficient for the following theory, we see in the given

SDE example that Ddet
∆t,h would be j-dependent in this case, which we want to omit for the

sake of readability.
Inspired by properties of standard approximation schemes for (1), we put the following

assumptions on the family (Dstoch,j
∆t,h , j ∈ N0).

Assumption 2.1. Let h,∆t > 0 be fixed. The family (Dstoch,j
∆t,h , j ∈ N0) is F-compatible in

the sense of [12, 21], i.e., Dstoch,j
∆t,h is Ftj+1-measurable and E[Dstoch,j

∆t,h |Ftj ] = 0 for all j ∈ N0.

Furthermore, for all j ∈ N0, let ‖Dstoch,j
∆t,h ‖L2(Ω;L(Vh)) = E[‖Dstoch,j

∆t,h ‖
2
L(Vh)]

1/2 <∞ and

E
[
Dstoch,j

∆t,h ⊗Dstoch,j
∆t,h

∣∣∣Ftj ] = E
[
Dstoch,j

∆t,h ⊗Dstoch,j
∆t,h

]
,

where ⊗ denotes the tensor product.

For the recursion scheme (2) an equilibrium (solution) is given by the zero solution, which

is defined as Xj
h,e = 0 for all j ∈ N0. We define mean-square stability of the zero solution

of (2) in what follows.

Definition 2.2. Let Xh = (Xj
h, j ∈ N0) be given by (2) for fixed h and ∆t. The zero solution

(Xj
h,e = 0, j ∈ N0) of (2) is called mean-square stable if, for every ε > 0, there exists δ > 0

such that E[‖Xj
h‖

2
H ] < ε for all j ∈ N0 whenever E[‖X0

h‖2H ] < δ.
It is called asymptotically mean-square stable if it is mean-square stable and there exists

δ > 0 such that E[‖X0
h‖2H ] < δ implies limj→∞ E[‖Xj

h‖
2
H ] = 0. Furthermore, it is called

asymptotically mean-square unstable if it is not asymptotically mean-square stable.

For convenience, the abbreviation (asymptotic) mean-square stability for the (asymptotic)
mean-square stability of the zero solution of (2) or (1) is used if it is clear from the context.

When applied to Yj = Xj
h, the following lemma provides an equivalent condition for mean-

square stability in terms of the tensor-product-space-valued process Xj
h ⊗X

j
h ∈ V

(2)
h . Here,
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for a general Hilbert space H, the abbreviation H(2) = H ⊗H is used and H(2) is defined as
the completion of the algebraic tensor product with respect to the norm induced by

〈v, w〉H⊗H =
N∑
i=1

M∑
j=1

〈v1,i, w1,j〉H 〈v2,i, w2,j〉H ,

where v =
∑N

i=1 v1,i ⊗ v2,i and w =
∑M

j=1w1,j ⊗w2,j are representations of elements v and w
in the algebraic tensor product.

Lemma 2.3. Let Vh be a finite-dimensional subspace of H. Then, for any sequence (Yj , j ∈
N0) of Vh-valued, square-integrable random variables, limj→∞ E[Yj ⊗ Yj ] = 0 if and only if
limj→∞ E[‖Yj‖2H ] = 0.

Proof. By Parseval’s identity, for an orthonormal basis (ψ1, . . . , ψNh
) of Vh, we have∥∥E [Yj ⊗ Yj]∥∥2

H(2) =

Nh∑
k,`=1

∣∣E [〈Yj ⊗ Yj , ψk ⊗ ψ`〉H(2)

]∣∣2 =

Nh∑
k,`=1

∣∣E [〈Yj , ψk〉H〈Yj , ψ`〉H]∣∣2
and similarly

E
[
‖Yj‖2H

]
=

Nh∑
k=1

E
[
〈Yj , ψk〉2H

]
.

Therefore, one implication is immediately obtained, while the other follows from the fact that

‖E [Yj ⊗ Yj ]‖H(2) ≤ E
[
‖Yj ⊗ Yj‖H(2)

]
= E

[
‖Yj‖2H

]
. �

This lemma enables us to show the following sufficient condition for asymptotic mean-
square stability.

Theorem 2.4. Let Xh = (Xj
h, j ∈ N0) given by (2) satisfy Assumption 2.1 and set

Sj = Ddet
∆t,h ⊗Ddet

∆t,h + E[Dstoch,j
∆t,h ⊗Dstoch,j

∆t,h ].

Then the zero solution of (2) is asymptotically mean-square stable, if

lim
j→∞

‖Sj · · · S0‖L(V
(2)
h )

= 0.

Proof. Let us first remark that Sj ∈ L(V
(2)
h ) for all j ∈ N0 by the properties of Ddet

∆t,h and

Dstoch,j
∆t,h and of the Hilbert tensor product. In order to show asymptotic mean-square stability,

it suffices to show E[Xj
h ⊗X

j
h]→ 0 as j →∞ by Lemma 2.3. For this, consider

E[Xj+1
h ⊗Xj+1

h ] = E
[
(Ddet

∆t,h +Dstoch,j
∆t,h )Xj

h ⊗ (Ddet
∆t,h +Dstoch,j

∆t,h )Xj
h

]
= E

[
(Ddet

∆t,h ⊗Ddet
∆t,h)(Xj

h ⊗X
j
h)
]

+ E
[
(Dstoch,j

∆t,h ⊗Dstoch,j
∆t,h )(Xj

h ⊗X
j
h)
]

+ E
[
(Ddet

∆t,h ⊗D
stoch,j
∆t,h )(Xj

h ⊗X
j
h)
]

+ E
[
(Dstoch,j

∆t,h ⊗Ddet
∆t,h)(Xj

h ⊗X
j
h)
]
.

The mixed terms vanish by the observation that

E
[
(Ddet

∆t,h ⊗D
stoch,j
∆t,h )(Xj

h ⊗X
j
h)
]

= E
[
(Ddet

∆t,h ⊗ E[Dstoch,j
∆t,h |Ftj ])(X

j
h ⊗X

j
h)
]

= 0

since Xj
h and Ddet

∆t,h are Ftj -measurable and E[Dstoch,j
∆t,h |Ftj ] = 0 by Assumption 2.1.
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Applying Assumption 2.1 once more, we therefore conclude

E[Xj+1
h ⊗Xj+1

h ] = E
[(
Ddet

∆t,h ⊗Ddet
∆t,h +Dstoch,j

∆t,h ⊗Dstoch,j
∆t,h

)
(Xj

h ⊗X
j
h)
]

= E
[(
Ddet

∆t,h ⊗Ddet
∆t,h + E[Dstoch,j

∆t,h ⊗Dstoch,j
∆t,h |Ftj ]

)
(Xj

h ⊗X
j
h)
]

=
(
Ddet

∆t,h ⊗Ddet
∆t,h + E[Dstoch,j

∆t,h ⊗Dstoch,j
∆t,h ]

)
E
[
Xj
h ⊗X

j
h)
]
.

and obtain

E[Xj+1
h ⊗Xj+1

h ] = Sj E[Xj
h ⊗X

j
h] = (Sj · · · S0)E[X0

h ⊗X0
h].

