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Abstract

We present a new algorithm to decide whether two rational parametric curves are
related by a projective transformation and detect all such projective equivalences.
Given two rational curves, we derive a system of polynomial equations whose solu-
tions define linear rational transformations of the parameter domain, such that each
transformation corresponds to a projective equivalence between the two curves. The
corresponding projective mapping is then found by solving a small linear system of
equations. Furthermore we investigate the special cases of detecting affine equiva-
lences and symmetries as well as polynomial input curves. The performance of the
method is demonstrated by several numerical examples.

Keywords: projective equivalences, affine equivalence, symmetry detection,
rational curve, homogeneous polynomials

1. Introduction

It has been observed that many of the results from algebraic geometry and sym-
bolic computation, which are available for rational curves (see the monograph by
Sendra et al., 2008), are directly useful for addressing application-oriented problems
in geometric modelling. In particular, several algorithms relying on symbolic compu-
tation have been designed that can solve specific problems associated with the design
and the analysis of shapes.

The investigation of singularities, which is one of the classical topics in algebraic
geometry, is clearly important for geometric design. For instance, several authors
designed methods for detecting singularities of rational planar curves (Chen et al.,
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2008; Pérez-Dı́az, 2007) as well as of rational space curves (Shi et al., 2013; Shi
and Chen, 2010; Rubio et al., 2009) from their parametric representations, using
resultants and µ-bases.

Another interesting question concerning planar rational curves is the computation
and the study of their offsets. Some properties of offsets, such as the degree and
the topological behaviour, have been investigated in Segundo and Sendra (2009) and
Alcázar (2008).

Another line of research is devoted to properties of the parameterization. Among
numerous papers on this topic, Pérez-Dı́az (2006) addressed the issue of reparam-
eterization to generate proper parameterizations, and Tabera (2011) explored the
generation of optimal parameterizations in the sense of minimal coefficients.

The transformation between an implicit and a parametric representation of the
curve is one of the most basic questions in algebraic geometry and therefore investi-
gated in numerous publications (Rubio et al., 2006; Sederberg et al., 1997; Chen and
Wang, 2002, to quote only a few).

The problem of detecting symmetries and equivalences of curves attracted sub-
stantial attention since it is an essential problem in Pattern Recognition, Computer
Graphics and Computer Vision. For instance it is used to identify a given object
with objects in a database. In Computer Graphics the knowledge about symmetries
helps analyzing pictures and is applied to compression or shape completion.

Several papers on the detection of symmetries and equivalences of curves exist.
In one of the earliest publications on this topic, Huang and Cohen (1996) examined
affine transformations for classifying silhouettes of aircrafts, where they used B-spline
moments which they approximated from a sample of points. Braß and Knauer (2004)
investigated Euclidean symmetries of discrete 3-dimensional objects and proposed to
apply their method to the control polygon of Bézier curves and surfaces. Lebmeir
and Richter-Gebert (2008) and Lebmeir (2009) looked at Euclidean symmetries of
algebraic curves given in implicit form.

More recently Alcázar (2014) and Alcázar et al. (2014a,b, 2015a,b) published a se-
ries of papers investigating the problem of symmetry and equivalence detection with
respect to similarity transformations for parametric rational curves. They use the
fact that the symmetry of a curve in proper parameterization is related to a ratio-
nal linear transformation in the parameter domain. However, they do not consider
general affine or projective equivalences. Sánchez-Reyes (2015) proposed a method
for Euclidean symmetry detection of polynomial Bézier curves, based on using the
Bernstein basis. For further references on symmetry detection see the introduction
of Alcázar et al. (2014b).

Our paper is devoted to the detection of equivalences and symmetries of rational
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curves with respect to the group of projective transformations, of which affine ones
are special cases. Similar to the works of Alcázar et al., we are looking for an
exact and not approximated representation of the equivalences. We assume that
exact input data is given and therefore we are able to use methods from the field
of symbolic computation. More precisely, we use the monomial representations and
homogeneous coordinates to derive algebraic equations that characterize the linear
rational reparameterization connecting two equivalent curves.

Our method is more general than the existing ones since it handles all equiva-
lences with respect to the full group of projective transformations and works for an
arbitrary space dimension. In addition, it is easy to implement and provides good
computational results for moderate degree.

The remainder of the paper is organized as follows. First we recall some basic
geometric ideas and define our notation in Section 2. The main part of the paper
is Section 3 where we derive a polynomial system whose solutions specify projective
equivalences, characterize the size of the system and provide a comparison to a more
naive approach. In Section 4 we consider some special cases, i.e., we are looking for
affine equivalences and investigate the simplifications if the input curve is polyno-
mial. Section 5 provides examples that show the simplicity of our method and give
numerous further computational results. Finally in Section 6 we conclude this paper
and describe some planned future work.

2. Preliminaries

We recall the different types of coordinates and recall the notions of projectively
and affinely equivalent curves.

2.1. Coordinates

Throughout the paper we consider the field of real numbers, i.e., all coefficients of
the curves and all variables describing the transformations and reparameterization
are given as real numbers. We consider curves in the Euclidean space Ēd, which has
been projectively closed (indicated by the bar) by adding points at infinity. Its points
are represented by homogeneous coordinate vectors x = (x0, x1, . . . , xd)

T ∈ P d(R) =
Rd+1\{(0, 0, . . . , 0)}. Linearly dependent pairs of homogeneous coordinate vectors
represent the same point, and this relation will be denoted by '. More precisely, we
write x ' y if and only if there exists µ 6= 0 such that x = µy.

