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Abstract

Modern ground-based telescopes like the planned Extremely Large
Telescope (ELT) depend heavily on Adaptive Optics (AO) systems to
correct for atmospheric turbulence. Even though AO correction is
used, the quality of astronomical images still is degraded due to the
time delay stemming from the wavefront sensor (WFS) integration
time and temporal response of the deformable mirror(s) (DM). This
results in a blur which can be mathematically described by a convo-
lution of the true image with the point spread function (PSF).
In this paper, we present an algorithm for SCAO PSF reconstruction
adapted to the needs of ELTs in a storage efficient way. In particu-
lar, the classical PSF reconstruction algorithm from [34] is changed in
several points to give a more accurate estimate for the post-AO PSF.
Bilinear splines are used as basis functions in order to minimize the
computational effort.
Results obtained in an end-to-end simulation tool show qualitatively
good reconstruction of the PSF compared to the PSF calculated di-
rectly from the simulated incoming wavefront. Furthermore, the used
algorithm has a reasonable runtime and memory consumption.

∗Industrial Mathematics Institute, Johannes Kepler University, Linz, Austria.
wagner@indmath.uni-linz.ac.at
†Doctoral Program Computational Mathematics, JKU Linz, Austria
‡Industrial Mathematics Institute, JKU Linz and Johann Radon Institute for Compu-

tational and Applied Mathematics (RICAM), Linz, Austria

1



1 Introduction

In ground-based astronomy, the observed image Io can be described as a
convolution of the true image I and the so-called point spread function (PSF),
i.e.,

Io = I ∗ PSF .

The PSF of an astronomical observation through a ground-based telescope
depends on the one hand on the geometry of the telescope and the atmo-
spheric turbulence above the telescope and on the other hand on the design of
the used instrument including its technical specification, in particular regard-
ing static aberrations. Modern ground-based telescopes reduce the effect of
the turbulent atmosphere by Adaptive Optics (AO) systems. However, still
residual turbulences remain uncorrected. The goal is to reconstruct the PSF
from data acquired by the wavefront sensors (WFS) and the commands ap-
plied to the deformable mirror(s) (DM) after the image has been obtained.
This task is required as part of operating the upcoming extremely large tele-
scopes (ELTs), such as the European ELT [15] and its first light instruments
MICADO [11] and METIS [5]. Availabilitiy of the PSF allows to access pa-
rameters which determine the quality of an observation, without estimating
them from the science image and gives information on the blurring effect
coming from atmospheric turbulence and the telescope optics. Additionally,
the PSF can be used for image improvement in a post processing step, such
as deconvolution (see, e.g., [14, 9, 12, 13, 28]).

The purpose of this paper is to describe an algorithm for PSF reconstruc-
tion in Single-Conjugate Adaptive Optics (SCAO), starting from a purely
mathematical formulation and trying to do as little simplifications as pos-
sible to obtain high accuracy, while at the same time making a trade-off to
keep the computational costs reasonable. In a post-processing step, the qual-
ity of AO-corrected images can be further improved by using deconvolution
algorithms where the knowledge of the PSF is required. Furthermore, the
PSF can be used to extract estimates for parameters such as Strehl ratio or
Encircled Energy.

PSF reconstruction is based on the WFS data, which is acquired at a fre-
quency of 500 to 3000 Hz, under excellent seeing conditions even frame rates
of 100 Hz or lower might be used. Saving the measured data and performing
calculations in a post-processing step will result in an enormous amount of
data as the image exposure time ranges from one second to several minutes.
Note that we consider only the reconstruction of the PSF in the direction of
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the guide star (on-axis). For a field of view (FoV) larger than around 10”,
knowledge of the PSF in different directions is required, as then the PSF is
spatially varying within the FoV due to so-called anisoplanatism [18]. Even
in the narrow field case, the PSF might vary due to field-dependent static
aberrations of the science instrument which remain uncorrected after apply-
ing methods such as in [1, 33, 30].