Since limj→∞ ‖Sj · · · S0‖L(V
(2)
h )

= 0, mean-square stability is shown with the computation

E[‖Xj+1
h ‖2H ]2 =

( Nh∑
k=1

E[〈Xj+1
h , ψk〉2H ]

)2
≤ Nh

Nh∑
k=1

E[〈Xj+1
h , ψk〉2H ]2

≤ Nh

∥∥E[Xj+1
h ⊗Xj+1

h ]
∥∥2

H(2) ≤ Nh‖Sj · · · S0‖2
L(V

(2)
h )

E[‖X0
h‖2H ]2.

For asymptotic mean-square stability, note that for any F0-measurable initial value X0
h ∈

L2(Ω;Vh) it holds that limj→∞ E[Xj
h ⊗X

j
h] = 0 if and only if

lim
j→∞

‖(Sj · · · S0)E[X0
h ⊗X0

h]‖
V

(2)
h

= 0,

for which a sufficient condition is given by limj→∞ ‖Sj · · · S0‖L(V
(2)
h )

= 0. Therefore, the proof

is finished. �

In many examples the operators (Dstoch,j
∆t,h , j ∈ N0) have a constant covariance, i.e., they

satisfy for all j ∈ N0

E
[
Dstoch,j

∆t,h ⊗Dstoch,j
∆t,h

]
= E

[
Dstoch,0

∆t,h ⊗Dstoch,0
∆t,h

]
.(3)

Often as in the following example they are even independent and identically distributed,
which implies (3).

Example 2.5. Consider the one-dimensional geometric Brownian motion driven by an adapt-
ed, real-valued Brownian motion (β(t), t ≥ 0)

dX(t) = λX(t)dt+ σX(t)dβ(t), t ≥ 0,

with initial condition X(0) = x0 ∈ R and λ, σ ∈ R. The solution can be approximated by the
explicit Euler–Maruyama scheme

Xj+1 = Xj + λ∆tXj + σ∆βjXj ,

for j ∈ N0, where ∆βj = β(tj+1)− β(tj), or by the Milstein scheme

Xj+1 = Xj + λ∆tXj + σ∆βjXj + 2−1σ2
(
(∆βj)2 −∆t

)
Xj .

Then the deterministic operators in (2)

Ddet
∆t,EM = Ddet

∆t,Mil = 1 + λ∆t

are equal for both schemes, and the corresponding approximations of the stochastic integrals
are given by

Dstoch,j
∆t,EM = σ∆βj , Dstoch,j

∆t,Mil = σ∆βj + 2−1σ2
(
(∆βj)2 −∆t

)
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for j ∈ N0. Both families of stochastic approximation operators satisfy Assumption 2.1 and

E
[
Dstoch,j

∆t,EM ⊗D
stoch,j
∆t,EM

]
= σ2∆t, E

[
Dstoch,j

∆t,Mil ⊗D
stoch,j
∆t,Mil

]
= σ2∆t

(
1 + 2−1σ2∆t

)
do not depend on j. We observe that the equidistant time step ∆t is essential here.

Having this example in mind, we are able to give a necessary and sufficient condition for
asymptotic mean-square stability when assuming (3) and therefore to specify Theorem 2.4.

The condition relies on the spectrum of a single linear operator S ∈ L(V
(2)
h ).

Corollary 2.6. Let Xh = (Xj
h, j ∈ N0) given by (2) satisfy Assumption 2.1 and (3). Then

the zero solution of (2) is asymptotically mean-square stable if and only if

S = Ddet
∆t,h ⊗Ddet

∆t,h + E[Dstoch,0
∆t,h ⊗Dstoch,0

∆t,h ] ∈ L(V
(2)
h )

satisfies ρ(S) = maxi=1,...,N2
h
|λi| < 1, where λ1, . . . , λN2

h
are the eigenvalues of S.

Furthermore, it is asymptotically mean-square stable if ‖S‖
L(V

(2)
h )

< 1.

Proof. Setting Sj = S for all j ∈ N0 in Theorem 2.4, we obtain by the same arguments

E[Xj+1
h ⊗Xj+1

h ] = (Sj · · · S0)E[X0
h ⊗X0

h] = Sj+1 E[X0
h ⊗X0

h].

As a consequence, limj→∞ E[Xj
h ⊗X

j
h] = 0 if and only if limj→∞ Sj = 0 which is equivalent

to ρ(S) < 1 by the same arguments as, e.g., in [8, 17, 11]. This completes the proof of the
first statement. Since ρ(S) ≤ ‖S‖

L(V
(2)
h )

, a sufficient condition for asymptotic mean-square

stability is given by ‖S‖
L(V

(2)
h )

< 1. �

In the framework of SDE approximations, note that this corollary is an SPDE version
formulated with operators of the results for finite-dimensional linear systems in [11]. There,
the proposed method relies on a matrix eigenvalue problem. For SPDE approximations, this
approach is not suitable, since the dimension of the considered eigenvalue problem increases
heavily with space refinement. More precisely, for h > 0, the spectral radius of an (N2

h×N2
h)-

matrix has to be computed. To overcome this problem, we perform, in what follows, mean-
square stability analysis of SPDE approximations based on operators as introduced above.

3. Application to Galerkin methods

We continue by applying the previous results to the analysis of some classical numerical
approximations of (1) which admits by results in [27, Chapter 9] an up to modification unique
mild càdlàg solution and is for t ≥ 0 given by

(4) X(t) = S(t)X0 +

∫ t

0
S(t− s)F (X(s)) ds+

∫ t

0
S(t− s)G(X(s)) dL(s).

We assume further that the operator −A : D(−A) ⊂ H → H of (1) is densely defined, self-
adjoint, and positive definite with compact inverse. This implies that −A has a non-decreasing
sequence of positive eigenvalues (λi, i ∈ N) for an orthonormal basis of eigenfunctions (ei, i ∈
N) in H and fractional powers of −A are provided by

(−A)r/2ei = λ
r/2
i ei

for all i ∈ N and r > 0. For each r > 0, Ḣr = D((−A)r/2) with inner product 〈·, ·〉r =〈
(−A)r/2·, (−A)r/2·

〉
H

defines a separable Hilbert space (see, e.g., [20, Appendix B]).
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Let the sequence (Vh, h ∈ (0, 1]) of finite-dimensional subspaces fulfil Vh ⊂ Ḣ1 ⊂ H and
define the discrete operator −Ah : Vh → Vh by

〈−Ahvh, wh〉H = 〈vh, wh〉1 =
〈

(−A)1/2vh, (−A)1/2wh

〉
H

for all vh, wh ∈ Vh. This definition implies that −Ah is self-adjoint and positive definite on Vh
and therefore has a sequence of orthonormal eigenfunctions (eh,i, i = 1, . . . , Nh) and positive
non-decreasing eigenvalues (λh,i, i = 1, . . . , Nh) (see e.g., [20, Chapter 3]). By using basic
properties of the Rayleigh quotient, we bound the smallest eigenvalue λh,1 of −Ah from below
by the smallest eigenvalue λ1 of −A through

λh,1 = min
vh∈Vh\{0}

〈vh, vh〉1
‖vh‖2H

≥ min
v∈H\{0}

〈v, v〉1
‖v‖2H

= λ1,(5)

since Vh ⊂ H, cf. [9]. This estimate turns out to be useful when comparing asymptotic
mean-square stability of (1) and its approximation later in this section.