Homogeneous coordinate vectors with x0 = 0 represent points at infinity, and the
collection of these points forms the hyperplane at infinity. All other points can be
represented by Cartesian coordinates x = (x1, . . . , xd)

T = (x1/x0, . . . , xd/x0)T .
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2.2. Rational curves and projective equivalences

Throughout the paper we consider two parametric rational curves C and C ′ ⊂ Ēd,
which are considered as point sets. Both curves are given by proper parameterizations

p : P 1(R)→ C ⊂ Ēd, t 7→ p(t) = (p0(t0, t1), p1(t0, t1), . . . , pd(t0, t1)) ,

p′ : P 1(R)→ C ′ ⊂ Ēd, t 7→ p′(t) = (p′0(t0, t1), p′1(t0, t1), . . . , p′d(t0, t1))

with the parameter t = (t0, t1). Note that the prime symbol ′ does not denote a
differentiation but is used instead to distinguish between the two curves.

The domain of both parameterizations is the real projective line P 1(R). Conse-
quently, the homogeneous coordinates of both curves are homogeneous polynomials
of degree n,

pi(t) =
n∑
j=0

cj,it
n−j
0 tj1 and p′i(t) =

n∑
j=0

c′j,it
n−j
0 tj1, i = 0, . . . , d,

with coefficient vectors

cj = (cj,0, cj,1, . . . , cj,d)
T and c′j = (c′j,0, c

′
j,1, . . . , c

′
j,d)

T . (1)

Curves given in standard (i.e., non-homogeneous) form are homogenized by replacing

tj with tn−j0 tj1.

Note that every rational curve, which is not given by a proper parameterization, can
be reparameterized to obtain a proper one. The proof for planar curves, which is
given by Sendra et al. (2008), applies to any space dimension d.

Furthermore we assume that the parameterizations are in reduced form, i.e.

gcd(p0(t), p1(t), . . . , pd(t)) = gcd(p′0(t), p′1(t), . . . , p′d(t)) = 1 (2)

and of common degree n. Indeed, regular projective transformations preserve the
degree of a curve, hence the degrees of projectively equivalent curves have to be
equal. In particular, this implies that both curves possess the same degree

max(degti(p0(t)), degti(p1(t)), . . . , degti(pd(t))) = n,

max(degti(p
′
0(t)), degti(p

′
1(t)), . . . , degti(p

′
d(t))) = n,

(3)

with respect to ti, i = 0, 1.
We will assume that neither of the two curves is contained in a hyperplane. Con-

sequently, the matrices (cij) resp. (c′ij) formed by the coefficient vectors have rank
d+ 1. Clearly, this is only possible if the degree satisfies n ≥ d.

We start with a simple technical lemma.
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Lemma 1. Two rational parameterizations p(t) and p′(t) in reduced form are equiv-
alent, i.e. p(t) ' p′(t) holds for all t ∈ P 1(R), if and only if there exists a non-zero
constant µ such that

cj = µc′j, j = 0, . . . , n.

Proof. The equivalence of the two curves implies that there exists a rational function

µ(t) =
µ1(t)

µ0(t)
=
p′0(t)

p0(t)
=
p′1(t)

p1(t)
= · · · = p′d(t)

pd(t)

where µ0 are µ1 are relatively prime polynomials, such that p(t) = µ(t)p′(t). Con-
sequently, the two rational curves satisfy

µ0(t)p(t) = µ1(t)p′(t).

This function is indeed a constant since

µ0| gcd(p′0, p
′
1, . . . , p

′
d)︸ ︷︷ ︸

=1

and µ1| gcd(p0, p1, . . . , pd)︸ ︷︷ ︸
=1

.

Recall that using homogeneous coordinates allows to represent any regular projec-
tive transformation f by a matrix multiplication

f : Ēd → Ēd : x 7→ f(x) = Mx,

where M = (mij)i,j=0,...,d is a non-singular real matrix. If

m00 6= 0 and m01 = · · · = m0d = 0, (4)

then f is an affine transformation. For d = 2 the class of affine transformations
includes translations, rotations, uniform and non-uniform scaling, reflections and
shears. Projective transformations further include transformations that do not nec-
essarily preserve parallel lines but collinearity and incidence. We consider pairs of
curves which are related by regular affine and projective transformations.

Definition 2. Two curves C and C ′ are said to be projectively (affinely) equivalent
if there exists a regular projective (affine) transformation f such that C ′ = f(C).
Furthermore, C is said to possess a projective (affine) symmetry if there exists a
regular projective (affine) transformation f , different from the identity, such that
C = f(C).

5



C′ = f(C) C = f(C), f 6= id
M regular C and C′ are projectively equivalent C has the projective symmetry f
A regular C and C′ are affinely equivalent C has the affine symmetry f
ATA = λI C and C′ are similar C has the self-similarity f
ATA = I C and C′ are congruent C has the symmetry f

Table 1: Projective equivalence of curves and its special cases

If C ′ is projectively equivalent to C, then C is also projectively equivalent to C ′, as
the projective transformation f is assumed to be regular. Moreover, each curve is
projectively equivalent to itself by the identity map. The transitivity of the relation
is implied by the group structure of regular projective mappings. Therefore, the
projective equivalence defines an equivalence relation. The same argumentation holds
for affine equivalences as well.

Two affinely equivalent curves are said to be congruent if the matrix

A =
(mij

m00

)
i,j=1,...,d

,

which is defined by the affine transformation, is orthogonal. Similarly, an affine
symmetry is simply called a symmetry in this case (see, e.g., Alcázar et al., 2014b).
Moreover, the two curves are said to be similar if the matrix A is a multiple of an
orthogonal matrix, i.e., ATA = λI with λ ∈ R+ (see, e.g., Alcázar et al., 2014a).

Self-similarities of rational curves are always symmetries (see e.g. Theorem 6 in
Alcázar et al., 2015a), while non-rational curves (such as the logarithmic spiral) may
possess more general self-similarities. Finally we note that the image of a curve with
symmetries under a general affine (resp. projective) transformation has affine (resp.
projective) symmetries, which are not symmetries.

Table 1 summarizes the different notions of equivalences and symmetries, whereas
Figure 1 provides a graphical interpretation. The arrow “←” in this figure indicates
that projective equivalences are the most general among these different types of
equivalence relations.

