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On the Parameter Estimation Problem
of Magnetic Resonance Advection Imaging

Simon Hubmer∗, Andreas Neubauer†, Ronny Ramlau‡§, Henning U. Voss¶

Abstract

We present a reconstruction method for estimating the pulse-wave velocity
in the brain from dynamic MRI data. The method is based on solving an in-
verse problem involving an advection equation. A space-time discretization is
used and the resulting largescale inverse problem is solved using an accelerated
Landweber type gradient method incorporating sparsity constraints and utilizing
a wavelet embedding. Numerical example problems and a real-world data test
show a significant improvement over the results obtained by the previously used
method.

Keywords. Brain Imaging, MRI, Cerebral Hemodynamics, MR Angiography,
Cerebrovascular Disease, Mathematical Modelling, Space-Time Discretization,
Regularization, Inverse Problems, Sparsity, Landweber Iteration, Wavelets, Nes-
terov Acceleration Strategy, Parameter Identification

1 Introduction

Magnetic Resonance Advection Imaging (MRAI) is a recently developed method to map
the pulsatory signal component of dynamic echo planar imaging (EPI) data of the brain,
such as acquired in functional and resting state functional Magnetic Resonance Imaging
(MRI) experiments [34]. Its underlying mathematical model is specifically based on the
wave equation for unidirectional waves, and as such is an advection equation. MRAI
derives its information from the local spatiotemporal properties of the dynamic MRI
data sets [35] and does not require an external pulse reference signal. It has been shown
that MRAI maps depict the location of major arteries as well as some venous structure.
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In addition, colour direction maps allow for visualization of the orientation direction of
blood vessels.

It has been suggested that MRAI may potentially serve as a biomarker for the
health of the cerebrovascular system. The reason is that MRAI is designed to reflect
the spatiotemporal properties of travelling waves, and pulse wave velocities (PWV) are
a main indicator for the physical properties of blood vessels. By means of the well-
known Moens-Korteweg equation, PWVs are related to vessel diameter, wall thickness,
and wall stiffness. In particular wall thickness and stiffness are key parameters that
change in vascular disease and with age.

However, although MRAI is designed to reflect the spatiotemporal properties of
travelling waves, it has been found that PWVs are difficult to measure with the pre-
viously proposed modelling approach [34], which is based on local multiple regression
of finite difference estimators of the differential operators in the unidirectional wave
equation. It would be desirable to improve estimation techniques in order to overcome
these limitations. It would also be desirable to have an optimized method to be able
to estimate requirements on the data in order to obtain meaningful, i.e., quantitative
values for the pulse wave velocities or at least representative values that are affected by
differing pulse wave velocities throughout the cerebrovascular system.

In [34], a multiple regression approach was used in order to estimate the PWV. In
this contribution, we consider the problem from the viewpoint of parameter estimation
in PDEs. More precisely, we will define an operator F which maps a velocity v onto
data y via

F (v) = y ,

and then solve this equation for v using standard techniques in inverse problem theory,
as described for example in [10]. The underlying equation connecting the velocity vector
field v(x, y, z) to the dynamic MRI signal ρ(x, y, z, t) will be the advection equation

∂

∂t
ρ(x, y, z, t) + v(x, y, z) · ∇ρ(x, y, z, t) = 0 . (1.1)

The subsequent paper is structured as follows. In the next section, we will give some
medical background, introduce the reader to dynamic MRI and give some specifics of
our problem. In Section 3 we will define the mathematical model used throughout this
paper and in Section 4 we will discretize the model and introduce an inverse problem
for the PWV. Section 5 is concerned with the solution of the inverse problem and
in Section 6 several numerical experiments with simulated and real-world data are
presented. Finally, Section 7 gives some conclusions and an outlook.

2 Background

2.1 Pulse wave velocity

Cardiovascular pulse waves provide a natural physical perturbation to vascular dynam-
ics, and their effects have been utilized in clinical diagnostics for a long time. For
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example, the PWV in major arteries can be measured directly and contains informa-
tion about arterial compliance [18], defined as the ratio of blood volume change to
blood pressure change. Arterial compliance is an important determinant of the state
of the cerebrovascular system. With respect to the brain, aortic stiffness has been as-
sociated with cerebral small-vessel disease in hypertensive patients [14] and cognitive
decline [26]. In addition, emerging concepts such as pulse wave encephalopathy would
profit from diagnostic imaging methods of cerebral vasculature [2, 13].

The PWV in arteries, or Moens-Korteweg velocity [19], follows from the Moens-
Korteweg formula [17,23],

v =

√
Eh

ρBd
. (2.1)

The PWV depends on the three parameters vascular diameter d, wall thickness h, and
the vessel wall’s Young’s modulus or distensibility, E, if the reasonable approximation of
constant density of the blood, ρB, is made. Equation 2.1 models vessels as elastic tubes
with isotropic walls [40]. Pressure gradients, which would be required to determine
blood flow, do not appear in the Moens-Korteweg formula. In other words, PWVs can
be modelled independently from blood flow velocity and in fact can be one to two orders
of magnitude faster [19].

For a blood vessel along the direction of v, Equation 1.1 describes the pulsatile
component of the blood flow velocity along that direction, with v being the PWV.
Importantly, the same advection equation would also hold for blood pressure waves [8],
which, via the Windkessel model [29], are a function of the integrated net flow into the
vessel reservoir [1]. Since the local blood volume is related to local blood pressure via
the compliance C as dV = C dp, the same advection equation applies to the pulsatile
component of the blood volume as well. For the rest of this paper, ρ(x, y, z, t) should
be understood as the MRI signal variability attributable to volume change, and we also
interpret the three-dimensional velocity vector v as a PWV.

Though ρ(x, y, z, t) depends on the blood flow velocity via the relationship between
pulsatile flow, pressure, and volume, the constant component of the flow, or the average
blood flow, decouples from Equation 1.1, as it does not cause any spatial or temporal
signal change. It could cause signal variability, however, if blood is not assumed to have
homogeneous properties in the model domain Ω, which may be caused by variations
in oxygenation or temperature, or any other property that might affect the particular
MRI contrast. Here we assume that the MRI signal is not affected by any of these
properties.

2.2 EPI data

There are only few in-vivo options for imaging vascular dynamics in the human brain.
Arterial spin labelling (ASL) is the most advanced method and has high spatial reso-
lution [37]. It provides quantitative blood flow values in the capillary bed, assuming
steady flow. However, arterial compliance depends on the pulsatile component of the
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Figure 2.1: Example image of a clinical MRI scanner.

flow. It can be imaged with specific ASL pulse sequences [36,38]. Pulsatile flow compo-
nents can also be imaged over the whole brain with 4D phase contrast angiography [11].

In this contribution we are aiming at deriving PWV related quantities from echo-
planar imaging [31] (EPI) data. EPI is the method of choice for functional MRI [25].
Here we are less interested in the functional aspects of EPI, but in the fact that EPI can
also yield fast dynamic data over the whole brain. As all MRI imaging signal intensity
is proportional to the total amount of resonant spins within a voxel, it reflects the
local proton distribution, which shows pulsatile information around vessels. This has
been demonstrated with phase coherence maps before [33,34], as well as with statistical
parametric mapping [4, 32].