Let the covariance of the Lévy process L be self-adjoint, positive semidefinite, and of trace
class. Then results in [27, Chapter 4] imply the existence of an orthonormal basis (fi, i ∈ N)
of U and a non-increasing sequence of non-negative real numbers (µi, i ∈ N) such that for all
i ∈ N, Qfi = µifi with Tr(Q) =

∑∞
i=1 µi <∞ and L admits a Karhunen–Loève expansion

(6) L(t) =
∞∑
i=1

√
µiLi(t)fi,

where (Li, i ∈ N) is a family of real-valued, square-integrable, uncorrelated Lévy processes
satisfying E[(Li(t))

2] = t for all t ≥ 0. Note that due to the martingale property of L, the
real-valued Lévy processes satisfy E[Li(t)] = 0 for all t ≥ 0 and i ∈ N. This implies, together

with the stationarity of the Lévy increments ∆Lji = Li(tj+1)− Li(tj), that for all i ∈ N and
j ∈ N0,

E[∆Lji ] = E[∆L0
1] = E[L1(∆t)] = 0.

Since the series representation of L can be infinite, an approximation of L might be required
to implement a fully discrete approximation scheme, which is typically done by truncation of
the Karhunen–Loève expansion, i.e., for κ ∈ N, set Lκ(t) =

∑κ
i=1

√
µiLi(t)fi. Note that the

choice of κ is essential and should be coupled with the overall convergence of the numerical
scheme as is discussed in, e.g., [3, 5, 25]. Within this work, we consider numerical methods
based on the original Karhunen–Loève expansion (6) of L. However, this does not restrict
the applicability of the results since Lκ fits in the framework by setting µi = 0 for all i > κ.

As standard example in this context we consider the stochastic heat equation which is used
for simulations in Section 4.

Example 3.1 (Stochastic heat equation). Let the separable Hilbert space H = L2([0, 1])
be the space of square-integrable functions on [0, 1]. On this space we consider the operator
A = ν∆, where ν > 0 and ∆ denotes the Laplace operator with homogeneous zero Dirichlet
boundary conditions which is the generator of a C0-semigroup, cf. [20, Example 2.21]. The
equation

dX(t) = ν∆X(t) dt+G(X(t)) dL(t)

is referred to as the (homogeneous) stochastic heat equation.
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It is known (see, e.g., [20, Chapter 6]) that the eigenvalues and eigenfunctions of the
operator −A are given by

λi = νi2π2, ei(y) =
√

2 sin(iπy), i ∈ N, y ∈ [0, 1].

We first assume, for simplicity, that U = H = L2([0, 1]) and that the operator Q diagonalizes
with respect to the eigenbasis of −A, i.e., fi = ei for all i ∈ N. For this choice, we consider
the operator G = G1 that gives rise to a geometric Brownian motion in infinite dimensions,
cf. [20, Section 6.4]. It is for all u, v ∈ H defined by the equation

G1(v)u =

∞∑
i=1

〈v, ei〉H〈u, ei〉Hei.

As a second example, we let U = Ḣ1 with the same diagonalization assumption as before,

i.e., fi = λ
1/2
i ei for all i ∈ N. Here, we let the operator G = G2 be a Nemytskii operator

which is defined pointwise for x ∈ [0, 1], u ∈ Ḣ1 and v ∈ H by

(G2(v)u)[x] = v(x)u(x).

To see that G ∈ L(H;L(U ;H)) note that for u, v ∈ H, by the triangle inequality and Cauchy–
Schwarz we have for G1

‖G1(v)u‖H ≤
∞∑
i=1

|〈v, ei〉H ||〈u, ei〉H | ≤
( ∞∑
i=1

〈v, ei〉2H
)1/2( ∞∑

i=1

〈u, ei〉2H
)1/2

= ‖v‖H‖u‖H .

Next, for G2 with v ∈ H and u ∈ Ḣ1, it holds that

‖G2(v)u‖2H =

∫ 1

0
u(x)2v(x)2 dx =

∫ 1

0

( ∞∑
i=1

λ
1/2
i 〈u, ei〉H λ

−1/2
i ei(x)

)2
v(x)2 dx

≤
( ∞∑
i=1

λi| 〈u, ei〉H |
2
)∫ 1

0

( ∞∑
i=1

λ−1
i ei(x)2

)
v(x)2 dx

≤ ‖u‖2
Ḣ1

(
2
∞∑
i=1

λ−1
i

)∫ 1

0
v(x)2 dx =

(
2
∞∑
i=1

λ−1
i

)
‖u‖2

Ḣ1‖v‖2H .

Here, the first inequality is an application of the Cauchy–Schwarz inequality, while the second
follows from the fact that the sequence (|ei(x)|, i ∈ N) is bounded by

√
2 for all x ∈ [0, 1].

Therefore, we obtain

‖G1‖L(H;L(H)) ≤ 1, ‖G2‖L(H;L(Ḣ1,H)) ≤
(

2

∞∑
i=1

λ−1
i

)1/2
.

3.1. Time discretization with rational approximations. Let us first recall that a ra-
tional approximation of order p of the exponential function is a rational function R : C→ C
satisfying that there exist constants C, δ > 0 such that for all z ∈ C with |z| < δ

|R(z)− exp(z)| ≤ C|z|p+1.

Since R is rational there exist polynomials rn and rd such that R = r−1
d rn. We want to

consider rational approximations of the semigroup S generated by the operator −A and of
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its approximations −Ah as they were considered in [30]. With the introduced notation, the
linear operator R(∆tAh) is given for all vh ∈ Vh by

R(∆tAh)vh = r−1
d (∆tAh)rn(∆tAh)vh =

Nh∑
k=1

rn(−∆tλh,k)

rd(−∆tλh,k)
〈vh, eh,k〉H eh,k.(7)

Let us start with the mean-square stability properties of a Galerkin Euler–Maruyama
method, which is given by the recursion

Xj+1
h = (Ddet

∆t,h +DEM,j
∆t,h )Xj

h(8)

for j ∈ N0 with initial condition X0
h = PhX0, where

Ddet
∆t,h = R(∆tAh) + r−1

d (∆tAh)∆tPhF, Dstoch,j
∆t,h = DEM,j

∆t,h = r−1
d (∆tAh)PhG(·)∆Lj(9)

with ∆Lj = L(tj+1) − L(tj). Note that the linear operators (Dstoch,j
∆t,h , j ∈ N0) satisfy all

assumptions of Corollary 2.6 since they only depend on the Lévy increments (∆Lj , j ∈ N0).
For this type of numerical approximation, the result from Corollary 2.6 can be specified:

Proposition 3.2. The zero solution of the numerical method (8) is asymptotically mean-
square stable if and only if

S = Ddet
∆t,h ⊗Ddet

∆t,h + ∆t (C ⊗ C)q ∈ L(V
(2)
h )

satisfies that ρ(S) < 1, where q =
∑∞

k=1 µkfk ⊗ fk ∈ U (2) and C ∈ L(U ;L(Vh)) with

Cu = r−1
d (∆tAh)PhG(·)u.

Proof. Note that since Vh is finite-dimensional, L(Vh) = LHS(Vh) so (C ⊗ C) is well-defined

as an element of L(U (2), L
(2)
HS(Vh)) ⊂ L(U (2), L(V

(2)
h )) by [18, Lemma 3.1(ii)], which yields for

j ∈ N

E[DEM,j
∆t,h ⊗D

EM,j
∆t,h ] = E[C∆Lj ⊗ C∆Lj ] = (C ⊗ C)E[∆Lj ⊗∆Lj ].