3. Detecting projective equivalences

We present a method to analyze whether two curves C, C ′ ⊂ Ēd are projectively
equivalent and to find all equivalences. This includes the construction of the asso-
ciated projective transformations. We assume that the degrees satisfy n > d since
any two curves of degree d, which are not contained in hyperplanes, are related by
infinitely many projective transformations.
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projective equ.

M is regular

← affine equ.

M =

(
m00 0
b m00A

)
,

A is regular

(nonuniform scaling,

shear)

← similarity

M =

(
m00 0
b m00A

)
,

ATA = λI

(uniform scaling)

← Euclidean equ.

M =

(
m00 0
b m00A

)
,

ATA = I

(rotations, trans-

lations, reflections)

Figure 1: Dependencies between the different types of equivalence relations

3.1. The direct method

Recall that any two proper parameterizations of a rational curve are related by
a linear rational reparameterization (Sendra et al., 2008), which is simply a regular
projective transformation of the real projective line

r(t) =

(
α00 α01

α10 α11

)
︸ ︷︷ ︸

=α

t =

(
α00t0 + α01t1
α10t0 + α11t1

)

described by a regular matrix α. We investigate the transformation of the coefficients
which is caused by such a reparameterization.

Lemma 3. The reparameterized curve p̂ = p ◦ r,

p(r(t)) = p̂(t) =
n∑
j=0

ĉjt
n−j
0 tj1

has the coefficients

ĉj(α) =
n∑
i=0

ci

j∑
`=0

(
n− i
`

)(
i

j − `

)
αn−i−`00 α`01α

i−j+`
10 αj−`11 (5)

for j = 0, . . . , n.
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Proof. A short computation gives

p(r(t))=
n∑
i=0

ci(α00t0 + α01t1)n−i(α10t0 + α11t1)i

=
n∑
i=0

ci

(
n−i∑
`=0

(
n− i
`

)
αn−i−`00 tn−i−`0 α`01t

`
1

)(
i∑

m=0

(
i

m

)
αi−m10 ti−m0 αm11t

m
1

)

=
n∑
i=0

ci

n−i∑
`=0

i∑
m=0

(
n− i
`

)(
i

m

)
αn−i−`00 α`01α

i−m
10 αm11t

n−m−`
0 tm+`

1

=
n∑
i=0

ci

n∑
j=0

∑
`+m=j

(
n− i
`

)(
i

m

)
αn−i−`00 α`01α

i−m
10 αm11t

n−j
0 tj1

=
n∑
j=0

tn−j0 tj1

n∑
i=0

ci
∑
`+m=j

(
n− i
`

)(
i

m

)
αn−i−`00 α`01α

i−m
10 αm11

Comparing the coefficients confirms (5).

Remark 4. For singular matrices α, the projective mapping r transforms the entire
line into a single point, hence the coefficients of the reparameterized curve p̂ = p ◦ r
are all linearly dependent.

We identify projective equivalences by analyzing whether the coefficients are related
by a projective transformation.

Proposition 5. Let C and C ′ be rational curves of degree n > d with proper param-
eterizations p(t) and p′(t) satisfying (2) and (3). The two curves are projectively
equivalent if and only if there exist a regular projective transformation matrix M and
a projective transformation α of the real line, such that the coefficients of both curves
satisfy

Mc′j = ĉj(α), j = 0, . . . , n, (6)

see (5).

Proof. On the one hand, the conditions (6) imply that the two curves are projectively
equivalent. On the other hand, we consider two projectively equivalent curves C ′ and
C. There exists a projective transformation f with the matrix M such that

f(C ′) = C.

We define z(t) = Mp′(t). Consequently z(t) and p(t) are two proper parameteriza-
tions of the same curve C. According to Lemma 4.17 of Sendra et al. (2008) there
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is a linear rational reparameterization r(t) – and hence an associated projective
transformation α – such that

z(t) ' p(r(t)).

Thus we obtain that
n∑
j=0

Mc′jt
n−j
0 tj1 = Mp′(t) = z(t) ' p(r(t)) = p̂(t) =

n∑
j=0

ĉj(α)tn−j0 tj1

where we use – from left to right – the representation of p′, the definition of z(t),
Lemma 4.17 of Sendra et al. (2008), the definition of p̂ and Lemma 3. We complete
the proof by comparing the leftmost and rightmost terms and noting that Lemma 1
implies (6). Note that the constant µ of the homogeneous coordinates can be put
into M .

Recall that we assume that neither of the two curves is contained in a hyperplane.
Consequently, the regularity of M can be guaranteed by the regularity of α, cf.
Remark 4. Thus, in addition to (6) we have

detα 6= 0.

In order to avoid the inequality constraint we replace it with the equation

(detα)u = 1 (7)

which involves the additional variable u. Moreover, without loss of generality, it can
be assumed that this additional variable satisfies the normalization condition

|u| = 1, (8)

as the representation of the projective transformation α is only determined up to a
constant factor. Nevertheless we keep the variable u in Equation (7) since this allows
us to avoid the computation of several Gröbner bases.

Summing up, we arrive at a simple method for testing whether two curves are
projectively equivalent:

Corollary 6. Under the assumptions of the previous proposition, the two rational
curves C and C ′ are projectively equivalent if and only if there exist transformation
matrices M and α and a constant u such that the equations (6) and (7) are satisfied.

This corollary leads to a system of (d + 1)(n + 1) + 1 polynomial equations for
(d + 1)2 + 5 unknowns in M (containing (d + 1)2 unknowns), α (4 unknowns) and
u. The equations from formula (6) are linear in M but of degree n with respect the
elements of α. Solving this system will be called the

Direct method for detecting Projectively equivalent curves. (DP)

9



3.2. Reducing the number of unknowns

We observe that the system given by Equation (6) has a special structure, i.e., it
is linear in the unknowns describing M and the right hand side are homogeneous
polynomials of degree n in α. We use this knowledge to reduce the number of
unknowns before solving the system with the help of standard computer algebra
systems.