One major drawback of the upcoming ELTs, such as the European ELT,
and the corresponding instruments is the relatively coarse resolution of the
WFS, roughly 0.5 m subaperture size projected onto the primary mirror.
This results in a large part of unknown higher order terms of the wavefront.
Such a coarse resolution of the WFS becomes necessary due to the faint stars
serving as guide stars (GS). Choosing a higher resolution of the WFS would
result in having a too low signal to noise ratio in the WFS measurements.
This influences also the actuator spacing of the DM, which will be roughly
of the same size. However, a bigger size of the primary mirror still leads to
a quadratic increase in the degrees of freedom to adjust the DM and thus
much more data which has to be handled on the fly and/or stored for post-
processing.

We propose an algorithm for SCAO PSF reconstruction adapted to the
needs of ELTs in a storage efficient way. In particular, we adopt the classical
PSF reconstruction algorithm from [34], by using a 4D structure function in-
stead of a 2D structure function as well as very local basis functions [21, 35].
In particular, we do not compute covariance matrices from WFS data rather
than from applied DM updates, resulting in a method dependent on the WFS
type and AO control algorithm only in noise and aliasing propagation. This
eases the use of PSF reconstruction as the decision on the WFS sensor type
is still under discussion for METIS and MICADO and we want our algorithm
to be usable with upcoming Pyramid WFS as well. In our approach, we use
a method with linear complexity to get from WFS data to wavefronts, the
so-called CuReD method, see [37, 31, 32], instead of the classical Matrix-
approach which results in quadratic complexity. The use of linear methods
for wavefront reconstruction is under investigation within the ELT instru-
ment consortia as ELTs require faster methods than existing telescopes and
therefore CuReD is a good choice. All proposed steps are done for closed-
loop AO systems.

In the following Section, we recall the original algorithm from [34] and
highlight some of its limits for reconstructing the PSF from WFS data. We
present our new approach in Section 3. Section 4 shows results obtained with
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ESO’s end-to-end simulation tool Octopus.

2 PSF reconstruction for SCAO

In order to have a good understanding of existing algorithms, we give a short
review of Véran’s algorithm, first presented in [34].

The following assumptions were in [34]: First, the corrected phase at any
position on the pupil has a Gaussian statistics and the integration time is
long enough so that the statistical average can be substituted by the temporal
average. Second, the structure function of the residual phase, defined as

Dφ(x,ρ) = 〈|φ(x, t)− φ(x + ρ, t)|2〉t,

with 〈·〉t the temporal average of a function, is replaced by its spatial average.
Third, the residual incoming phase φ is split into a component in the space
spanned by the mirror modes φ‖ and into a higher order component φ⊥, i.e.,
φ = φ‖ + φ⊥. This results in a formula for the long exposure optical transfer
function (OTF) in the near field approximation for a monochromatic image
at wavelength λ as in [34]:

B(ρ/λ) = exp

(
−1

2
D̄φ‖(ρ)

)
︸ ︷︷ ︸

B‖(ρ/λ)

exp

(
−1

2
D̄φ⊥(ρ)

)
︸ ︷︷ ︸

B⊥(ρ/λ)

∫
P
P (x)P (x + ρ)dx︸ ︷︷ ︸

Btel(ρ/λ)

. (1)

The terms D̄φ‖ and D̄φ⊥ represent the spatial averaged structure functions
of φ⊥ and φ‖, respectively. Crossterms between these two parts drop off, if
the space of mirror modes is perpendicular to the space of higher order com-
ponents. Note that in numerical computations this corresponds to a good
choice of basis functions. Using Zernike polynomials as ansatz functions as
done in [34] will introduce non-zero crossterms as these do not form a basis
on the ELT aperture.

The three parts of (1) can be reconstructed separately: B‖ can be esti-
mated from control loop AO data in the on-axis case, B⊥ can be estimated
from simulated data only and Btel is given analytically. The first two terms
clearly depend on the seeing conditions of the current observation. Therefore
an algorithm to estimate the seeing from AO loop data was developed. The
quantity B⊥ has to be simulated only once and can then be scaled to the
current observing conditions. Note that we do not consider the off-axis case
and, therefore, the dependence of B‖ on the atmospheric conditions is not
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discussed.