Since E[∆Lj ⊗∆Lj ] = ∆t q by Lemma A.1, the proof is completed with Corollary 2.6. �

The still rather abstract condition can be specified to an explicit sufficient condition.

Corollary 3.3. A sufficient condition for asymptotic mean-square stability of (8) is(
max

k=1,...,Nh

|R(−∆tλh,k)|+ max
k=1,...,Nh

|r−1
d (−∆tλh,k)|∆t‖F‖L(H)

)2

+ max
k=1,...,Nh

|r−1
d (−∆tλh,k)|2∆tTr(Q)‖G‖2L(H;L(U ;H)) < 1.

Proof. We first note that by the triangle inequality and the properties of the linear operator
induced by the rational approximation R defined in Equation (7) we obtain that

‖Ddet
∆t,h‖L(Vh) = ‖R(∆tAh) + r−1

d (∆tAh)∆tPhF‖L(Vh)

≤ max
k=1,...,Nh

|R(−∆tλh,k)|+ max
k=1,...,Nh

|r−1
d (−∆tλh,k)|∆t‖F‖L(H)

and, similarly

‖C‖L(U ;L(Vh)) ≤ ‖r−1
d (∆tAh)‖L(Vh)‖G‖L(H;L(U ;H)) ≤ max

k=1,...,Nh

|r−1
d (−∆tλh,k)|‖G‖L(H;L(U ;H)).

Since
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‖(C ⊗ C)q‖
L(V

(2)
h )
≤
∞∑
k=1

µk‖Cfk‖2L(Vh) ≤ Tr(Q)‖C‖2L(U ;L(Vh))

and ‖Ddet
∆t,h⊗Ddet

∆t,h‖L(V
(2)
h )

= ‖Ddet
∆t,h‖2L(Vh), we obtain the claimed condition, which is sufficient

by Corollary 2.6. �

We continue with the higher order Milstein scheme. Applying [3] in our context reads

Xj+1
h = (Ddet

∆t,h +DEM,j
∆t,h +DM,j

∆t,h)Xj
h,(10)

where Ddet
∆t,h and DEM,j

∆t,h are as in (9) and

DM,j
∆t,h =

∞∑
k,`=1

r−1
d (∆tAh)

√
µkµ`PhG(G(·)fk)f`

∫ tj+1

tj

∫ s

tj

dLk(r) dL`(s).

Remark 3.4. In order to compute the iterated integrals of DM,j
∆t,h, one may assume (cf. [3, 16])

that for all H-valued, adapted stochastic processes χ = (χ(t), t ≥ 0) and all i, j ∈ N, the
diffusion operator G satisfies the commutativity condition

G(G(χ)fj)fi = G(G(χ)fi)fj .

Under this assumption satisfied in Example 3.1, DM,j
∆t,h simplifies to

DM,j
∆t,h =

1

2

∞∑
k,`=1

√
µkµ`r

−1
d (∆tAh)PhG(G(Xj

h)fk)f`(∆L
j
k∆L

j
` −∆[Lk, L`]

j),

where ∆[Lk, L`]
j = [Lk, L`]tj+1 − [Lk, L`]tj . Here, [Lk, L`]t denotes the quadratic covariation

of Lk and L` evaluated at t ≥ 0, which is straightforward to compute when Lk, L` are jump-
diffusion processes (cf. [3]). For the simulation of more general Lévy processes in the context
of SPDE approximation, we refer to [13, 7].

As for the Euler–Maruyama scheme, Corollary 2.6 can be specified for this Milstein scheme.

Proposition 3.5. Assume that the bilinear mapping C ′(u1, u2) = r−1
d (∆tAh)PhG(G(·)u1)u2

for u1, u2 ∈ U can be uniquely extended to a mapping C ′ ∈ L(U (2), L(Vh)). Then the zero
solution of (10) is asymptotically mean-square stable if and only if

S = Ddet
∆t,h ⊗Ddet

∆t,h + ∆t (C ⊗ C)q +
∆t2

2
(C ′ ⊗ C ′)q′

satisfies that ρ(S) < 1. Here, q′ =
∑∞

k,`=1 µkµ`(fk ⊗ f`)⊗ (fk ⊗ f`) ∈ U (4) and C and q as in
Proposition 3.2.

Proof. Note that C ′ ⊗C ′ : U (4) → L(V
(2)
h ) and C ′ ⊗C : U (2) ⊗ U → L(V

(2)
h ) are well-defined

by the same arguments as in Proposition 3.2. Since Dstoch,j
∆t,h = DEM,j

∆t,h +DM,j
∆t,h, we obtain for

j ∈ N0

E[Dstoch,j
∆t,h ⊗Dstoch,j

∆t,h ] = E[DEM,j
∆t,h ⊗D

EM,j
∆t,h ] + E[DM,j

∆t,h ⊗D
EM,j
∆t,h ]

+ E[DEM,j
∆t,h ⊗D

M,j
∆t,h] + E[DM,j

∆t,h ⊗D
M,j
∆t,h].
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The first term and Ddet
∆t,h ⊗Ddet

∆t,h are given in Proposition 3.2. We conclude for the second

term with Lemma A.2, writing ∆(2)L =
∑∞

k,`=1

√
µkµ`

(∫ tj+1

tj

∫ s
tj

dLk(r) dL`(s)
)
fk ⊗ f`,

E[DM,j
∆t,h ⊗D

EM,j
∆t,h ] = E

[
C ′∆(2)Lj ⊗ C∆Lj

]
= (C ′ ⊗ C)E

[
∆(2)Lj ⊗∆Lj

]
= 0

and analogously the same for the third term. Finally, Lemma A.2 yields

E[DM,j
∆t,h ⊗D

M,j
∆t,h] = E

[
C ′∆(2)Lj ⊗ C ′∆(2)Lj

]
= (C ′ ⊗ C ′)E

[
∆(2)Lj ⊗∆(2)Lj

]
and the statement follows directly from Corollary 2.6. �

Remark 3.6. The assumption on C ′ in Proposition 3.5 holds for the operators G1 and G2 in
the setting of Example 3.1. One can get rid of this assumption by using that the bound on
G ∈ L(H;L(U ;H)) allows for an extension of the bilinear mapping to the projective tensor
product space U ⊗π U , cf. [18]. One would then have to assume additional regularity on L to

ensure that ∆(2)Lj in the proof of Proposition 3.5 is in the space L2(Ω;U⊗πU). Alternatively,
one considers finite-dimensional truncated noise, which leads to equivalent norms.

3.2. Examples of rational approximations. Let us next consider specific choices of ratio-
nal approximations R and investigate their influence on mean-square stability. First, we derive
sufficient conditions based on Corollary 3.3 for Euler–Maruyama schemes with standard ratio-
nal approximations. More specifically, we consider the backward Euler, the Crank–Nicolson,
and the forward Euler scheme.

Theorem 3.7. Consider the approximation scheme (8).

(1) (Backward Euler scheme) Let R be given by R(z) = (1− z)−1. Then (8) is asymptot-
ically mean-square stable if

(1 + ∆t‖F‖L(H))
2 + ∆tTr(Q)‖G‖2L(H;L(U ;H))

(1 + ∆tλh,1)2
< 1.