Proposition 7. Let C and C ′ be as in Proposition 5. The coefficient matrix

(c′ij)i=0,...,d,j=0,...,n (9)

has d+1 linearly independent column (coefficient) vectors c′
j(0)
, . . . , c′

j(d)
and its kernel

is spanned by basis vectors

bk = (bkj )j=0,...,n, k = 1, . . . , n− d.

The two curves are projectively equivalent if and only if there is a transformation α
of the projective line, such that the equations

n∑
j=0

ĉij(α)bkj = 0, i = 0, . . . , d, k = 1, . . . , n− d (10)

and
det
(
ĉj(0)(α), . . . , ĉj(d)(α)

)
6= 0, (11)

are satisfied, where the coefficients ĉij(α) are given in (5).

Proof. Clearly, the coefficient matrix has rank d+ 1, hence its kernel has dimension
n − d. This confirms the existence of the linearly independent columns and kernel
basis vectors.

We show that the two equations (10) and (11) are equivalent to the condition
stated in Proposition 5. First we confirm that the latter condition implies the two
equations. On the one hand, Equation (6) ensures that the kernel of the coefficient
matrix (9) is contained in the kernel of the coefficient matrix

(ĉij(α))i=0,...,d,j=0,...,n (12)

of the reparameterized curve, thereby proving the first equation. The other one
follows from the fact that M is regular by restricting Equation (6) to the selected
d+ 1 linearly independent columns c′

j(0)
, . . . , c′

j(d)
of the coefficient matrix (9).
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Second we prove the other implication. The first equation (10) guarantees that
the kernel of the matrix (12) contains the kernel of (9). This implies that the space
spanned by the row vectors of the matrix in (12) is contained in the space spanned by
row vectors of (9), since these spaces are the orthogonal complements of the kernels.
This proves the existence of the matrix M in (6). Its regularity is again implied by
the fact that the two coefficient matrices have rank d + 1, due to (11) and to the
assumption on the linearly independent d+ 1 column vectors.

Remark 8. The non-zero term (α00α11 − α10α01)
d(d+1)

2 appears as a factor in the
determinant in Equation (11). Furthermore, when using Gröbner basis or other
methods for solving a system of polynomial equations, avoiding inequalities is an
advantage. We therefore replace the inequality Equation (11) with

det
(
ĉj(0)(α), . . . , ĉj(d)(α)

)
(α00α11 − α10α01)

d(d+1)
2

u = 1 (13)

by introducing one additional variable u. As the projective transformation α is
only determined up to a constant factor, we fix this degree of freedom by a similar
normalization as in DP, in particular, by setting

|u| = 1. (14)

Proposition 7 and Remark 8 lead to a system of (n − d)(d + 1) + 1 polynomial
equations for only five unknowns, u and the elements in α. All but one are of degree
n, while the remaining Equation (13) has degree (n − d)(d + 1) + 1. Solving this
system will be called the

Reduced method for detecting Projectively equivalent curves. (RP)

3.3. Computation of projective equivalences

For both methods DP and RP, we first compute the Gröbner bases of the systems
formed by equations (6) and (7) and equations (10) and (13), respectively. Finally
we substitute u = ±1 and compute the solutions.

The direct method returns both the 2 × 2 matrices α that specify the reparame-
terizations r and the associated projective transformations. In contrast to this, the
method RP computes the 2× 2 matrices α only. Once the reparameterizations have
been found, the corresponding projective transformations M are obtained simply by
solving the linear systems of equations

Mc′j(`) = ĉj(`)(α), ` = 0, . . . , d, (15)
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# of unknowns degree # equations

DP (d+ 1)2 + 5 n n(d+ 1) + d+ 1
n+ 1 1

RP 5 n n(d+ 1)− d2 − d
n(d+ 1)− d2 − d+ 1 1

Table 2: Characteristics of the non-linear polynomial systems for detecting projective equivalences
of rational degree n curves in d-dimensional space.

for the (d + 1)2 unknown elements of M . The computational effort is negligible
compared to the overall computation time.

The specific type of the equivalence can be found by investigating the properties
of the transformation matrix M . More precisely, it is an affine equivalence if the
elements satisfy

m0i = 0, for i = 1, . . . , d.

It is a similarity (or even a congruence transformation) if additionally the condition

ATA = λI with A =
(mij

m00

)
i,j=1,...,d

is fulfilled, where I is the d × d identity matrix (and the factor even satisfies λ = 1
for congruence transformations).

When applied to pairs (C, C) of identical curves, each of the two methods allows
us to identify all projective symmetries. Once again, this includes all affine or Eu-
clidean symmetries, which are found by analyzing the properties of the corresponding
transformation Matrix M , analogously to the discussion above.

Finally we compare the characteristics of the non-linear polynomial systems for
the two different methods in Table 2. This is the most time consuming part of our
algorithm. For the direct method DP, the unknowns include the elements of the
matrix M , since it uses an all-at-once approach. For the reduced method RP the
maximum degree of one equation is increased but both the number of unknowns and
the number of equations are decreased by (d+ 1)2.

4. Special Cases - affine equivalences and polynomial input curves

We take a closer look at two special cases.

4.1. Affine equivalences

As mentioned in the end of the previous section, we may identify affine equiva-
lences by investigating the transformation matrix M . However, if we are interested
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exclusively in this special case it might be advantageous to take this into account
beforehand, for instance, if one is interested in the Gröbner Basis of this system per
se. We will see in Section 5 that for DP this modification also improves the speed of
computation, whereas the reduced methods RA and RP show a similar behaviour.