In general, the MR signal S(k) in physical k space is proportional to the inverse
Fourier transform of the spin density in a voxel at position r, ρ(r), i.e.,

S(k) ∝
∫ +∞

−∞
ρ(r)e2πik·rdr , (2.2)

where k is the k-vector. The image S(r) is the magnitude of the Fourier inversion of
this expression. The vectors r and k are, depending on the acquisition scheme, two or
three-dimensional. (See, for example [21].) In EPI, images are acquired very rapidly
to allow for whole brain coverage within seconds. A typical EPI data set consists
of three-dimensional volumes acquired repeatedly in time with a repetition time TR.
Each volume contains either the whole brain or always the same part of it. Volumes
are acquired slice-by-slice, i.e., the vector r is two-dimensional. The typical spatial
resolution or voxel volume depends on the field-of-view, in-plane or slice matrix size, and
slice thickness [7]. The field of view typically is 20 to 24 cm in order to include the whole
head in axial slices. Slices are either acquired sequentially or interleaved. In sequential
acquisition, first slice 1, then slice 2, etc., are acquired, where slice 1 is adjacent to
slice 2 and so on. In interleaved acquisition, for example first all odd and then all even
slices are acquired. Therefore, care has to be taken to assign the correct acquisition
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time to each slice, and the model that we are proposing can take slice acquisition order
into account. It is described for sequential, specifically, ascending slices, but can easily
be adapted to other acquisition schemes. It might be worth mentioning that we are
not pursuing a ”slice-time correction” [30], which is often performed in the analysis of
functional MRI data and consists of an interpolation of intensity values to an evenly
sampled time grid. Such a procedure is always of approximative nature and would not
sufficiently take into account the fast dynamics of for example travelling pulse waves.

3 Mathematical Model

Our goal is to estimate velocities of travelling waves in blood vessels from spatiotemporal
MRI data. As a first approximation, we will neglect any frequency-dependence of the
velocity, or dispersion, as well as reflected pulses travelling against the main blood flow
direction. The latter assumption means that the back flow amplitude is considered to
be much smaller than the forward flow amplitude.

Under those assumptions, the authors of [34]considered the following local model,
defined on small subdomains ΩS of the model domain Ω, e.g. 3×3×3 voxels in size. On
each subdomain, the dynamic MRI signal ρ(x, y, z, t) is assumed to fulfill the advection
equation

∂

∂t
ρ(x, y, z, t) + v̄ · ∇ρ(x, y, z, t) = 0 , (3.1)

where ∇ is the gradient with respect to the space variables (x, y, z) and v̄ = v̄(ΩS)
is a velocity assumed to be constant on each subdomain ΩS. Using finite difference
approximations of the derivatives of ρ, the authors of [34]used a multiple regression
approach to get estimates for the local velocities v̄. Although yielding maps of velocity
estimates that reflect main cerebral arteries, those estimates were not quantitative.
Furthermore, the local regression matrices used there were ill-conditioned for many of
the data points and additionally, the finite difference operators in z-direction used to
derive those matrices did not take into account the limited data due to the slice-time
acquisition procedure and therefore lead to crude approximations of the z-derivatives.

In this paper, we use an approach which is global in nature, retains the underlying
advection equation and gets rid of the numerical instabilities of the regression approach.
Following the physical arguments of [35], one can see that ρ is in essence assumed to
be a conserved quantity, for which there holds the following continuity equation

∂

∂t
ρ(x, y, z, t) + div (ρ(x, y, z, t) v(x, y, z)) = 0 , (3.2)

where v = v(x, y, z) is a constant-in-time velocity field now defined on the entire model
domain Ω. Assuming v to be divergence-free, i.e., div v = 0, which is reasonable since
we consider a basically incompressible carrier medium (blood), the product rule yields

∂

∂t
ρ(x, y, z, t) + v(x, y, z) · ∇ρ(x, y, z, t) = 0 , (3.3)
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which is again an advection equation, now defined on the entire model domain Ω. Given
measurements of ρ(x, y, z, t), we want to recover the global but now space dependent
velocity vector field v satisfying the above equation. This is an ill-posed problem, one
reason being that derivatives of ρ are taken in (3.3), which, as the data ρ is subject to
measurement errors, is an ill-posed procedure in itself.

Note that v is assumed to be independent of the time t. This assumption stems
from the fact that the pulse-wave velocity is primarily dependent on time independent
quantities such as vessel wall property parameters, see (2.1).

Note now that we are trying to reconstruct the vector valued quantity v from one
single scalar equation. Even worse, assuming that v is a solution of (3.3), every v + h,
where h satisfies h ·∇ρ = 0, is a solution as well. However, following again the physical
arguments of [34], velocities h satisfying h · ∇ρ = 0 are of no interest to us and are in
fact not detectable by our algorithm.

We could now consider the inverse problem in the continuous setting, first defining a
nonlinear operator mapping between suitable function spaces, then choosing a solution
method and finally discretizing. This approach turns out to be highly complicated,
as the solution theory of advection equations with non-Lipschitz velocity vector fields
is quite involved, see e.g., [6]. Most problematic is the fact that the Lax-Milgram
framework commonly used for PDEs is no longer applicable in that case, resulting in
solution concepts which are hard to handle.

Hence, we will use a first-discretize-then-regularize approach, which simplifies the
subsequent computations significantly. However, we will use one fact from the classical
theory, see [6], namely that v should be at least an H1, or locally H1 vector field.

4 Discretization

Motivated by the above considerations, we assume that as the pulse wave travels
through the brain, the dynamic MRI signal ρ = ρ(x, y, z, t) fulfills the advection equa-
tion, i.e.,

∂

∂t
ρ(x, y, z, t) +∇ρ(x, y, z, t) · v(x, y, z) = 0 , (x, y, z) ∈ Ω , t ∈ [0, T ] . (4.1)

where v = (v1, v2, v3) is a velocity vector field assumed to be independent of time t and
which is additionally assumed to be divergence-free, i.e., satisfies div v = 0.

It is the aim to estimate v from measurements of ρ. We assume (for simplicity)
that the brain domain Ω is a cuboid and that pointwise measurements are available
at certain points. Unfortunately (see Section 2.2), the time coordinate is linked to the
z-coordinate, i.e., measurements are available only at points

(xi, yj, zk, tk,l) , 0 ≤ i ≤ I, 0 ≤ j ≤ J, 0 ≤ k ≤ K, 0 ≤ l ≤ L, (4.2)

where

xi := x0 + i∆x , yj := y0 + j∆y , zk := z0 + k∆z , tk,l := (k + (K + 1)l)∆t .
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This corresponds to ascending slice acquisition and means that in each time step, only
one z-slice can be measured and that after a full cycle, the measurement process restarts.

In a next step, the equation (4.1) is discretized according to the data, which leads
to a space-time discretization, which we will see below. The derivative with respect to
t is approximated by a backwards differential quotient, the derivatives with respect to
x, y, z by central quotients in the interior and by forward or backward quotients at the
boundary. We then get the following discretized system of equations:

ρi,j,k,l − ρi,j,k,l−1

(K + 1)∆t
+Dxiρi,j,k,l v1,i,j,k +Dyjρi,j,k,l v2,i,j,k +Dzkρi,j,k,l v3,i,j,k = 0 , (4.3)

0 ≤ i ≤ I, 0 ≤ j ≤ J , 0 ≤ k ≤ K, and 1 ≤ l ≤ L. Here

ρi,j,k,l = ρ(xi, yj, zk, tk,l) and vs,i,j,k = vs(xi, yj, zk) , s = 1, 2, 3 .

We still have to define the differential quotients Dxi , Dyj , Dzk . One has to be very
careful with Dzk , since ρ does not exist at neighbouring z values at the same time
steps. Therefore, the appropriate values are then obtained by interpolation or even
extrapolation if l = L:

Dxiρi,j,k,l :=



ρi+1,j,k,l − ρi−1,j,k,l

2∆x
, 1 ≤ i ≤ I − 1

ρ1,j,k,l − ρ0,j,k,l

∆x
, i = 0

ρI,j,k,l − ρI−1,j,k,l

∆x
, i = I

(4.4)

Dyjρi,j,k,l :=



ρi,j+1,k,l − ρi,j−1,k,l

2∆y
, 1 ≤ j ≤ J − 1

ρi,1,k,l − ρi,0,k,l
∆y

, j = 0

ρi,J,k,l − ρi,J−1,k,l

∆y
, j = J

(4.5)
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Dzkρi,j,k,l :=



(1− r)(ρi,j,k+1,l − ρi,j,k−1,l+1) + r(ρi,j,k+1,l−1 − ρi,j,k−1,l)

2∆z
,

1 ≤ k ≤ K − 1, 1 ≤ l < L

(1− r)ρi,j,k+1,L − (1 + r)ρi,j,k−1,L + r(ρi,j,k+1,L−1 + ρi,j,k−1,L−1)