To be able to compute D̄φ‖(ρ) fast, Véran introduced functions Uij(ρ)
that depend on the possible mirror modes and can be precomputed numer-
ically. For the remaining calculations, only the time-averaged covariances
of the WFS data are needed. As the original algorithm was proposed for
Zernike polynomials, this method turned out to give good results, but still
was time and memory consuming. Therefore, [19] diagonalized Véran’s ap-
proach using so-called Vii-functions, where an eigenvalue decomposition of
the computed covariance matrix is needed, which gives a speedup for cer-
tain basis functions. With the increasing telescope size and changes in the
telescope geometry, e.g., due to spiders, Zernike polynomials do not seem
feasible as they form no basis, but still have global support.

For the computation of D̄φ⊥(ρ), a Monte Carlo method is proposed, where
the high order components of randomly generated phase screens with Kol-
mogorov or Von Kármán statistics are extracted and then using a temporal
and spatial average for the structure function.

In terms of the resolution, the accuracy of PSF reconstruction is limited
by the hardware of the telescope, e.g., the physical setup of the used DM,
i.e., the spacing between the actuators. This resolution is rather coarse and
limits the part of φ‖ to the DM cut off frequency, resulting in a rather coarse
estimate for the structure function.

The applied DM shapes being derived from WFS measurements suffer
from imperfections of these devices as it holds that an aliasing error occurs,
i.e., Γφ⊥ 6= 0, where Γ is the Shack-Hartmann WFS operator, that maps
incoming wavefronts to measurements. This influences the reconstructed
wavefronts and/or atmospheric layers and, as a result, changes Dφ‖ slightly.
In addition to that, there is some measurement noise in Γφ, leading to further
changes in the structure function. The latter one can be modeled and thus
corrected if one has a good knowledge of the WFS. For good estimates of
Dφ⊥ , the seeing parameter r0 (or D/r0) is needed for the calculation of φ⊥
and for estimating the influence of Γφ⊥ on the PSF. A good estimate can be
obtained by using, e.g., the iterative procedure from [34].

When going on sky with a PSF reconstruction algorithm, one has to ad-
just for non common path aberrations, as the optical path to the WFS and
the science camera are not the same. In the algorithm above this means
that Btel is not only calculated from the pupil function but can be calibrated
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in form of a static PSF as the non common path aberrations (NCPA) are
static. Note that the adjustments necessary to compensate for this effect can
be obtained via calibration as the non common path aberrations are static at
much longer time scales than atmospheric aberrations. However, one still has
to obtain a good understanding of NCPAs to make use of the reconstruced
PSFs for science. A discussion on characterizing and minimizing the impact
of NCPAs can be found, e.g., in [29].

Since the proposal of Véran’s algorithm in [34], computational power and
available memory increased, therefore some adjustments of the algorithm to
improve the quality are possible in feasible computational time. In particu-
lar, it was never demonstrated that Zernike polynomials as basis functions
are an appropriate choice for modern deformable mirrors with completely dif-
ferent influence functions. Furthermore, the required computational power
for Zernike polynomials is rather high due to their global support, which
results in full and dense matrices. We want to use basis functions with lo-
cal support in order to reduce the computational complexity and to be able
to account for the four-dimensionality of the structure function, which was
demonstrated to be possible already in [20]. The 2D calcuation in [34] is one
of the limitations as it reduces the accuracy and needs the assumption of a
stationary residual phase. However, on ELT-size the residual phase might be
non-stationary anymore due to the changed characteristic sizes. Note that
using four-dimensional functions might not be critical in terms of accuracy,
but still a more accurate model of the reality and computationally feasible.