(2) (Crank–Nicolson scheme) Let R be given by R(z) = (1 + z/2)/(1− z/2). Then (8) is
asymptotically mean-square stable if(

max
k∈{1,Nh}

∣∣∣∣1−∆tλh,k/2

1 + ∆tλh,k/2

∣∣∣∣+ ∆t
‖F‖L(H)

(1 + ∆tλh,1/2)

)2

+ ∆t
Tr(Q)‖G‖2L(H;L(U ;H))

(1 + ∆tλh,1/2)2
< 1.

(3) (Forward Euler scheme) Let R be given by R(z) = 1 + z. Then (8) is asymptotically
mean-square stable if(

max
`∈{1,Nh}

|1−∆tλh,`|+ ∆t‖F‖L(H)

)2
+ ∆tTr(Q)‖G‖2L(H;L(U ;H)) < 1.

Proof. Let us start with the backward Euler scheme. Since the functions r−1
d (z) and R(z)

are equal and it holds for all k = 1, . . . , Nh that |R(−∆tλh,k)| ≤ |R(−∆tλh,1)|, we obtain by
Corollary 3.3 asymptotic mean-square stability if

(1 + ∆tλh,1)−2
(

(1 + ∆t‖F‖L(H))
2 + ∆tTr(Q)‖G‖2L(H;L(U ;H))

)
< 1.

For the Crank–Nicolson scheme, note that R is decreasing on R− and that R(z) ∈ [−1, 1]
for all z ∈ R−. Thus, the maximizing eigenvalue is either the largest, λh,Nh

, or the smallest,
λh,1, and therefore,

|R(−∆tλh,k)| ≤ max
`∈{1,Nh}

|R(−∆tλh,`)|.
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Since |r−1
d (−∆tλh,k)| ≤ |r−1

d (−∆tλh,1)| for all k = 1, . . . , Nh, the claim follows with Corol-
lary 3.3.

By the same arguments, we obtain for the forward Euler scheme that |R(−∆tλh,i)| is

maximized either at z = −∆tλh,1 or z = −∆tλh,Nh
. Therefore, since r−1

d (z) = 1, the claim
follows again with Corollary 3.3, which finishes the proof. �

For the Milstein scheme, Proposition 3.5 yields the following sufficient condition.

Proposition 3.8. Under the assumptions of Proposition 3.5, the Milstein scheme (10) with
R(z) = (1− z)−1 is asymptotically mean-square stable if

(1 + ∆t‖F‖L(H))
2 + ∆tTr(Q)‖G‖2L(H;L(U ;H)) +

∆t2

2
Tr(Q)2‖G‖4L(H;L(U ;H))

< (1 + ∆tλh,1)2.

Proof. In the same way as in the proof of Corollary 3.3, we bound

‖(C ′ ⊗ C ′)q′‖
L(V

(2)
h )
≤ ‖C ′‖2

L(U(2);L(Vh))
Tr(Q)2 ≤ (1 + ∆tλh,1)−2‖G‖4L(H;L(U ;H)) Tr(Q)2.

Hence, our assumption ensures that ‖S‖
L(V

(2)
h )

< 1, which by Corollary 2.6 is sufficient for

asymptotic mean-square stability. �

Note that the sufficient condition for the Milstein scheme is more restrictive than the
sufficient condition presented in Theorem 3.7(1) for the backward Euler–Maruyama method
due to the additional positive term in the estimate in Proposition 3.8.

3.3. Relation to the mild solution. To connect existing results on asymptotic mean-square
stability of (1) to the results for discrete schemes in Section 3.2, we have to restrict ourselves
to Q-Wiener processes W = (W (t), t ≥ 0) due to the framework for analytical solutions
in [24]. Specifically, we consider

dX(t) = (AX(t) + FX(t)) dt+G(X(t)) dW (t).(11)

The following special case of [24, Proposition 3.1.1] provides a sufficient condition for the
asymptotic mean-square stability of (1) by a Lyapunov functional approach.

Theorem 3.9. Assume that X0 = x0 ∈ Ḣ1 is deterministic and there exists c > 0 such that

2〈v,Av + F (v)〉H + Tr[G(v)Q(G(v))∗] ≤ −c‖v‖2H
for all v ∈ Ḣ2. Then the zero solution of (11) is asymptotically mean-square stable.

We use this theorem to derive simultaneous sufficient mean-square stability conditions
for (11) and the corresponding backward Euler scheme (8).

Corollary 3.10. Assume that X0 = x0 ∈ Ḣ1 is deterministic. Then the zero solutions
of (11) and its approximation (8) with R(z) = (1 − z)−1 are asymptotically mean-square
stable for all h and ∆t if

(12) 2
(
‖F‖L(H) − λ1

)
+ Tr(Q)‖G‖2L(H;L(U ;H)) < 0.

Proof. We show first that (12) yields asymptotic mean-square stability of (11) by reducing it

to the assumption in Theorem 3.9. For the second term there, note that for any v ∈ Ḣ2,

Tr[G(v)Q(G(v))∗] = Tr[(G(v))∗G(v)Q] =

∞∑
k=1

〈G(v)Qfk, G(v)fk〉
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≤
∞∑
k=1

µk‖G‖2L(H;L(U ;H))‖v‖
2
H‖fk‖2U = Tr(Q)‖G‖2L(H;L(U ;H))‖v‖

2
H ,

where the first equality follows from the properties of the trace. The first term satisfies

〈v,Av + F (v)〉 = 〈v, F (v)〉+ 〈v,Av〉 ≤ ‖F‖L(H)‖v‖2H − ‖v‖21 ≤ (‖F‖L(H) − λ1)‖v‖2H
using the definition of ‖ · ‖1. Altogether, we therefore obtain

2〈v,Av + F (v)〉H + Tr[G(v)Q(G(v))∗]

≤
(
2
(
‖F‖L(H) − λ1

)
+ Tr(Q)‖G‖2L(H;L(U ;H))

)
‖v‖2H ,

i.e., with (12) asymptotic mean-square stability of (11) by setting

c = −
(
2
(
‖F‖L(H) − λ1

)
+ Tr(Q)‖G‖2L(H;L(U ;H))

)
.

We continue with (8) observing first that λh,1 ≥ λ1 by (5). Therefore, the condition in
Theorem 3.7(1) yields

∆t
(
2
(
‖F‖L(H) − λ1

)
+ Tr(Q)‖G‖2L(H;L(U ;H))

)
+ ∆t2

(
‖F‖2L(H) − λ

2
1

)
< 0.

This is satisfied and finishes the proof since the first term is negative by assumption and so
is the second using (12) and

‖F‖2L(H) − λ
2
1 =

(
‖F‖L(H) + λ1

)(
‖F‖L(H) − λ1

)
≤
(
‖F‖L(H) + λ1

) ((
‖F‖L(H) − λ1

)
+ 2−1 Tr(Q)‖G‖2L(H;L(U ;H))

)
< 0. �

Note that under (12) in Corollary 3.10, the backward Euler–Maruyama scheme preserves
the qualitative behaviour of the analytical solution without any restriction on h and ∆t.
Hence, it can be applied to numerical methods requiring different refinement parameters in
parallel such as multilevel Monte Carlo, which efficiently approximate quantities E[ϕ(X(T ))]
(see, e.g., [6, 4] for details). Here, it is essential that the behaviour is preserved on all
refinement levels [1].

On the other hand, note that in the homogeneous case, i.e., F = 0, the stability condition
in Theorem 3.7(1) reduces to

Tr(Q)‖G‖2L(H;L(U ;H)) < λh,1(2 + ∆tλh,1)

so that even if (1) is asymptotically mean-square unstable, its approximation (8) can always
be rendered stable by letting ∆t be large enough. In that case the analytical solution and its
approximation have a different qualitative behaviour for large times.