Concerning the direct method for affine equivalences, Corollary 6 leads to a system
of (d+1)(n+1)+1 polynomial equations for d(d+1)+6 unknowns in M (containing
d(d+ 1) + 1 unknowns), α (4 unknowns) and u. The equations are linear in M but
of degree n + 1 with respect the elements of α and u. Solving this system will be
called the

Direct method for detecting Affinely equivalent curves. (DA)

A similar modification can be derived for the reduced method RP as well. In-
stead of decreasing the number of unknowns, this increases the number of equations.
More precisely, we obtain additional equations involving only the first homogeneous
coordinate. These equations are of degree n:

Corollary 9. Let C and C ′ be two rational curves as in Proposition 7. The two curves
C and C ′ are affinely equivalent if and only if there exist a projective transformation
α, defining a reparameterization, and a constant ω such that the equations

ωc′0k = ĉ0k(α), k = 0, . . . , n, (16)

n∑
j=0

ĉij(α)bkj = 0, i = 0, . . . , d, k = 1, . . . , n− d, (17)

det
(
ĉj(0)(α), . . . , ĉj(d)(α)

)
6= 0 (18)

are satisfied.

Proof. On the one hand, if the two curves are affinely equivalent, then the equations
are obviously satisfied with ω = m0,0, see Equation (4) and Proposition 5.

On the other hand, consider two curves satisfying the equations (16), (17) and (18).
First we note that (18) implies ω 6= 0. The two curves are projectively equivalent
according to Proposition 7, hence there exists a projective transformation M with

Mc′j = ĉj(α), j = 0, . . . , n.

We will show that M represents an affine transformation.
Any point x′ has a unique representation

x′ =
d∑
`=0

ξ`c
′
j(`)
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with certain real coefficients ξ`, as the selected d + 1 columns c′
j(0)
, . . . , c′

j(d)
are in

general position. Its image under the projective transformation then satisfies

x = Mx′ =
d∑
j=0

ξ`ĉj(`)(α),

due to the linearity of the transformation. We now use these two representations
and the additional Equation (16) to derive the relation

x0 = ωx′0

between the 0-th coordinates. Consequently, the projective transformation M is
indeed even an affine transformation since it maps any point x′ at infinity (where
x′0 = 0) to another point at infinity.

Consequently, in addition to equations (10) and (13) we add n + 1 polynomial
equations (16), which have degree n with respect to the four scalar unknowns in α
and which are linear with respect to an additional variable ω. Solving this system
will be called the

Reduced method for detecting Affinely equivalent curves. (RA)

Remark 10. The direct method DA can be applied even if degree and space dimen-
sion are equal, i.e. n = d. The reduced method RA, however, is not applicable since
the normalization (13) fails in this case. Indeed, it takes the form cu = 1 for some
constant c in this situation.

The methods DA and RA only give solutions such that m0i = 0 for i > 0 in
the transformation matrix M . In the case of the reduced method, M can again be
computed by solving the linear system of equations

Mc′j(`) = ĉj(`)(α), ` = 0, . . . , d,

for the d(d+ 1) + 1 unknown elements in M . The computational effort is negligible
compared to the overall computation time.

Once more, the specific type of the equivalence can be identified by investigating
the properties of the transformation matrix M . When applied to pairs (C, C) of
identical curves, each of the two methods allows us to detect all affine symmetries,
which are again Euclidean symmetries if ATA = I.

Finally we again compare the characteristics of the non-linear polynomial systems
for the two different methods in Table 3, similar to the previous one.
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# of unknowns maximum degree # equations

DA d(d+ 1) + 6 n n(d+ 1) + d+ 1
n+ 1 1

RA 6 n n(d+ 2) + 1− d2 − d
n(d+ 1)− d2 − d 1

Table 3: Characteristics of the non-linear polynomial systems for detecting affine equivalences of
rational degree n curves in d-dimensional space.

4.2. Affine equivalences of polynomial curves

In the case of two polynomial input curves C and C ′ the problem on hand simplifies
as the reparameterization r(t) is no longer a linear rational function but becomes a
linear transformation only.

Corollary 11. In the situation of Proposition 5, the projective transformation α
defines a linear parameter transformation (i.e. α01 = 0) and the matrix M satisfies
(4) if C and C ′ are two affinely invariant polynomial curves.

Proof. Firstly, it is obvious that the matrix M has the structure (4), since M is
an affine transformation. Secondly, the coefficients of a polynomial curve C satisfy
c0j = 0 for j > 0, hence (5) gives the relation

ĉ0j(α) = c00

(
n

j

)
αn−j00 αj01.

Together with (4), the equations (6) then imply α01 = 0 since the coefficients of the
other curve fulfil the equations c′0j = 0 for j > 0 also.

Consequently it suffices to consider only linear reparameterizations, where α00 = 1
and α01 = 0, when detecting affine equivalences of polynomial curves. This observa-
tion has several consequences:

• The formulas from Lemma 3 for representing the coefficients of a reparameter-
ized curve simplify to

ĉj(α) =
n∑
i=0

ci

(
i

j

)
αi−j10 α

j
11 (19)

• When applying RA, the equations (16) are automatically satisfied for k > 0 and
the remaining one determines the value of ω. Hence we only consider (10) and
(13) as in RP, but with (19) instead of (5). The normalization condition (14)
is replaced by choosing α00 = 1. Hence the system consists of n(d+ 1)− d2− d
non-linear equations in the three unknowns u, α10 and α11.
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This observation cannot be extended to the case of projective equivalences. In fact,
two projectively equivalent polynomial curves may be related by a linear rational
reparameterization, which is not a linear parameter transformation, as we show by
a simple example.

Example 12. We consider two cubic polynomial curves

p(t) =

 t30
3t20t1 + 3t0t

2
1 − 3t31

t31

 and p′(t) =

 t30
−3t30 + 3t20t1 + 3t0t

2
1

t31


which are projectively equivalent as they are related for instance by

Mp′(t) = p(αt) with α =

(
0 1
1 0

)
and M =

0 0 1
0 1 0
1 0 0

 .