Note that aside from Véran’s approach also other methods were proposed,
e.g., in [16], which takes a maximum likelihood approach for the used covari-
ance matrices, or [26], where only open loop data is taken into account and
a fine resolution WF is created by combining measurements from different
timesteps. Some of the algorithms were already successfully tested on sky
on various telescopes [23, 22, 17, 8, 25]. Algorithms for on-axis PSF recon-
struction in SCAO suffer from anisoplanatism, when used to estimate off-axis
PSFs. An approach to overcome these difficulties has been presented in [6, 2].
It can be combined with our algorithm in order to obtain PSFs for each point
in the field of view. In [7] an `1−`2 model for PSF reconstruction is proposed
to create high-resolution phase gradients from subsequent WFS frames and
obtain an estimate of the instantaneous PSF when no AO correction is used.
As pointed out in [10], prior to the reconstruction algorithms the PSF of
a reference star was measured from a separate observation directly before
or after the science observation and then used for deconvolution algorithms
(see, e.g., [14, 9, 12, 13, 28] and references therein). However, this approach
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implicitly uses the strong assumptions that the atmospheric conditions are
sufficiently stable and that the flux and intensity on the WFS are the same
for the PSF reference star and the target’s guide star.

3 Novel approach to PSF reconstruction for

SCAO

3.1 Updating PSF reconstruction for SCAO

We start from the long exposure OTF, i.e.,

B(ρ/λ) =
1

S

∫
R2

P (x)P (x + ρ)e−
1
2
Dφ(x,ρ) dx, (2)

where Dφ(x,ρ) = 〈|φ(x, t) − φ(x + ρ, t)|2〉, and make some adjustments.
The exact calculation of B(ρ/λ) requires averaging four-dimensional func-
tions, which seemed computationally too demanding when Véran developed
his algorithm and thus proposed to interchange spatial average and the ex-
ponential function to overcome this problem. Nowadays this simplification
can be partly dropped, as these computations are possible in reasonable time
even on a laptop as shown, e.g., in [17, 20].

As a starting point of our approach, we split φ into a part seen by the
WFS (and thus corrected by the DM in the following time step), called φ‖,
and a part orthogonal to the DM modes, called φ⊥. Clearly, φ = φ‖ + φ⊥
and thus

Dφ(x,ρ) = Dφ‖(x,ρ) +Dφ⊥(x,ρ)

+ 2〈[φ‖(x, t)− φ‖(x + ρ, t)][φ⊥(x, t)− φ⊥(x + ρ, t)]〉t.

Note that in [34] this splitting was made after interchanging spatial average
and the exponential.

The last term is a cross term between differences of two orthogonal terms
and is zero, when choosing basis functions as ansatz functions for numerical
computations. Thus, the OTF can be rewritten as

B(ρ/λ) =
1

S

∫
P
P (x)P (x + ρ)exp

(
−1

2
Dφ‖(x,ρ)

)
× exp

(
−1

2
Dφ⊥(x,ρ)

)
dx.
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The orthogonal part of the residual phase cannot be obtained from the ac-
tual on sky data as it is not represented on the DM, but only simulated offline
by using sophisticated atmospheric models. Therefore, using one realization
of φ⊥ for the calculation of Dφ⊥(x,ρ) gives no meaningful contribution and
we follow partly the suggestion of [34] to replace it by D̄φ⊥(ρ), its mean over
the variable x given by

D̄φ⊥(ρ) =

∫
P P (x)P (x + ρ)Dφ⊥(x,ρ)dx∫

P P (x)P (x + ρ)dx
.

Note that this is equivalent to assuming a small enough dispersion in x, which
is still valid as the higher order component φ⊥ is only a part of φ. Hence,
(2) simplifies to

B(ρ/λ) =
1

S
exp

(
−1

2
D̄φ⊥(ρ)

)
×
∫
P
P (x)P (x + ρ)exp

(
−1

2
Dφ‖(x,ρ)

)
dx,

which is a product of two independent terms. The first term can be estimated
only from simulation, as φ⊥ is not available on sky, while the second term has
to be calculated on the fly from closed loop AO measurements using φ‖. Note
that, when using the original method from [34], also the structure function
of φ‖ is averaged over x, which results in three independent components: the
OTF of the telescope in absence of turbulence, the contribution of the mirror
component and the contribution of the higher order phase. In our approach,
however, the first two components are combined into one.