Remark 3.11. Based on Theorem 3.7, it is also possible to examine the relation between
asymptotic mean-square stability of (11) and its approximation by the other rational approx-
imations. However, due to the nature of the sufficient conditions in Theorem 3.7, analogous
results to Corollary 3.10 include restrictions on h and ∆t.

For the Milstein scheme considered in Proposition 3.8 we can also derive a sufficient con-
dition for the simultaneous mean-square stability not relying on h and ∆t. However, due to
the additional term in Proposition 3.8, the condition becomes slightly more restrictive than
in Corollary 3.10. More precisely we obtain the following:
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Corollary 3.12. Assume that X0 = x0 ∈ Ḣ1 is deterministic and F = 0. Then the zero
solutions of (11) and its Milstein approximation (10) with R(z) = (1−z)−1 are asymptotically
mean-square stable for all h and ∆t if

−
√

2λ1 + Tr(Q)‖G‖2L(H;L(U ;H)) < 0.

Proof. The asymptotic mean-square stability of (11) follows by Corollary 3.10 since

−2λ1 + Tr(Q)‖G‖2L(H;L(U ;H)) < −
√

2λ1 + Tr(Q)‖G‖2L(H;L(U ;H)) < 0.

The sufficient condition for (10) in Proposition 3.8 can be rewritten as

∆t(−2λh,1 + Tr(Q)‖G‖2L(H;L(U ;H))) + ∆t2(−2λ2
h,1 + Tr(Q)2‖G‖4L(H;L(U ;H))) < 0.

The first summand is negative since

−2λh,1 + Tr(Q)‖G‖2L(H;L(U ;H)) < −
√

2λ1 + Tr(Q)‖G‖2L(H;L(U ;H)) < 0.

The assumption
√

2λ1 > Tr(Q)‖G‖2L(H;L(U ;H)) implies for the second summand that

−2λ2
h,1 + Tr(Q)2‖G‖4L(H;L(U ;H)) < 0.

Thus, asymptotic mean-square stability of (10) follows. �

4. Simulations

In this section we adopt the setting of Example 3.1 and use numerical simulations to
illustrate our theoretical results. More specifically, we consider the stochastic heat equation

dX(t) = ν∆X(t) dt+G(X(t)) dW (t).(13)

with X0(x) =
√

30x(1 − x), then E[‖X0‖2H ] = 1. We consider a Q-Wiener process W (t) =∑∞
i=1

√
µiβi(t)ei, where (βi, i ∈ N) is a sequence of independent, real-valued Brownian mo-

tions, and assume µi = Cµi
−α with Cµ > 0 and α > 1. Here, Cµ scales the noise intensity

and α controls the space regularity of W , see, e.g., [25, 23].

4.1. Spectral Galerkin methods. ForG = G1 in Example 3.1, we obtain with the approach
presented in [20, Section 6.4] the infinite-dimensional counterpart of the geometric Brownian
motion

X(t) =

∞∑
i=1

〈X(t), ei〉Hei =

∞∑
i=1

xi(t)ei,

where each of the coefficients xi(t) is the solution to the one-dimensional geometric Brownian
motion

dxi(t) = −λixi(t) dt+
√
µixi(t) dβi(t).

Furthermore, the second moment is given by

E[‖X(T )‖2H ] =

∞∑
i=1

E[|xi(T )|2] =

∞∑
i=1

〈X0, ei〉2H exp((−2λi + µi)T ).

Consequently, asymptotic mean-square stability of (13) holds if and only if −2λi +µi < 0 for
all i ∈ N. By using the explicit representation of the eigenvalues λi and µi, this corresponds to
−2νi2π2 +Cµi

−α < 0 or equivalently −2λ1 +µ1 = −2νπ2 +Cµ < 0, i.e., (13) is asymptotically
mean-square unstable if and only if Cµ > 2νπ2.
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For the spectral Galerkin approximation, we choose Vh = span(e1, . . . , eNh
), Nh < ∞.

Thus, we consider Xh(t) =
∑Nh

k=1 xk(t)ek. To obtain a fully discrete scheme, we approximate
the one-dimensional geometric Brownian motions in time by the three considered rational
approximations in Theorem 3.7 and Proposition 3.8. Propositions 3.2 and 3.5 yield asymptotic
mean-square stability if and only if the corresponding linear operators S satisfy ρ(S) < 1,
which is in the first case for k, ` = 1, . . . , Nh given by

S(ek ⊗ e`) = (Ddet
∆t,h ⊗Ddet

∆t,h)(ek ⊗ e`) + ∆t
(
(C ⊗ C)q

)
(ek ⊗ e`)

= (Ddet
∆t,hek ⊗Ddet

∆t,he`) + ∆t
∞∑
m=1

µm
(
((Cem)ek)⊗ ((Cem)e`)

)
.

Since

Ddet
∆t,hek = R(∆tAh)ek =

Nh∑
r=1

R(−∆tλr)〈ek, er〉Her = R(−∆tλk)ek

and

(Cem)ek = r−1
d (∆tAh)PhG1(ek)em = r−1

d (∆tAh)Ph

( ∞∑
n=1

〈ek, en〉H〈em, en〉Hen
)

= δk,mr
−1
d (∆tAh)ek = δk,mr

−1
d (−∆tλk)ek,

the corresponding eigenvalues Λk,` are

Λk,` = R(−∆tλk)R(−∆tλ`) + δk,` ∆tµk r
−1
d (−∆tλk)r

−1
d (−∆tλ`).

Using a Milstein scheme instead, we obtain for S in Proposition 3.5 with similar computations
as before and the observations that the commutativity condition in Remark 3.4 is fulfilled
and that ∆[βk, β`]

j = δk,`∆t

Λk,` = R(−∆tλk)R(−∆tλ`) + δk,` r
−1
d (−∆tλk)r

−1
d (−∆tλ`)

(
∆tµk + ∆t2µ2

k/2
)
.

Note that for both operators S, the eigenvalues Λk,` with k 6= ` satisfy

|Λk,`| = |R(−∆tλk)R(−∆tλ`)| ≤ R(−∆tλs)
2 ≤ Λs,s,

where |R(−∆tλs)| = maxj=1,...,Nh
|R(−∆tλj)|. Hence, ρ(S) < 1 is equivalent to |Λk,k| < 1 for

all k = 1, . . . , Nh. In Table 1 the eigenvalues Λk,k and sufficient and necessary conditions for
asymptotic mean-square stability are collected.

As it is noted above, (13) is asymptotically mean-square stable if and only if the condition
−2λ1 + µ1 < 0 holds. As can be seen from Table 1 and the choice of the eigenvalues, the
Euler–Maruyama scheme (8) with backward Euler and Crank–Nicolson rational approxima-
tion shares this property without any restriction on Vh and ∆t. In Figure 1(a) the qualitative
behaviour of the Euler–Maruyama method with the three rational approximations in Theo-
rem 3.7 is compared. We choose ν = 1, Nh = 15, and µi = i−3 for i ∈ N, i.e., Cµ = 1 and
α = 3. Since −2λ1 + Cµ = −2π2 + 1 < 0, the analytical solution to (13) is asymptotically
mean-square stable.