Additionally, the first curve possesses six projective symmetries. One of them takes
the form

M̂p(t) = p(αt) with α =

(
0 1
1 0

)
and M̂ =

 0 0 1
−3 1 3
1 0 0

 .

Two of the five remaining projective symmetries are affine symmetries (including the
identity).

5. Examples

The main computational costs of the methods are caused by solving the algebraic
systems presented in Sections 3 and 4. Several numerical and symbolic methods for
solving algebraic systems exist. The generation of efficient solvers for polynomial
systems is an interesting and wide field of research. However, a detailed discussion
of these methods is beyond the scope of the paper. Instead we will rely on existing
methods, which have been implemented in well-established computer algebra sys-
tems. More precisely, we will use Mathematica R© Version 10 and Singular 4-0-2
(Decker et al., 2015) for our numerical examples.

In the remainder of this section we first consider projective equivalences in the
next section. We create the polynomial system of RP for a cubic planar rational
curve before we show our results for some more complex curves in 2D and 3D.
Second, we address the computation of affine equivalences in Section 5.2 and show
the computational results for this case. Finally we investigate polynomial curves.
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5.1. Projective Equivalences

First we consider our methods for finding all projective equivalences, i.e. the
methods DP and RP.

5.1.1. Folium of Descartes - a cubic example

We investigate the two rational curves

p(t) =

t30 + t31
3t20t1
3t0t

2
1

 and p′(t) =

 −208t30 + 108t20t1 − 18t0t
2
1 + t31

−200t30 + 144t20t1 − 30t0t
2
1 + 2t31

144t30 − 60t20t1 + 6t0t
2
1

 . (20)

for projective equivalences. The first one is the Folium of Descartes, since choosing
t0 = 1 and t1 = t transforms p(t) to the usual parameterization. The second curve
was derived by applying a reparameterization and an affine transformation.

We omit the details of the direct method and show the equations generated by RP.
The coefficient-matrices take the form

(cij) =

1 0 0 1
0 3 0 0
0 0 3 0

 (c′ij) =

−208 108 −18 1
−200 144 −30 2
144 −60 6 0


and the first one leads to

(ĉij(α)) =

α3
00 + α3

10 3α2
00α01 + 3α2

10α11 3α00α
2
01 + 3α10α

2
11 α3

01 + α3
11

3α2
00α10 6α00α01α10 + 3α2

00α11 3α2
01α10 + 6α00α01α11 3α2

01α11

3α00α
2
10 3α01α

2
10 + 6α00α10α11 6α01α10α11 + 3α00α

2
11 3α01α

2
11

 .

The kernel of the second one consists of one vector

b1 =
(
1 6 36 208

)
and hence we have the following system

0 = α3
00 + 18α2

00α01 + 108α00α
2
01 + 208α3

01 + α3
10 + 18α2

10α11 + 108α10α
2
11 + 208α3

11

0 = 3α2
00α10 + 36α00α01α10 + 108α2

01α10 + 18α2
00α11 + 216α00α01α11 + 624α2

01α11

0 = 3α00α
2
10 + 18α01α

2
10 + 36α00α10α11 + 216α01α10α11 + 108α00α

2
11 + 624α01α

2
11

1 = 9u(α3
00 + α3

10)

±1 = u

which possesses the real solutions

α1 = ± 1
3
√

1872

(
−6 1
2 0

)
and α2 = ± 1

3
√

1872

(
2 0
−6 1

)
.
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No. name of the curve parametric representation

1 lemniscate t 7→

1 + 6t2 + t4

1− t4
2t− 2t3


2 epitrochoid t 7→

 7(t2 + 1)2

1 + 18t2 − 7t4

4t− 20t3


3 3-leaf rose t 7→

(t2 + 1)2

t− 3t3

1− 3t2


4 deltoid t 7→

12− 24t+ 24t2 − 12t3 + 3t4

−4 + 16t− 12t2 + 4t3 − t4
−8 + 24t− 24t2 + 8t3


5 astroid t 7→

125 + 450t+ 690t2 + 576t3 + 276t4 + 72t5 + 8t6

−27− 54t− 36t2 − 8t3

64 + 288t+ 528t2 + 504t3 + 264t4 + 72t5 + 8t6


6 offset of a

cardioid
t 7→

 15(6561 + 2916t2 + 486t4 + 36t6 + t8)
−39366 + 61236t2 − 31104t3 + 3456t5 − 756t6 + 6t8

−18t(4374− 1296t− 1134t2 + 864t3 − 126t4 − 16t5 + 6t6)


7 epitrochoid4 t 7→

 1 + 5t2 + 10t4 + 10t6 + 5t8 + t10

3 + 105t2 − 410t4 + 410t6 − 105t8 − 3t10

−10t+ 280t3 − 444t5 + 280t7 − 10t9


Table 4: Parameterizations of the curves considered in Sections 5.1.2 and 5.2.1

Solving (15) for the positive solution gives the affine transformations

M1 = − 1

1872

 1 0 0
−2 1 0
2 −1 1

 and M2 =
1

1872

 1 0 0
2 −1 1
−2 1 0

 .

5.1.2. Further experiments for projective equivalences

For higher degrees the size of the system of equations grows and the computation
becomes too large for showing it here in detail. Nevertheless, implemented with
Mathematica and Singular we derived coherent results, which we present in this
section.

We apply the different methods for detecting projective equivalences to the seven
curves which are listed in Table 4. Additionally we tested our methods for some
higher degree flower curves, which are given by

t 7→

(1 + 2t+ 2t2)n+1

(2t+ 2t2)s(t)
(1 + 2t)s(t)

 , where s(t) =
n∑
k=0

(
2n

2k

)
(−1)kt2k(1 + t)2(n−k) (21)

with n = 2, 4, 6. These curves have 2n leaves, and similar curves were also considered
by Alcázar et al. (2014a). We will refer to them as curves No. 8 to 10. All these
curves are shown in Figure 2.
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For creating the Gröbner basis of the polynomial system (6) and (7) for DP and
(10) and (13) for RP, respectively, we use Singular, which is specialized on Gröbner
bases and hence offers quite a fast implementation for computing them. We use the
degree reverse lexicographical ordering.