2∆z
,

1 ≤ k ≤ K − 1, l = L

(1− r)ρi,j,1,l + rρi,j,1,l−1 − ρi,j,0,l
∆z

,

k = 0, 1 ≤ l ≤ L

ρi,j,K,l − (1− r)ρi,j,K−1,l+1 − rρi,j,K−1,l

∆z
,

k = K, 1 ≤ l < L

ρi,j,K,L − (1 + r)ρi,j,K−1,L + rρi,j,K−1,L−1

∆z
,

k = K, l = L

(4.6)

r :=
1

K + 1

We want to write the equations (4.3) in matrix-vector form. For this, we first collect
all ρi,j,k,l values (l > 1) in the vector ~ρ and all ρi,j,k,l values (l = 0) in the vector ~ρ0,
where we use the lexicographic ordering with respect to (i, j, k, l) to sort the values
inside ~ρ and ~ρ0. The vector ~ρ then has length m := (I + 1)(J + 1)(K + 1)L and the
vector ~ρ0 has length n := (I + 1)(J + 1)(K + 1). If we define the indices

indmi,j,k,l := i(J + 1)(K + 1)L+ j(K + 1)L+ kL+ l ,

indni,j,k := i(J + 1)(K + 1) + j(K + 1) + k + 1 ,
(4.7)

then the relationship between ρi,j,k,l and ~ρ and ~ρ0 can be written precisely via

ρi,j,k,l = (~ρ) indmi,j,k,l
,

ρi,j,k,0 = (~ρ0) indni,j,k
.

(4.8)

Next, we collect all vs,i,j,k values in a vector ~v of length 3n, using again a lexicographic
ordering but now with respect to (s, i, j, k), which leads to the relation

vs,i,k,l = (~v) (s−1)n+indni,j,k
. (4.9)

We want to write (4.3) in the following matrix-vector form:

A(~v)~ρ = b(~v, ~ρ0) , (4.10)

where A(~v) is an m ×m matrix and b(~v, ~ρ0) is a vector of length m. This is possible,
since ρi,j,k,l appears only linearly in (4.3). In order to assemble the system matrix A(~v),

8



note first that (4.3) naturally divides into four parts, each part corresponding to the
differential quotient with respect to one of the variables t, x, y or z. Hence, the system
matrix A(~v) naturally splits up into four parts, i.e.,

A(~v) := At + Ax(~v) + Ay(~v) + Az(~v) , (4.11)

where At, Ax(~v), Ay(~v) and Az(~v) are m×m matrices corresponding to the differential
quotients. They can be assembled by looping over all possible values of (i, j, k, l) and
setting suitable values at the positions implicitly defined by the difference quotients.
For example, for the matrix Ax(~v), the assembly procedure looks as follows:

• Create an all-zero m×m matrix A.

• For i = 0, . . . , I, k = 0, . . . , K, j = 0, . . . , J and l = 1, . . . , L do:

Set ind := indmi,j,k,l and step := (J + 1)(K + 1)L.

If (i = 0) {
Aind,ind+step = ~vind/∆x,
Aind,ind = −~vind/∆x.

}
Elseif (i = I) {
Aind,ind = ~vind/∆x,
Aind,ind−step = −~vind/∆x.

}
Else {
Aind,ind+step = ~vind/(2∆x),
Aind,ind−step = −~vind/(2∆x).

}

• Set Ax(~v) := A.

For the matrices At, Ay(~v) and Az(~v), the assembly procedure looks similar, with
obvious modifications due to the respective definitions of Dyj , Dzk and the backwards
time difference quotient in (4.3).

From the assembly procedure above, one can see that Ax(~v) is a sparse matrix, with
only three diagonals being non-zero. Similarly, also the other three matrices are sparse,
with At having only 2 non-zero diagonals, Ay(~v) having 3 non-zero diagonals and Az(~v)
having 6 non-zero diagonals. Hence, the system matrix A(~v) is sparse as well, with (note
that all four matrices share the non-zero main diagonal) only 11 non-zero diagonals.

As for the right-hand side in (4.10), one could again loop over all indices (i, j, k, l)
to assemble it, or alternatively use the closed formula

b(~v, ~ρ0)indmi,j,k,l
:=


1

(K+1)∆t
(~ρ0)indni,j,k

− r
2∆z

(~ρ0)indni,j,k+1
(~v)2n+indni,j,k

l = 1 , 1 ≤ k < K ,
1

(K+1)∆t
(~ρ0)indni,j,k

− r
∆z

(~ρ0)indni,j,k+1
(~v)2n+indni,j,k

l = 1 , 1 ≤ k < K ,

0 else .

(4.12)
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The forward problem consists in calculating ~ρ for given ~v and given initial data ~ρ0,
via solving (4.10). Let us denote this solution by ρ(~v, ~ρ0).

Note that in order to guarantee unique solvability of (3.3), one usually prescribes
boundary conditions on ∂Ω. However, since for our problem sufficient boundary data
are not available, we used forward and backward differential quotients in the definition
of Dxi Dyj and Dzk at the boundary. It can easily be seen that this amounts to linear
extrapolation of ρ and is also the reason why (4.10) turns out to be solvable.

4.1 The Inverse Problem

Let us now turn to the inverse problem. It consist in calculating the velocity ~v and the
initial data ~ρ0 for given measurements of ~ρ and ~ρ0. Introducing the nonlinear operator

F (~v, ~ρ0) := (ρ(~v, ~ρ0), ~ρ0) ∈ Rm+n , (4.13)

our inverse problem can be written in the standard form

F (~v, ~ρ0) = (~ρ, ~ρ0) . (4.14)

The additional equation ρ0 = ρ0 in (4.14) seems to be superfluous at first. Note however,
that as a result of measurement errors, we are not really given ~ρ and ~ρ0, but only noisy
data ~ρ δ and ~ρ δ0 and hence, including this equation becomes necessary.

In order to solve (4.14), we will need the derivative and its adjoint of F . For this,
we consider F as an operator from X to Y , where

X = {(~v, ~ρ0) |~v ∈ (Rn)3 , ~ρ0 ∈ Rn} ,
Y = {(~ρ, ~ρ0) | ~ρ ∈ Rm , ~ρ0 ∈ Rn} .

(4.15)

We equip X and Y with the inner products

〈 (~v, ~ρ0), (~x, ~w0) 〉X := ~v TH~x+ ~ρT0 ~w0 ,

〈 (~ρ, ~ρ0), (~w, ~w0) 〉Y := ~ρT ~w + ~ρT0 ~w0 ,
(4.16)

where H is a positive definite 3n× 3n matrix chosen such that the inner product is an
approximation of the H1-inner product of functions v, see also Section 4.3.

Before we proceed with the derivation of the Frechet derivative and its adjoint, we
introduce the following notation: Whenever we have an arbitrary Frechet-differentiable
function G between suitable spaces A and B and we are given x ∈ A and ∆x ∈ A, then
we denote by G′(x)∆x the Frechet derivative of G at x in the direction of ∆x. This
notation will be used multiple times in the following:

Lemma 4.1. Let F : X → Y be given as in (4.13) and let (~v, ~ρ0) ∈ R3n+n and
(∆~v,∆~ρ0) ∈ R3n+n. Then for the Frechet derivative of F there holds

F ′(~v, ~ρ0)(∆~v,∆~ρ0) = (ρ′(~v, ~ρ0)(∆~v,∆~ρ0),∆~ρ0) , (4.17)
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where ρ′(~v, ~ρ0)(∆~v,∆~ρ0), the Frechet derivative of ρ, is given as the solution of

A(~v)[ρ′(~v, ~ρ0)(∆~v,∆~ρ0)] = −(A′(~v)∆~v)ρ(~v, ~ρ0) + b′(~v, ~ρ0)(∆~v,∆~ρ0) , (4.18)

where A′ and b′ are the Frechet derivatives of A and b, respectively, and therefore
A′(~v)∆~v ∈ Rm×m and b′(~v, ~ρ0) ∈ Rm×(3n+n).