For the approximation of E[‖Xj
h‖

2
H ] we use a Monte Carlo simulation with M = 106, i.e.,

we approximate

E[‖Xj
h‖

2
H ] ≈ MSX(tj) =

1

M

M∑
i=1

Nh∑
k=1

|x̂j,(i)k |2,
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rational approximation/

stochastic approximation
Λk,k ρ(S) < 1⇔ for all k = 1, . . . , Nh :

backward Euler/EM 1+∆tµk

(1+∆tλk)2 −2λk + µk −∆tλ2
k < 0

backward Euler/Milstein
1+∆tµk+∆t2µ2

k/2
(1+∆tλk)2 −2λk + µk + ∆t(−λ2

k + µ2
k/2) < 0

Crank–Nicolson/EM (1−∆tλk/2)2+µk∆t
(1+∆tλk/2)2 −2λk + µk < 0

forward Euler/EM (1−∆tλk)2 + µk∆t −2λk + µk + ∆tλ2
k < 0

Table 1. Spectral Galerkin methods with corresponding eigenvalues Λk,k and
asymptotic mean-square stability conditions.
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(a) Crank–Nicolson (CN), backward (BE)
and forward (FE) Euler.
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(b) Euler–Maruyama (BE) and Milstein
(BM) based on backward Euler.

Figure 1. Spectral Galerkin approximate of (13) with G1, Nh = 15, and
different ∆t.

where (x̂
j,(i)
k , i = 1, . . . ,M) consists of independent samples of numerical approximations of

xk(tj) with different schemes. The reference solution is

E[‖Xh(t)‖2H ] =

Nh∑
k=1

E[|xk(t)|2] =

Nh∑
k=1

〈X0, ek〉2H exp ((−2λk + µk)t) .

As it can be seen in Figure 1(a), the backward Euler and the Crank–Nicolson scheme
reproduce the mean-square stability of (13) already for large time step sizes (∆t = 1/25),
but the forward Euler scheme requires a 44 times smaller ∆t. Here, the finest time step size
is given by ∆t = 1/1100 which satisfies the restrictive bound in Table 1 such that ρ(S) < 1.
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Due to a rapid amplification of oscillations caused by negative values of Xj
h for coarser time

step sizes outside the stability region (∆t = 1/1000 and 1/1050), the mean-square process
deviates rapidly from the reference solution at a certain time point.

In Figure 1(b) the qualitative behaviour of the Euler–Maruyama and the Milstein scheme
with a backward Euler rational approximation on the time interval [0, 5] are compared. The
parameters ν = 8/(5π4) and µi = 3/10 i−3 are chosen such that the Milstein scheme is
asymptotically mean-square unstable for ∆t = 1.25 and asymptotically mean-square stable
for ∆t = 0.25 while the Euler–Maruyama scheme is asymptotically mean-square stable for
both choices. These theoretical results are reproduced in the simulation.

4.2. Galerkin finite element methods. Let us continue with G = G2 in Example 3.1 and
a Galerkin finite element setting, similar to that of [22]. This is to say, we let Vh be the span
of piecewise linear functions on an equidistant grid of [0, 1] with Nh interior nodes so that Vh
is an Nh-dimensional subspace of Ḣ1 with refinement parameter h = (Nh + 1)−1. With the

exception that U = Ḣ1, all other parameters are as in Figure 1(a) of Section 4.1.
In contrast to the setting in Section 4.1, the solution and its approximation are no longer

sums of one-dimensional geometric Brownian motions and thus, analytical necessary and
sufficient conditions for ρ(S) < 1 are not available. We therefore consider the results of
Theorem 3.7 instead. With the setting of this section,

λh,i = 4νh−23 (2 + cos(iπh))−1 (sin(iπh/2))2

for i ∈ N, which was derived in [20, Section 6.1]. For the convenience of the reader, the
sufficient conditions of Theorem 3.7 for the considered approximation schemes are collected
in simplified form in Table 2, expressed in terms of stability parameters ρBE, ρCN and ρFE.

By setting ĝ =
(

2
∑∞

i=1 λ
−1
i

)1/2
, we replace ‖G2‖L(H;L(U ;H)) in these conditions with the

upper bound derived in Example 3.1. Note that Corollary 3.10 with these parameters implies
simultaneous asymptotic mean-square stability of (13) and the finite element backward Euler
scheme (8).

rational approximation ρ(S) < 1⇐:

backward Euler ρBE = ∆tTr(Q)ĝ2 − 2∆tλh,1 −∆t2λ2
h,1 < 0

Crank–Nicolson ρCN = max
k∈{1,Nh}

∣∣∣ 1−∆tλh,k/2
1+∆tλh,k/2

∣∣∣2 + ∆tTr(Q)ĝ2

(1+∆tλh,1/2)2 − 1 < 0

forward Euler ρFE = max
k∈{1,Nh}

(1−∆tλh,k)2 + ∆tTr(Q)ĝ2 − 1 < 0

Table 2. Finite element methods with sufficient conditions for ρ(S) < 1.

As in Section 4.1 we compare the mean-square behaviour of the backward Euler and the
forward Euler scheme in Figure 2(a) but now for the finite element discretization up to
T = 2.5. We observe that the increase of the time step size by a very small amount, i.e., from
∆t = 0.00066 to ∆t = 0.00067, causes the forward Euler system to switch from a stable to
an unstable behaviour. This agrees with the theory in Table 3, as ρFE changes sign in that
interval, i.e., stability is only guaranteed for the smaller time step. Therefore we conclude
that the sufficient condition is sharp in our model problem.
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For the approximation of E[‖Xj
h‖

2
H ], we use the same method as before but take M = 104

samples in the Monte Carlo approximation. For the computation of the norm in H, we use

the fact that for given representation Xj
h =

∑Nh
m=1 xmφm with respect to the hat functions

{φm,m = 1 . . . , Nh} that span Vh

‖Xj
h‖

2
H =

Nh∑
m=1

Nh∑
n=1

xmxn 〈φm, φn〉H .

In Figure 2(b) the mean-square behaviour of the the backward Euler scheme and the
Crank–Nicolson scheme for ∆t = 0.015 to ∆t = 0.15 is compared. We see from Table 3 that
ρCN changes sign when the time step size is increased, which occurs for significantly larger
time steps than for the forward Euler scheme. The simulation results show a substantial

change in the decay behaviour of E[‖Xj
h‖

2
H ] for the Crank–Nicolson scheme with time step

size ∆t = 0.15 compared to ∆t = 0.015, which is no longer convincing to be mean-square
stable. Since the sufficient condition ρCN < 0 from Table 2 is not fulfilled for ∆t = 0.15, it is
unclear from the theory if asymptotic mean-square stability holds in that case.
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Figure 2. Finite Element approximation of (13) with G = G2, Nh = 15, and
different ∆t.

Appendix A. Properties of Lévy increments

In this appendix we derive properties of the U -valued, square-integrable Lévy process that
are used in the proofs of Propositions 3.2 and 3.5. We apply the same setting and notation
as in Section 3.
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∆t ρBE ρCN ρFE

0.15 -5.11613e+00 2.08460e-03 1.99602e+05

0.015 -3.13089e-01 -1.58504e-01 1.91542e+03

0.00068 -1.32387e-02 -1.31050e-02 6.09395e-02

0.00067 -1.30434e-02 -1.29135e-02 3.39709e-04

0.00066 -1.28480e-02 -1.27221e-02 -1.27626e-02

Table 3. Specific values of Table 2 for varying ∆t.