We export the obtained Gröbner basis, as the Singular function solve() will not
give a solution, if the ideal is not zero dimensional. Then we add the additional
normalization equations (8) and (14), respectively. For solving this system we use the
function Solve[] in Mathematica, which provides a convenient representation of the
solutions, even if they consist of a family of solutions, which depend on one or more
variables. Compared to the time for computing the Gröbner basis, the additional
effort of solving the resulting system is negligible, in particular, for increasing degree
n. Possible complex solutions are neglected in the end or can be avoided by using
the option “Reals” in Solve[].

We investigate the curves with respect to projective symmetries by using twice the
same input curve and additionally we are looking for projective equivalences of two
different inputs. For this we use the representation from Table 4 and Equation (21)
as first input curve p(t) and apply a reparameterization given by the matrix α and
a projective transformation M to obtain the input curves p′(t):

α =

(
0 1
6 8

)
, M =

 22 1 −1
15 12 5
−10 0 10

 .

We show these curves in Figure 2. We summarize the specifications of the curves as
well as the computation time for the different methods in Table 5. The last three
rows of the table show results obtained by applying the method to three pairs of
different curves (e.g. the lemniscate and the epitrochoid), where the second one was
considered in its original form and after applying both a projective transformation
and a reparameterization. As expected, no projective equivalences were found in
those cases.

If the computation took longer than one day or ran out of memory we aborted the
process (indicated by > 105). All computations were performed on an Intel Core i7
PC, with 3.4 GHz and 32 GB RAM.

Even for the planar case the projective coordinate based method RP provides a
remarkable speed-up. Moreover, the direct method did not provide results for all
test cases. These effects will be even stronger in higher dimensions.

5.1.3. Space curves

We also applied our methods to space curves of low degrees (see Table 6). Again
we applied a reparameterization and a projective transformation to an input curve
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1) 2)

3) 4)

5) 6)

7) 8)

9) 10)

Figure 2: Examples 1-10: p(t) (solid blue), projectively transformed (dashed green, left), affinely
transformed (dashed orange, right)
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# Symmetries Equivalences
No. deg. equiv. DP RP DP RP

1 4 4 9.8× 10−1 < 10−2 1.4× 101 3.0× 10−2

2 4 2 1.5× 100 < 10−2 9.6× 100 < 10−2

3 4 6 2.3× 10−1 1.0× 10−2 1.3× 101 < 10−2

4 4 6 2.2× 101 1.0× 10−2 1.3× 101 < 10−2

5 6 8 1.0× 102 3.0× 10−2 3.7× 102 3.0× 10−2

6 8 2 7.8× 103 4.6× 101 9.3× 103 4.6× 101

7 10 8 8.1× 102 2.5× 10−1 > 105 7.6× 10−1

8 6 8 1.6× 101 7.0× 10−2 1.2× 102 7.0× 10−2

9 10 16 6.5× 103 2.3× 10−1 > 105 1.2× 100

10 14 24 8.3× 103 3.5× 102 > 105 3.5× 102

1+2 4 0 1.1× 100 1.0× 10−2 9.4× 100 1.0× 10−2

3+4 4 0 7.8× 100 < 10−2 5.6× 100 < 10−2

5+8 6 0 1.4× 101 2.0× 10−2 1.0× 102 3.0× 10−2

Table 5: Computation time in Singular for projective symmetries and equivalences of planar curves
(time in seconds)

No. name of the curve parametric representation

11 3D Degree 4 t 7→


1 + t4

t+ t3

t3

t2


12 3D Degree 6 t 7→


125 + 450t+ 690t2 + 576t3 + 276t4 + 72t5 + 8t6

−27− 54t− 36t2 − 8t3

64 + 288t+ 528t2 + 504t3 + 264t4 + 72t5 + 8t6

21 + 122t+ 216t2 + 168t3 + 60t4 + 8t5


13 3D Degree 8 t 7→


625 + 3000t+ 6400t2 + 7920t3 + 6216t4 + 3168t5 + 1024t6 + 192t7 + 16t8

−2027− 8392t− 14344t2 − 12768t3 − 5960t4 − 1056t5 + 224t6 + 128t7 + 16t8

1664 + 7744t+ 16288t2 + 20528t3 + 17040t4 + 9472t5 + 3392t6 + 704t7 + 64t8

405 + 1080t+ 1080t2 + 480t3 + 80t4


Table 6: Parameterizations of the curves considered in Section 5.1.3

p(t) in order to create some non-trivial input.
Table 7 suggests that the method works fine for low degree curves.

5.1.4. Randomly generated test cases for projective equivalences

For further experiments both in 2D and 3D we choose random coefficients of our
curves as well as a random reparameterization and a random projective transforma-
tion. All these values are chosen as integer values with absolute value less then 10.
Due to the choice of the input there is always at least one equivalence between the
curves. For planar curves of higher degree then 7 and also lower degree 3D curves
the direct method does not terminate within one day. With the method RP we
can detect symmetries of random curves up to degree 9 within several minutes, see
Table 8.