Proof. First, note that (4.17) follows immediately from the definition of the Frechet
derivative. Now, from equation (4.10), we know that

A(~v)ρ(~v, ~ρ0) = b(~v, ~ρ0) . (4.19)

Applying the Frechet-derivative at the point (~v, ~ρ0) in the direction of (∆~v,∆~ρ0) to this
equation and using the chain rule yields

(A′(v)∆~v)ρ(~v, ~ρ0) + A(~v)[ρ′(~v, ~ρ0)(∆~v,∆~ρ0)] = b′(~v, ~ρ0)(∆~v,∆~ρ0) , (4.20)

from which the statement of the lemma now immediately follows.

It follows from (4.17)) and (4.18) that in order to calculate F ′(~v, ~ρ0)(∆~v,∆~ρ0), a
linear system of equations involving the vectors (A′(v)∆~v)ρ(~v, ~ρ0) and b′(~v, ~ρ0)(∆~v,∆~ρ0)
needs to be solved. It is possible to calculate those vectors without assembling the
matrices (A′(v)∆~v) and b′(~v, ~ρ0). However, as we will see in the lemma below, the
assembly of three specific matrices will be inevitable for calculating the adjoint of the
derivative of F , and those matrices can then also be used to compute the two required
vectors.

To arrive at these matrices, note first that it follows from the assembly procedure
described above that Ax(~v), Ay(~v) and Az(~v) depend only linearly on ~v. Together with
(4.11) and the definition of the Frechet derivative, it follows that

A′(~v)∆~v = Ax(∆~v) + Ay(∆~v) + Az(∆~v) , (4.21)

and hence A′(~v)∆~v is not only linear in ∆~v but also independent of ~v. As a result, it
is possible to find a matrix DA(ρ) ∈ Rm×3n such that

(A′(~v)∆~v)ρ(~v, ~ρ0) = DA(ρ(~v, ~ρ0))∆~v . (4.22)

As for the other two matrices, note that once one has assembled b′(~w, ~ρ0), which can
be calculated easily using (4.12), this matrix can be split up into two sub-matrices, i.e.,

b′(~w, ~ρ0) =
(
b′∆~v(~w, ~ρ0) | b′∆~ρ0(~w, ~ρ0)

)
, (4.23)

where b′∆~v(~w, ~ρ0) ∈ Rm×3n and b′∆~ρ0(~w, ~ρ0) ∈ Rm×n are the derivatives corresponding to
∆~v and ∆~ρ0, respectively.

Thanks to the special structure of A(~v) and b(~v, ~ρ0), when following the above
derivation steps in detail, one finds out that most of the elements of the matrices

DA(ρ) and b′(~v, ~ρ0) (4.24)

are zero, with at most three non-zero elements in each row in both cases.
Using the above derivations, we can now prove the following
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Lemma 4.2. Let F : X → Y be given as in (4.13) and let (~v, ~ρ0) ∈ R3n+n and
(~w, ~w0) ∈ Rm+n. Then for the adjoint of the Frechet derivative of F there holds

F ′(~v, ~ρ0)∗(~w, ~w0) :=

(
H−1

(
−DA(ρ(~v, ~ρ0))T + b′∆~v(~v, ~ρ0)T

)
A(~v)−T ~w

b′∆~ρ0(~v, ~ρ0)TA(~v)−T ~w + ~w0

)
. (4.25)

Proof. To compute the adjoint, consider first

〈F ′(~v, ~ρ0)(∆~v,∆~ρ0), (~w, ~w0) 〉Y =

=
〈

(−A(~v)−1DA(ρ(~v, ~ρ0))∆v + A(~v)−1b′(~v, ~ρ0)(∆~v,∆~ρ0),∆~ρ0), (~w, ~w0)
〉
Y

=
(
−A(~v)−1DA(ρ(~v, ~ρ0))∆v

)T
~w +

(
A(~v)−1b′(~v, ~ρ0)(∆~v,∆~ρ0)

)T
~w + ∆~ρT0 ~w0

= −∆~vTDA(ρ(~v, ~ρ0))TA(~v)−T ~w + (∆~v,∆~ρ0)T b′(~v, ~ρ0)TA(~v)−T ~w + ∆~ρT0 ~w0

Splitting up b′(~w, ~ρ0) as in (4.23), we get

〈F ′(~v, ~ρ0)(∆~v,∆~ρ0), (~w, ~w0) 〉Y = ∆~ρT0 b
′
∆~ρ0

(~v, ~ρ0)TA(~v)−T ~w + ∆~ρT0 ~w0

+ ∆~v T
(
−DA(ρ(~v, ~ρ0))T + b′∆~v(~v, ~ρ0)T

)
A(~v)−T ~w

and hence, using the definition of the inner product in X , the statement follows.

4.2 Incorporating the Divergence-Free Condition

Up to now, the divergence-free condition div v = 0 on the velocity field to be recon-
structed did not enter the reconstruction method. However, it is a modelling assumption
and has to be taken care of.

One possible way to do so would be to incorporate the condition into the space X ,
i.e., allowing only divergence-free vector fields in X . This approach essentially, except
at the boundary, implies v3 = v3(v1, v2). This changes the derivative and its adjoint of
F in a computationally unfavourable way and hence we avoid this approach.

Instead, we enforce the divergence-free condition in a weak way, by changing F to

F (~v, ~ρ0) := (ρ(~v, ~ρ0), ~ρ0, D~v) , (4.26)

where D is a matrix representing the divergence-free condition. The operator F now
maps from X to Y with X as before and

Y = {(~ρ, ~ρ0, ~w) | ~ρ ∈ Rm , ~ρ0 ∈ Rn , ~w ∈ Rn} , (4.27)

where we use the following inner product

〈 (~ρ, ~ρ0, ~vd), (~w, ~w0, ~wd) 〉Y = ~ρT ~w + ~ρT0 ~w0 + ~v Td ~wd . (4.28)

The resulting nonlinear inverse problem now reads as

F (~v, ~ρ0) = (ρ, ρ0,~0) . (4.29)
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An analogous calculation as before yields that the Frechet derivative of F is given by

F ′(~v, ~ρ0)(∆~v,∆~ρ0) = (ρ′(~v, ~ρ0),∆~ρ0, D∆~v) , (4.30)

and that the adjoint is given by

F ′(~v, ~ρ0)∗(~w, ~w0, ~wd) =

(
H−1

[(
−DA(ρ(~v, ~ρ0))T + b′∆~v(~v, ~ρ0)T

)
A(~v)−T ~w +DT ~wd

]
b′∆~ρ0(~v, ~ρ0)TA(~v)−T ~w + ~w0

)
.

As for the choice of the matrix D, notice that since, due to the Divergence Theorem,

div v(x, y, z) = lim
|V |→0

1

|V |

∫
∂V

v dS(x, y, z) , (4.31)

we may approximate the divergence in Ωi,j,k := [xi−1, xi]× [yj−1, yj]× [zk−1, zk] by the
integral above with V = Ωi,j,k. Assuming that each component of v is piecewise linear
(tri-linear), divergence-free then means

D1v1,i,j,k +D2v2,i,j,k +D3v3,i,j,k = 0 , (4.32)

where 1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K, and

D1v1,i,j,k :=
1

4∆x
(v1,i,j−1,k−1 − v1,i−1,j−1,k−1 + v1,i,j−1,k − v1,i−1,j−1,k (4.33)

+ v1,i,j,k−1 − v1,i−1,j,k−1 + v1,i,j,k − v1,i−1,j,k) ,

D2v2,i,j,k :=
1

4∆y
(v2,i−1,j,k−1 − v2,i−1,j−1,k−1 + v2,i−1,j,k − v2,i−1,j−1,k (4.34)

+ v2,i,j,k−1 − v2,i,j−1,k−1 + v2,i,j,k − v2,i,j−1,k) ,

D3v3,i,j,k :=
1

4∆z
(v3,i−1,j−1,k − v3,i−1,j−1,k−1 + v3,i−1,j,k − v3,i−1,j,k−1 (4.35)

+ v3,i,j−1,k − v3,i,j−1,k−1 + v3,i,j,k − v3,i,j,k−1) .