Lemma A.1. Let L be a U -valued Lévy process and let, for 0 ≤ a < b, ∆L = L(b) − L(a)
and ∆t = b− a. Then

E[∆L⊗∆L] = ∆t
∞∑
k=1

µkfk ⊗ fk.

Proof. We first note that ∆L⊗∆L is well-defined as a member of L1(Ω;U (2)) since

E[‖∆L⊗∆L‖U(2) ] = E[‖∆L‖2U ] = Tr(Q)∆t <∞.

The increments ∆Lk = Lk(b) − Lk(a) of ∆L =
∑∞

k=1

√
µk∆Lkfk fulfil E[∆Lk∆L`] = δk,`∆t

for k, ` ∈ N. Thus, we obtain

E[∆L⊗∆L] =
∞∑

k,`=1

√
µkµl E[∆Lk∆Ll] fk ⊗ f` = ∆t

∞∑
k=1

µkfk ⊗ fk. �

Lemma A.2. Let L be a U -valued, square-integrable Lévy process and set for 0 ≤ a < b with
∆t = b− a,

∆(2)L =

∞∑
k,`=1

√
µkµ`

(∫ b

a

∫ s

a
dLk(r) dL`(s)

)
fk ⊗ f` ∈ L2(Ω;U (2)).

Then

(1) E
[
∆(2)L⊗∆L

]
= 0,

(2) E
[
∆(2)L⊗∆(2)L

]
= ∆t2

2

∑∞
k,`=1 µkµ`

(
(fk ⊗ f`)⊗ (fk ⊗ f`)

)
.

Proof. Since L is stationary, we may assume without loss of generality that a = 0 and b =
t > 0. We first note that

E
[(∫ t

0

∫ s

0
dLi(r) dLj(s)

)(∫ t

0

∫ s

0
dLk(r) dL`(s)

)]
= E

[(∫ t

0
Li(s−) dLj(s)

)(∫ t

0
Lk(s−) dL`(s)

)]
.

To simplify this expression, we use the angle bracket process (〈X,Y 〉t , t ≥ 0), which for two
real-valued semimartingales X and Y with (locally) integrable quadratic covariation [X,Y ] is
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defined as the unique compensator which makes ([X,Y ]t−〈X,Y 〉t , t ≥ 0) a local martingale.
For this, we have the polarization identity,

〈X,Y 〉t =
1

4
(〈X + Y,X + Y 〉t − 〈X − Y,X − Y 〉t) ,

which can be found, along with an introduction to this process, e.g., in [28, Section III.5].
For square-integrable martingales M , it holds (see, e.g., [19, Section 8.9]) that E[〈M,M〉t] =

E[M2(t)] and therefore, by the polarization identity, if N is another square-integrable mar-
tingale, then,

E[〈M,N〉t] =
1

4

(
E[(M(t) +N(t))2]− E[(M(t)−N(t))2]

)
= E[M(t)N(t)].

Applying this to the Lévy integral, which is a martingale, we obtain

E
[(∫ t

0
Li(s−) dLj(s)

)(∫ t

0
Lk(s−) dL`(s)

)]
= E

[〈∫
0
Li(s−) dLj(s),

∫
0
Lk(s−) dL`(s)

〉
t

]
= E

[∫ t

0
Li(s−)Lk(s−) d 〈Lj , L`〉s

]
,

where the last equality is a property of the angle bracket process and the stochastic integral,
see [19, Section 8.9]. Now, when j = `, we have, since Lj is a Lévy process and E[L2

j (s)] = s,

that 〈Lj , L`〉s = 〈Lj , Lj〉s = s by [27, Chapter 8]. When j 6= ` on the other hand, LjL` is a
square-integrable martingale by [27, Theorem 4.49(ii)]. Integration by parts yields

[Lj , L`]s = Lj(s)L`(s)−
∫ s

0
Lj(r−) dL`(r)−

∫ s

0
L`(r−) dLj(r).

Therefore, [Lj , L`] is also a square-integrable martingale (with zero mean), because the right
hand side is a square-integrable martingale. Since (〈Lj , L`〉s , s ≥ 0) is the unique compensator

of [Lj , L`] it must follow that 〈Lj , L`〉s = 0 for all s ≥ 0. Thus, E[
∫ t

0 Li(s−)Lk(s−) d 〈Lj , L`〉s]
is non-zero only if j = `, and in that case

E
[∫ t

0
Li(s−)Lk(s−) d 〈Lj , Lj〉s

]
=

∫ t

0
E [Li(s−)Lk(s−)] ds.

In conclusion we have obtained

(14) E
[(∫ t

0

∫ s

0
dLi(r) dLj(s)

)(∫ t

0

∫ s

0
dLk(r) dL`(s)

)]
=

{
t2/2 for j = ` and i = k,

0 otherwise,

which yields by the monotone convergence theorem that ∆(2)L ∈ L2(Ω;U (2)) with

E
[
‖∆(2)L‖2

U(2)

]
=

∞∑
k,`=1

µkµ` E
[(∫ t

0

∫ s

0
dLk(r) dL`(s)

)2]
=
t2

2

∞∑
k,`=1

µkµ` =
t2

2
Tr(Q)2 <∞.

This entails that ∆(2)L⊗∆L ∈ L1(Ω;U (2) ⊗ U), since(
E
[
‖∆(2)L⊗∆L‖U(2)⊗U

])2
=
(
E
[
‖∆(2)L‖U(2)‖∆L‖U

])2

≤ E
[
‖∆(2)L‖2

U(2)

]
E
[
‖∆L‖2U

]
=
t3

2
Tr(Q)3 <∞.
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by the Cauchy–Schwarz inequality. Similarly, it holds that ∆(2)L⊗∆(2)L ∈ L1(Ω;U (2)⊗U (2)).
Therefore, we obtain

E
[
∆(2)L⊗∆L

]
=

∞∑
k,`,m=1

√
µkµ`µm E

[
∆Lm

(∫ t

0

∫ s

0
dLk(r) dL`(s)

)]
(fk ⊗ f`)⊗ fm,

and, in the same way as the first observation of this proof,

E
[
∆Lm

(∫ t

0

∫ s

0
dLk(r) dL`(s)

)]
= E

[〈∫
dLm(s),

∫
Lk(s−) dL`(s)

〉
t

]
= E

[∫ t

0
Lk(s−) d 〈Lm, L`〉s

]
= 0.

This is justified since 〈Lm, L`〉s 6= 0 only if m = ` and that in this case the expectation of the
integral is still zero since Lk has zero expectation.

We note that by (14)

E
[
∆(2)L⊗∆(2)L

]
=

∞∑
i,j,k,`=1

√
µiµjµkµ`

(
(fi ⊗ fj)⊗ (fk ⊗ f`)

)
· E
[(∫ t

0

∫ s

0
dLi(r) dLj(s)

)(∫ t

0

∫ s

0
dLk(r) dL`(s)

)]
=
t2

2

∞∑
k,`=1

µkµ`
(
(fk ⊗ f`)⊗ (fk ⊗ f`)

)
,

which shows the second claim. �
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2012.

[14] Desmond J. Higham. A-stability and stochastic mean-square stability. BIT, 40(2):404–409, 2000.
[15] Desmond J. Higham. Mean-square and asymptotic stability of the stochastic theta method. SIAM J.

Numer. Anal., 38(3):753–769 (electronic), 2000.
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