If we choose also the coefficients of the second curve randomly, the computation
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# Symmetries Equivalences
No. deg. equiv. DP RP DP RP

11 4 4 2.3× 100 < 10−2 2.3× 102 < 10−2

12 6 4 > 105 6.0× 10−2 > 105 2.0× 10−2

13 8 2 > 105 3.7× 101 2.5× 104 7.8× 10−1

Table 7: Computation time in Singular for projective symmetries and equivalences of space curves
(time in seconds)

Symmetry Equivalences
dim deg. DP RP DP RP

2D 4 2.8× 103 9.0× 10−2 1.0× 104 2.7× 10−1

5 7.8× 103 1.2× 100 7.6× 103 1.4× 100

6 1.2× 104 6.3× 100 2.8× 104 1.5× 101

7 2.9× 104 4.2× 101 3.5× 104 1.2× 102

8 > 105 1.9× 102 > 105 1.4× 102

9 > 105 6.2× 102 > 105 2.2× 103

3D 4 > 105 4.0× 10−2 > 105 4.0× 10−1

5 > 105 1.0× 100 > 105 1.6× 100

6 > 105 8.4× 100 > 105 1.2× 101

7 > 105 3.7× 101 > 105 8.6× 101

8 > 105 1.5× 102 > 105 3.1× 102

9 > 105 6.7× 102 > 105 1.7× 103

Table 8: Computation time for projective equivalences with random curves (in seconds)

time remains within the same magnitude. As to be expected, no projective equiva-
lences were found in these cases.

5.2. Affine Equivalences

In this section we present the results for the methods DA and RA designed to
find affine equivalences and an example for affine equivalences of polynomial input
curves.

5.2.1. Experiments for affine equivalences

Similar to Section 5.1.2 we applied a linear rational reparameterization and now
an affine transformation on the input curves p(t) to obtain an input, that possesses
affine equivalences. We summarize the computing time of all four methods DP, DA,
RP and RA in Table 9. The reduced methods are still faster, although the additional
assumptions improve the direct method significantly and concerning the computation
time we cannot recognize an improvement in the reduced method. Nevertheless,
as the methods RP and RA provide Gröbner bases of two different problems, the
affine method might be useful in some applications. The computation time for affine
Equivalences can be found in Table 9.
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# Affine Equivalences
No. deg. equiv. DP DA RP RA

1 4 4 1.1× 101 4.0× 10−2 1.0× 10−2 < 10−2

2 4 2 9.2× 100 6.0× 10−2 < 10−2 < 10−2

3 4 6 1.2× 101 1.0× 10−2 < 10−2 < 10−2

4 4 6 1.2× 101 8.0× 10−2 < 10−2 < 10−2

5 6 8 2.3× 104 4.4× 100 1.6× 10−1 7.4× 100

6 8 2 1.1× 104 3.5× 101 4.6× 101 9.8× 101

7 10 8 > 105 1.8× 101 7.6× 10−1 2.6× 10−1

8 6 8 2.1× 102 5.4× 10−1 7.0× 10−2 3.0× 10−2

9 10 16 > 105 1.4× 101 1.4× 100 2.7× 10−1

10 14 24 > 105 3.1× 102 3.4× 102 5.3× 101

11 4 4 2.0× 102 1.8× 10−1 < 10−2 < 10−2

12 6 4 > 105 7.1× 100 2.0× 10−2 1.0× 10−2

13 8 2 > 105 2.7× 101 3.2× 100 2.9× 100

Table 9: Computation time in Singular for affine equivalences of planar curves (time in seconds)

5.2.2. Polynomial curves

Finally we consider an example where the set of solutions is not a set of discrete
values but is a family of solutions. We consider the two different parameterizations
of a semi-cubical parabola

p(t) =

 t30
t0t

2
1

t31

 and p′(t) =

 t30
2t0t

2
1

t31

 .

Hence we have the coefficient-matrices

(cij) =

1 0 0 0
0 0 1 0
0 0 0 1

 and (c′ij) =

1 0 0 0
0 0 2 0
0 0 0 1


which lead to

(ĉij(α)) =

 1 0 0 0
2α2

10 4α10α11 2α2
11 0

α3
10 3α2

10α11 3α10α
2
11 α3

11

 and b1 =
(
0 1 0 0

)
.

We note that c0, c2 and c3 are linearly independent and we obtain the polynomial
system

0 = 4α10α
2
11, 0 = 3α2

10α
2
11, 1 = 2uα2

11.

Solving this leads to the reparameterization and transformation

α1 =

(
1 0
0 α11

)
and M =

1 0 0
0 2α2

11 0
0 0 α3

11

 .
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6. Conclusion

Two curves are projectively (resp. affinely) equivalent if there exists a regular pro-
jective (resp. affine) transformation, that maps one curve to the other. We investi-
gated the case of rational curves using the fact that any two proper parameterizations
of the same curve in reduced form are related by a linear rational reparameteriza-
tion. This reparameterization can be represented by a projective transformation of
the projective line describing the parameter domain.

Starting from the monomial coefficients we derived a system of polynomial equa-
tions whose solutions describe the projective (resp. affine) equivalences, i.e., the
projective (resp. affine) transformations and the reparameterizations. The special
structure of the system and using some basic linear algebra allowed us to obtain a
compact form of these equations, i.e., we reduced the number of unknowns to five.

We implemented the algorithm using the CAS Mathematica and Singular and per-
formed several computational experiments. For curves of moderate degrees (around
10 for planar curves), our implementation shows a similar performance as previous
approaches (Alcázar, 2014; Alcázar et al., 2014a,b), i.e., it computes equivalences
within a few seconds. However, these previous approaches were restricted to Eu-
clidean equivalences and similarities, while we consider the more general case of
projective (resp. affine) equivalences. Moreover, our approach works for arbitrary
dimensions. To the best of our knowledge, this is the first work that uses the general
concept of projective equivalences and considers an arbitrary space dimension of the
embedding space.

Future work will be devoted to the extension to the surface case for triangular
Bézier surfaces. Another possible future step is to investigate piecewise rational
functions, as they are even more common in practical applications and they are
often considered only for small degrees, where our method works fine.

Another challenging question consists in adapting the approach to numeric-symbolic
computations, in order to deal with approximate symmetries and equivalences or with
inexact input. Similar problems have been studied in the context of approximate al-
gebraic geometry (see e.g. Pérez-Dı́az et al., 2010, and the references therein). We
expect that this question will be subject of future research.
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