The (sparse!) matrix D is now built such that D~v = 0 is equivalent to (4.32).
Whenever we speak of the weak divergence-free option in subsequent chapters, we

mean that we use F defined as in (4.26). As it will turn out in our numerical tests
below, using this option has a significant effect on the reconstructed solutions.

4.3 Choosing the matrix H

We now turn to the choice of the matrix H in the inner product of X . From the theory
of transport equations (see e.g. [6]), we know that v should be at least an H1 velocity
field. Assuming as above that each component of v is piecewise linear and can hence
be written in the form

v(x, y, z) =
∑
i,j,k

v1,i,j,k

v2,i,j,k

v3,i,j,k

ψi,j,k(x, y, z) , (4.36)
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where the ψi,j,k are the 3D hat functions commonly used to form a basis in H1-FEM,
we find that the optimal choice of H in this case would be,

H = cs diag(H̃, H̃, H̃) , H̃ = [〈ψi,j,k, ψl,m,n 〉H1 ] . (4.37)

where cs is a suitable scaling constant. As can easily be seen, H̃ is the FEM system
matrix of the equation −∆u + u = f . However, in the computation of the adjoint of
F we need to apply H−1, or equivalently three times H̃−1, which amounts to solving
three perturbed Laplace equations in each iteration step. This is way too costly and
hence we need to find a suitable alternative for inverting the matrix H.

One possibility is to approximate H̃ by its diagonal part, which leads to a diagonal
matrix H that is easy to assemble and to invert, i.e.,

H = cs diag(H̃, H̃, H̃) , H̃ = diag(〈ψi,j,k, ψi,j,k 〉H1) . (4.38)

The scaling constant cs is chosen such that the two terms on the right hand side of
(4.16) are balanced and that the H1 and the L2 norm approximations of constant
vectors coincide, which leads to the choice

cs = 3n

(
3n∑
i=1

Hii

)−1

. (4.39)

Another, more sophisticated possibility is to use an orthogonal system ψi,j,k, e.g.,
wavelets, since then the matrix H̃ becomes diagonal. One can see that applying H̃−1

coincides with applying the operator i∗1, where i1 : H1 → L2 is the embedding operator.
For a given wavelet system {φ, ψ}, every function f ∈ L2 can be expanded as

f =
∑
k∈Z

〈 f, φ0k 〉φ0k +
∞∑
j=0

∑
k∈Z

〈 f, ψjk 〉ψjk , (4.40)

where φ0k = φ(t − k) and ψjk(t) = 2j/2ψ(2jt− k). If the wavelet system is sufficiently
smooth, then for every Sobolev space, the Hs inner product of two functions f and g
is equivalent to

〈 f, g 〉Hs =
∑
k∈Z

〈 f, φ0k 〉 〈 g, φ0k 〉+
∞∑
j=0

22js
∑
k∈Z

〈 f, ψjk 〉 〈 g, φjk 〉 . (4.41)

Following [27], we see that the adjoint i∗s of the embedding is : Hs → L2 is given by

i∗sg =
∑
k∈Z

〈 g, φ0k 〉φ0k +
∞∑
j=0

∑
k∈Z

〈 g, ψjk 〉
22js

ψjk . (4.42)

Using this, we can, instead of applying H̃−1 to the components of ~v, compute their
discrete wavelet transforms, weight the resulting coefficients according to (4.42) and
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then apply the inverse discrete wavelet transforms. The computation of ~v TH ~w in
(4.16) is then replaced by using a scaled version of (4.41), using again the discrete
wavelet transform. Thus, whenever we speak of using the wavelet embedding option in
subsequent chapter, we mean that this procedure is being used.

Note that for the results presented below, due to the low spatial resolution, using
the wavelet embedding option with s = 1 in (4.41) and (4.42) leads to an undesirably
high amount of smoothing and subsequently to mediocre results. Using a smaller s and
hence less smoothing yields much better results and therefore, the choice s = 0.1 was
used in all computations below. As for the choice of wavelets, Daubechies 3 wavelets
(see [5]) were used in all cases.

Both approximations of H−1, using only the diagonal entries of H and via the
wavelet embedding are very fast (diagonal matrix inversion and O(n) wavelet decom-
position). The use of wavelets has the additional advantage that it yields a very good
approximation of the application of H−1, as compared to using the diagonal approxi-
mation, which in essence only amounts to a scaling of the steps in the iterative solution
method introduced below.

5 Regularization Approach

The stable solution of ill posed (nonlinear) equations F (x) = y requires the use of
regularization methods, see [10] for an overview of methods. Tikhonov regularization is
probably the best known method. For nonlinear operators F , Tikhonov regularization
results in the minimization of a functional consisting of a data fit term and a penalty
term. Besides this, there exists a wide array of gradient based iterative methods such
as Landweber iteration or the iteratively regularized Gauß-Newton method (see [16]).
Even though Gauß-Newton and other sophisticated methods are considered to be much
faster than Landweber iteration, they face a serious drawback when confronted with
largescale problems, since in every iteration step, a system of equations with a full
system matrix has to be solved. Hence, since in our MRAI problems we often deal with
more than one million unknowns, we resort to the Landweber iteration, which is given
by (see [10])

xδk+1 = xδk + ω F ′(xδk)
∗(yδ − F (xδk)) , xδ0 = x0 , (5.1)

where x0 is a suitable initial guess and ω is a scaling parameter which has to satisfy

ω ‖F ′(x)‖ < 1 , (5.2)

for all x in a sufficiently large neighbourhood around the initial guess x0. The super-
script δ in (5.1) indicates that we are only given noisy data yδ instead of y. The most
common assumption on the data is that∥∥y − yδ∥∥ ≤ δ . (5.3)

Since we are dealing with an ill-posed problem, a suitable stopping rule is needed
in order to achieve reasonable approximations of the solution. Typically, one uses the
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discrepancy principle, i.e., the iteration is stopped after k∗ steps, where k∗ is the smallest
index fulfilling ∥∥yδ − F (xδk∗)

∥∥ ≤ τδ ≤
∥∥yδ − F (xδk)

∥∥ , 0 ≤ k ≤ k∗ , (5.4)

where τ is an appropriately chosen positive number.
Determining an appropriate ω in (5.1) is very important but difficult. Hence we use

an iteration dependent scaling parameter ωδ(z) defined by:

ωδ(z) :=

∥∥sδ(z)
∥∥2

‖F ′(z)sδ(z)‖2 , sδ(z) := F ′(z)∗(yδ − F (z)) , (5.5)

which leads to

xδk+1 = xδk + ωδ(xδk)F
′(xδk)

∗(yδ − F (xδk)) , xδ0 = x0 , (5.6)

the so-called steepest descent method. For details, see for example [16, Chapter 3.4].
As is well known, both the Landweber iteration and the steepest descent method

converge rather slowly. Hence, in order to reduce the number of required iterations,
we follow the idea of Nesterov’s acceleration scheme [24] and introduce an intermediate
step into our iteration, which now reads as follows:

zδk = xδk + k−1
k+2

(
xδk − xδk−1

)
,

xδk+1 = zδk + ωδ(zδk)F
′(zδk)

∗(yδ − F (zδk)) ,

xδ0 = xδ−1 = x0 .

(5.7)

A similar intermediate step was also used in the highly successful FISTA algorithm
for linear inverse problems [3], where additionally the convergence rate O(k−2) was
proven; a big improvement over the classical rate O(k−1). Although the authors are
not aware of any publication proving the convergence rate O(k−2) for our method (5.7),
numerical tests showed that using (5.7) instead of (5.6) leads to a significant decrease
in iteration number, even for our nonlinear problem (4.14). This is remarkable, since
the intermediate steps zδk are simply linear combinations of previous iterations and are
therefore very cheap to compute.

5.1 Implementation Details

The implementation of (5.7) seems very straightforward at first, since we have explicit
expressions for F ′ and its adjoint available. However, even though we will be dealing
with a rather coarse space discretization, since we are essentially using a space-time
approach with three space dimensions, the problem becomes largescale, with around
3.3 million unknowns for one of the real-world data sets considered below. This causes
severe numerical difficulties.

Please note that for the calculation of one iteration step it is necessary to solve
three large sparse linear systems of equations, one for calculating F , one for F ′ and one
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for ωδ. Since, due to the size of the problem, this can no longer be done directly, the
iterative solver biCGstab with an incomplete LU factorization preconditioner was used.

The implementation of the method was done in MATLAB R2015b. Since some built-
in MATLAB functions were too slow for our purposes, we had to rely on fsparse.m, a
function for creating sparse matrices, see [9].

5.2 Enforcing Sparse Solutions

The relevant blood vessels in which the pulse waves travel constitute only a minor part
of the brain. Hence, the velocity vector field v which we seek to reconstruct should take
nonzero values in those blood vessels only.

In mathematical terms this means that v should be compactly supported and should
have a sparse representation in the basis ψi,j,k. The reconstruction algorithm should
take this into account, which leads directly to the concept of sparsity regularization.

Following [28] and [20], we seek to compute (~v, ~ρ0) as a minimizer of the functional

1

2

∥∥F (~v, ~ρ0)− (~ρ δ, ~ρ δ0 )
∥∥2

Y + α

(
3∑
l=1

∑
i,j,k

ω~vli,j,k |vl,i,j,k|
p +

∑
i,j,k

ω~ρ0i,j,k |ρi,j,k,0|
p

)
,

where ω~vli,j,k and ω~ρ0i,j,k are positive weights bounded away from zero, α is a regularization
parameter and p ∈ [1, 2]. The choice p = 1 yields sparse minimizers, while 1 < p < 2 is
suspected to promote sparsity.

For further use below, and for 1 ≤ p < ∞ and τ > 0, we define the real valued
shrinkage function Sτ,p : R→ R via

Sτ,p(x) =

{
sgn (x) max(|x| − τ, 0) p = 1 ,

G−1
τ,p(x) p ∈ (1, 2] ,

(5.8)

where
Gτ,p(x) = x+ τsgn (x) |x|p−1 . (5.9)

For a vector ~x = {xk}k∈Λ and weights ω = {ωk}k∈Λ we define the shrinkage function
Sω,p via

Sω,p(~x) := [Sωk,p(xk)]k∈Λ . (5.10)

Following [20], a possible method for solving nonlinear inverse problems F (x) = yδ

involving sparsity constraints is given by the so-called iterated soft shrinkage algorithm,
which reads as

xδk+1 = Sωkαω,p
(
xδk + ωkF

′(xδk)
∗(yδ − F (xδk))

)
, xδ0 = x0 . (5.11)

For our problem we combine this approach with the accelerated gradient method (5.7)
to arrive, after collecting the ω~vl and ω~ρ0 into a single sequence ωs, at the following
iterative scheme:

(~w δ
k , ~w

δ
0,k) = (~v δk , ~ρ

δ
0,k) + k−1

k+2

(
(~v δk , ~ρ

δ
0,k)− (~v δk−1, ~ρ

δ
0,k−1)

)
,

ωδk = ωδ((~w δ
k , ~w

δ
0,k)) ,

(~v δk+1, ~ρ
δ
0,k+1) = Sωδkαωs,p

(
(~w δ

k , ~w
δ
0,k) + ωδk F

′(~w δ
k , ~w

δ
0,k)
∗((~ρ δ, ~ρ δ0 )− F (~w δ

k , ~w
δ
0,k))

)
.
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Note that for this algorithm, values for α, ωs and p need to be specified. Moreover,
if p > 1, 4n nonlinear equations need to be solved for approximating G−1

τ,p. This is very
costly, hence we use p = 1 only. Furthermore, since we want to weight all vl,i,j,k and
ρi,j,k equally, ωs was set to 1 for the numerical examples presented below.

Obviously, the above algorithm can also, with minor modifications, be applied to
the case when F contains the divergence-free part as introduced in Section 4.2.

6 Results

In this section, we present several results obtained by using the method described above
on simulated and real-world data. We compare different choices of parameters and
the effects of the sparsity and the weak divergence-free option as well as the different
approximations of H described in Section 4.3.

For all examples, a maximum intensity projection (MIP) over the z-axis of the
norm of the velocity vector field was calculated. Afterwards, a colour direction MIP
was created by assigning a RGB value to every pixel of the MIP. This was done by
first considering, for every pixel of the MIP, that voxel whose velocity norm value was
responsible for the entry of the MIP at that pixel. The absolute values of the ~v1, ~v2 and
~v3 values of that voxel were then taken as the red, green and blue values of the RGB
triplet at that pixel, respectively. This means that a red pixel in the colour direction
MIP indicates movement along the x-axis, a green pixel along the y-axis and a blue
pixel along the z-axis. Finally, all RGB values were divided by the maximum absolute
RGB value of the colour direction MIP and the resulting map was divided by a factor
of 0.6 in order to enhance colours.

6.1 Simulated Data

In this subsection, we test our algorithm on simulated data. For this purpose, a phantom
of size 40 × 30 × 30 was created, featuring several blood vessels, i.e. pipes, of variable
thickness and orientation. A projection of this phantom over the z-axis can be seen
in Figure 6.1, which not only shows the vessels themselves but also the norm of the
velocity vector field (left figure) and the a colour direction MIP of the velocity (right
figure) moving through the vessels.

Looking at the colour direction MIP in Figure 6.1, the three red horizontal vessels
on the bottom of the phantom move along the x-axis and have a thickness of 1, 2 and
3 voxels, respectively. The three blue vessels above them move along the z-axis, and
hence only a small part of them can be seen in the picture. Note that one of those
vessels has a plus-shaped cross-section, which is also the case for the bottommost of the
three red blood vessels. The three orange-red blood vessels move diagonally across the
x-y-plane and have a z-thickness of 1 voxel each. Both the orange and the red vessels
lie in the middle of the z-plane, while the blue vessels extend over the entire range of
the z-axis.

As for the simulation of the data ρi,j,k,l, consider first the case of a signal ρ0(x, y, z)
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Figure 6.1: Simulation phantom: Magnitude of the norm of the velocity vector field
(left figure) and colour direction MIP of the velocity (right figure).

transported via a constant velocity field v̄ = (v̄1, v̄2, v̄3). It can be easily seen that in
this case

ρ(x, y, z, t) = ρ0(x− v̄1t, y − v̄2t, z − v̄3t) , (6.1)

solves the advection equation with initial guess ρ0. If in each vessel we prescribe a
constant velocity vector field pointing in one of the two directions of the vessel, then for
a given initial signal ρ0 we can calculate the solution of the advection equation in that
vessel via (6.1). Summing up those solutions for all the different vessels and sampling
at the correct space-time points then gives us the data ρi,j,k,l. Adding a random data
error of fixed magnitude, e.g., 1%, we arrive at the final data used in the simulation.

In our simulation, for a vessel with given velocity v̄, we used the initial signal

ρ0(x, y, z) = sin

(
6π

‖v̄‖2

(
v̄1

I∆x
x+

v̄2

J∆y
y +

v̄3

K∆z
z

))
.

To make the simulation procedure a bit clearer, consider the bottommost vessel in
Figure 6.1. Prescribing for example the velocity v̄ = (c, 0, 0) in that vessel leads to

ρ(x, y, z, t) = sin

(
6π(x− c t)

I∆x

)
, (6.2)

and the data ρi,j,k,l, for those (i, j, k) for which (xi, yj, zk) belongs to the vessel under
consideration, is then defined via

ρi,j,k,l = ρ(xi, yj, zk, tk,l) = sin

(
6π(xi − c tk,l)

I∆x

)
. (6.3)

We apply the same procedure to all the remaining vessels and set ρi,j,k,l to 0 whenever
(i, j, k) does not correspond to any vessel. Finally, a randomly generated data error of
magnitude delta is added.

Note that the velocity vector field v underlying this data simulation is constant in
each vessel and hence locally, but not globally, in H1. Even though we have derived our
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solution method from the assumption of a globally H1 velocity vector field, using this
simulation makes sense, since for real MRI data we also expect nonzero velocities to oc-
cur inside blood vessels only, which renders the velocity vector field to be reconstructed
only locally H1 as well.

For the results presented below, we have chosen ∆x = ∆y = ∆z = 1 mm and, as
mentioned above, I = 39, J = 29, K = 29 for the space discretization, as well as L = 4.
As for the time discretization ∆t, notice that our forward solver belongs to the class of
BTCS (backward in time, central in space) finite difference methods, which are implicit
methods requiring no restriction on the time stepsize ∆t to achieve stability. However,
in order to get good accuracy of the forward solver, ∆t should be chosen small enough.
Denoting with ∆T the duration of a full measurement circle, i.e., ∆T = (K + 1)∆t, it
turned out that a suitable bound is given by the CFL-type condition

∆T ‖v‖2 .
∆x

10
. (6.4)

Using a ∆T significantly greater than this bound was found to lead to large errors in the
reconstructed velocity (see Figure 6.5). Hence, for our tests below, we used ∆T = 0.1 s,
which by (6.4) allows for velocities with a maximum norm of 1 mm/s.

Figure 6.2: Magnitudes of the velocity vector field components. Left: First component.
Middle: Second component. Right: Third component.

For our simulations, we have used velocities v̄ with three different magnitudes ‖v̄‖2,
which can be seen in Figure 6.1. The orientation of these velocity vector fields is depicted
in more detail in Figure 6.2, which shows the values of the three velocity components,
revealing also the different orientations of the simulated pulse waves.

For all tests below, a random data error of magnitude δ was added and the iteration
was stopped using the discrepancy principle (5.4) together with the choice of τ = 1.
Furthermore, if not noted otherwise, the matrix H introduced in Section 4.3 is used
instead of the wavelet embedding described in the same chapter.

As a first test, we use our method without any special options, i.e., neither using
the weak divergence-free option, nor the sparsity or the wavelet embedding option. The
resulting approximation, achieved after 90 iterations, can be seen in Figure 6.3. The
structure of the vessels can clearly be identified and also the reconstructed velocity is
partially correct. However, the sinusoidal structure of the initial signal ρ0 is visibly
transferred to the reconstructed velocity.

Figure 6.4 shows the results of the second test: the weak-divergence free option was
included in the reconstruction algorithm, which now stopped after 126 iterations. The

20



Figure 6.3: Result of the algorithm applied to the test problem (δ = 1%), using no
additional options. Velocity norm MIP (left) and colour direction MIP (right).

Figure 6.4: Result of the algorithm applied to the test problem (δ = 1%), using the
weak divergence-free option. Velocity norm MIP (left) and colour direction MIP (right).

reconstructed velocity is much smoother than before, now resembling the true solution
much more closely. However, as could be expected, using the weak divergence-free cal-
culation option leads to a smoothing of the solution, clearly visible in the reconstruction
around the vessels.

Next, we want to see what happens if (6.4) is no longer satisfied. For this, we use
the same problem setup as before, but now multiply the velocities in all the vessels
with the factor 10, such that the norm of the velocity vector has a maximum value
of ‖v‖2 = 10. The results of the algorithm applied to this problem can be seen in
Figure 6.5, the iteration having stopped after 194 iterations due to a detected increase
of the residual. One can clearly see that the velocities are strongly underestimated,
although the location of the vessels, the directions of the pulse waves and also some small
qualitative differences in the norm of the velocity vector field are still detectable. Note
that one could think of ignoring the increase in residual and continuing the iteration.
This, however, does not lead to improved results, the algorithm simply not being able
to improve the reconstruction any further.

For the next and all the subsequent tests, we return again to the original simulated
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Figure 6.5: Result of the algorithm applied to the modified problem (δ = 1%), where
all involved velocities were multiplied by the factor 10, using the weak divergence-free
option. Velocity norm MIP (left) and colour direction MIP (right).

Figure 6.6: Result of the algorithm applied to the test problem (δ = 1%), using the
wavelet embedding option. Velocity norm MIP (left) and colour direction MIP (right).

data, this time applying the algorithm together with the wavelet embedding option.
The stopping criterion was met after 121 iterations and the results can be seen in
Figure 6.6. A comparison with Figure 6.3 shows that using this option mainly leads to
a smoothing of the reconstructed velocity, comparable to but not as strong as using the
weak divergence-free option.

The results of combining the weak-divergence free and the wavelet embedding op-
tions can be seen in Figure 6.7. This time, the iteration terminated after 162 iterations
and once again one can see the strong smoothing effects of the two calculation options.
As we will later see in Table 6.1, of all the combinations of different reconstruction
options, this one yields the third best result.

Lastly, we want to present some results of using the sparsity option, together with
either the divergence-free or the wavelet embedding option. For this, we need to choose
an α, see (5.2). A good choice turns out to be α = 10−3, which was used for computing
all presented results. Figures 6.8, 6.9, 6.10 and 6.11 show the results of the different
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Figure 6.7: Result of the algorithm applied to the test problem (δ = 1%), using the
weak divergence-free and the wavelet embedding option. Velocity norm MIP (left) and
colour direction MIP (right).

Figure 6.8: Result of the algorithm applied to the test problem (δ = 1%), using the
sparsity option with α = 10−3. Velocity norm MIP (left) and colour direction MIP
(right).

combinations, the iteration stopping after 71, 100, 99 and 138 steps, respectively. Note
that all iterations involving the sparsity option were terminated before satisfying the
discrepancy principle, since the residual stopped decreasing monotonously but rather
started to oscillate around a certain value.

Comparing Figure 6.6 and Figure 6.9, we see that the edges are now more sharply
reconstructed, although the result itself does not look much better then when using no
additional options at all. This also holds true for only using the sparsity option alone,
see Figure 6.8. However, Figure 6.10 strongly shows the advantages of combining the
divergence-free and the sparsity options. The initial signal ρ0 only slightly affects the
reconstructed solution and the sparsity option removes some of the smearing introduced
by the divergence-free option, producing very nice results. Even better results are
obtained when combining all three calculation options, which can be seen Figure 6.11,
most notably at the plus shaped vessel in the centre of the figure and at the diagonal
vessels, especially at the middle one of the three, which, despite the crude discretization
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Figure 6.9: Result of the algorithm applied to the test problem (δ = 1%), using the
wavelet embedding and the sparsity option with α = 10−3. Velocity norm MIP (left)
and colour direction MIP (right).

Figure 6.10: Result of the algorithm applied to the test problem (δ = 1%), using the
divergence-free and the sparsity option with α = 10−3. Velocity norm MIP and colour
direction MIP.

and the smoothing introduced by the divergence-free and the wavelet embedding option,
is reconstructed rather nicely.

To conclude this section, in Table 6.1 we have collected some important information
about the results presented above. The first three columns contain information about
the used calculation options, the fourth column contains the iteration index k∗ at which
the algorithm was terminated and in the fifth column, the error between approximated
and true solution (denoted by (~v †, ~ρ †0 )) is given. Here we have used the standard
Euclidean `2-norm for measuring the error, in order to allow for a fair comparison
between those results which were achieved using the wavelet embedding option and the
ones not using it. Once again it can be seen that the best results are obtained using all
three calculation options in the reconstruction algorithm.
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Figure 6.11: Result of the algorithm applied to the test problem (δ = 1%), using the
divergence-free, the wavelet embedding and the sparsity option with α = 10−3. Velocity
norm MIP and colour direction MIP.

div-free wavelets sparsity k∗

∥∥∥(~v δk∗ , ~ρ
δ
0,k∗

)− (~v †, ~ρ †0 )
∥∥∥
`2

Figure 6.3 no no no 90 16.9658
Figure 6.4 yes no no 126 9.2904
Figure 6.6 no yes no 121 16.4324
Figure 6.7 yes yes no 162 8.8878
Figure 6.8 no no yes 71 17.179
Figure 6.9 no yes yes 100 16.7834
Figure 6.10 yes no yes 99 5.6577
Figure 6.11 yes yes yes 138 5.5245

Table 6.1: Comparison of the results of the reconstruction algorithm applied to the test
problem (δ = 1%), achieved using combinations of the different computation options.

6.2 Natural Stimulation Data Set

In this subsection, we test the applicability of our algorithm to real-world data sets. For
this, we use a publicly available natural stimulation dynamic EPI data set obtained on
a 7.0 T MRI scanner [12]. Subjects were listening to an audio version of a movie. The
data set includes eight 15 minutes long segments for each subject, of which the first 20
seconds of the second one were used for analysis. The transversal slices covered most
of the frontal and occipital cortex and the regions in between. Data was sampled with
a pulse repetition time (TR) of 2 s and an isotropic spatial resolution of 1.4 mm. The
data set also contains time-of-flight angiography images of about the same coverage as
the EPI data, as well as pulse oximetry data.

We want to apply our algorithm to different subjects of this data set, for which
Voss et al. have already tried to reconstruct the pulse wave velocity using their multiple
regression approach [34]. In order to do so, we need to adapt our stopping rule, since
the discrepancy principle defined in (5.4) relies essentially on knowledge of δ, which, as
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is usually the case in real-world situations, is not given explicitly. However, an estimate
of the data error can be made by looking at the background voxels, i.e., those voxels
which are known to lie outside the brain and which therefore should have value 0 if
no noise were present. The corresponding calculations suggest that for our data set,
the relative data error is approximately 2 - 3 %. This estimate, combined with the
discrepancy principle and a check for monotonous decrease of the residual suggests to
stop the iteration after 15 - 25 iterations.

The upper two figures of Figure 6.12 show the results of applying our algorithm
with the above described changes to subject 16 of the real world data set. Here we
used the divergence free, the wavelet embedding and the sparsity option, this time with
α = 104 and the computation was stopped after 20 iterations. As before, the upper
left image shows the velocity norm MIP over the z-axis and the upper right image the
colour direction MIP of the reconstructed velocity ~v. One can clearly see the location
of the major blood vessels and arteries, as well as their orientation, even though the
expected PWV is severely underestimated (see below). The norm of the velocity vector
field has maximum 0.1495, mean µ = 0.0011 and standard deviation σ = 0.0034. In
order to generate the figure, a slight scaling was introduced, cutting all values in the
MIP which are above µ+5σ. The colour direction MIP was slightly brightened in order
to enhance visibility.

For comparison of our proposed and the previously used method, the lower two
figures of Figure 6.12 depict the results of the multiple regression approach, applied to
the same subject 16 of the data set, using a 0.05 Hz cut-off filtering preprocessing step
and all 15 minutes of the second segment of the data set. Again, a µ+ 5σ scaling and a
slight brightening of the colour direction MIP were used for better visibility. One can
see that while the previously used algorithm mainly yields estimates of the PWV in the
main arteries and blood vessels, our new algorithm is able to resolve finer structures as
well, using only a fraction of the data. Note that the previously used algorithm applied
to 20 seconds of data would yield a result hardly distinguishable from white noise.

For certain subjects of the data set, the regression approach of [34] yields very
unsatisfactory results. This appears to be due to the heart rate of the subjects having
an unfavourable frequency and the data error being higher in those cases. The results
of the regression approach and our proposed algorithm applied to one of those subjects,
subject 2 of the data set, can be seen in Figure 6.13. The differences are quite obvious
and can be attributed to two main reasons. Firstly, our algorithm works with much
less data then the regression approach and secondly, by stopping the iteration after a
certain amount of steps, we get a regularizing effect. Consequently, the effects of data
error can partly be compensated and therefore, better reconstructions are obtained.

Please also note, that the calculated velocities using the real-world data set, which
are around 10−5 m/s, differ by orders of magnitude from the expected pulse wave ve-
locity, which can exceed 10 m/s. One reason for this is the high amount of noise in
the data, which can only be partially controlled using appropriate filters. Another rea-
son is the low spatiotemporal, in particular the low temporal resolution of the MRI
data; Condition 6.4 is far from being fulfilled and hence the algorithm, after a certain
amount of iterations, is no longer able to improve the approximation, which leads to
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Figure 6.12: Results of our proposed algorithm (upper two figures, 20 seconds of data)
and the regression-based algorithm (lower two figures, 15 minutes of data), applied to
subject 16 of the data set. Velocity norm MIPs (left) and colour direction MIPs (right).

underestimated velocities. The same problem has already been observed in [33], where
the velocities were severely underestimated as well. This phenomenon, although most
clearly understandable from the point of view of the finite difference approximation and
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Figure 6.13: Results of our proposed algorithm (upper two figures, 20 seconds of data)
and the regression-based algorithm (lower two figures, 15 minutes of data), applied to
subject 2 of the data set. Velocity norm MIPs (left) and colour direction MIPs (right).

condition (6.4), is also quite likely to appear, in one or another form, when using other
discretization techniques as well.
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7 Conclusion and Outlook

The advection model was intended to model travelling pulse waves, but there might be
other travelling disturbances along blood vessels or nerves in the brain. For example, it
has been observed that endothelially mediated vasodilation related to functional brain
activation travels along small blood vessels [15]; although on spatial scales much smaller
than used here, high-resolution dynamic MRI data that would be potentially able to
resolve this phenomenon with MRAI already exists [39]. Further, due to its sensitivity
to pulsatile components of the signal and due to dramatic advances in dynamic MRI
data acquisition [22], MRAI might have future potential to contribute to the modelling
of the cerebrovascular system and to serve as a biomarker for cerebrovascular disease.
It should also be noted that the methods described herein are quite general and could in
principle be applied to spatiotemporal dynamics across a wide range of dynamic imaging
applications in medicine and other fields (with an adaptation of the PDE model to the
specific situation).

Concerning our proposed velocity estimation algorithm, the numerical simulation re-
sults of Section 6.1 clearly demonstrate the good reconstruction abilities of our method,
especially when used with a suitable combination of the currently available options
(weak divergence-free, sparsity, wavelets). This points to an advantage over the regres-
sion approach of Voss et al., namely the high flexibility of our approach. Considering
the parameter estimation problem of MRAI in the framework of inverse problems, a
vast array of techniques becomes available, leading to improved results. While the re-
gression based method is more or less inflexible, our proposed approach can easily be
adapted to include different or newly developed reconstruction options.

Another advantage of our algorithm is its ability to produce appealing results with
only a small amount of data. Where the multiple regression approach requires at least
a couple of minutes of measurements, our algorithm, as we have seen in Section 6.2, can
produce nice qualitative results from only a couple of seconds of measurements. This
might prove advantageous in practice, where long scan times often need to be avoided.

Although working on numerical phantom simulations, when applied to the real-world
data sets, both the regression based approach and our proposed reconstruction method
produce qualitative results only. As mentioned above, the most important reasons for
this is are the high amount of data error and the low spatiotemporal resolution of the
data when compared to the expected magnitude of the PWV. Hence, in order to achieve
better results, MRI data with higher resolutions and less noise need to be used in our
algorithm. One possible way towards this would be to use advanced imaging methods
such as multiband EPI [22], where a whole stack of slices is acquired in a time that
normally allows only for the acquisition of a single slice, which leads to a much higher
spatiotemporal resolution.

As the way towards quantitative results leads through higher resolution data sets, in
the future our proposed algorithm will need to be modified in order to be capable to deal
with the resulting huge data sets. This quite naturally leads into the realms of modern,
highly efficient space-time methods, high-performance and parallel computing - three
areas which the authors are planning to combine and apply to MRAI in future works in
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order to improve it even further, with a hopefully much faster CG-based reconstruction
method already under development.
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