3.2 Changing the basis functions

To implement the above ideas numerically, we need to choose basis functions
that fit our needs. For an ELT, one would have to compute roughly 50002 of
Uij-functions when using the original Véran algorithm. With certain basis
functions, these computations can be performed efficiently. For this purpose,
basis functions with local support are clearly a good choice. In particular, if
one considers the use of linear influence functions for future DMs, one could
think of using, e.g., bilinear splines as basis functions for the Uij-algorithm
as proposed in [21]. The bilinear splines ϕi,j are defined by their values on
the corners of the subapertures of an n × n Shack-Hartmann WFS, i.e., for
the corner point of subaperture (̄i, j̄) with coordinates (xī, yj̄), it holds that

ϕi,j(xī, yj̄) = δi,̄iδj,j̄, ∀i, j = 1, . . . , n,
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where δk,l denotes the usual Kronecker symbol, i.e., δk,l = 1 for k = l and
0 else. Due to this special choice, it holds that a wavefront ϕ in this basis
takes the coefficient cp,q as value in the corresponding node with coordinates
(x̄p, ȳq), i.e.,

ϕ(x̄p, ȳq) = cp,q.

Computing the corresponding Uij-functions on the same grid points results in
just evaluating whether the two indices match or not. This change leads to a
sparse representation of the needed matrices for the noise and aliasing part.
However, it turns out that the Uij-functions do not even have to be com-
puted, but the corresponding structure functions can be computed directly
when running Monte Carlo simulations for noise and aliasing. Furthermore,
note that modern and future DMs will not have linear influence functions,
but still bilinear splines are a good first order approximation of the influence
functions. This approach can be performed for any kind of local functions,
thus also for influence functions of modern DMs. However, in this case the
computational cost will increase.

Clearly, the higher order parts of the wavefront cannot be represented
on this grid, but we use a finer grid to compute the corresponding structure
function. Note that the resolution of φ⊥ corresponds to how far out the PSF
should be reconstructed. Numerical experiments showed that taking a res-
olution four times finer than the DM provides a good reconstruction of the
PSF for a radius of almost 2000 mas. However, the computations on such
a resolution require a bigger memory and more operations. Since the higher
order components φ⊥ are precomputed and appropriately scaled to current
observation conditions, this is not a crucial issue with modern computers.

Note that we do not use the Vii-algorithm as these functions have to be
calculated on the fly and therefore lead to an increased computation time for
the structure function in our setting, as demonstrated in [21].

3.3 Using wavefronts instead of WFS measurements

In the original algorithm from [34], the WFS measurements were used as a
starting point and all calculations were based directly on the WFS measure-
ments. However, the structure function of an AO run, Dφ, is directly related
to the incoming wavefronts. As the incoming wavefronts are reconstructed
to obtain the shape of the DM, we propose to use these reconstructions
directly for the estimation of Dφ. Note that the reconstructed incoming
wavefront φrec is only an estimate for the true parallel phase φ‖. Assuming
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that φrec = φ‖ + φn + φr, where φn is the WFS noise propagated into DM
commands and φr is the higher order component giving a non-zero measure-
ment and being propagated into DM commands, i.e. φr = RΓφ⊥, with Γ the
SH-WFS operator and R the AO control algorithm. We need to model the
structure functions for noise φn and aliasing φr separately. This results in a
splitting of the structure function for the parallel part, using the same ideas
as [34] and assuming that noise and aliasing are independent and stationary
leaves us with three terms:

Dφ‖(x,ρ) ≈ Dφrec(x,ρ)− D̄φn(ρ) + D̄φr(ρ). (3)

Let us describe how the three terms of (3) can be computed. First,
the structure function Dφrec relies on the applied DM commands. For an
SCAO system, commonly matrix-vector-multiplication (MVM) is used for
the reconstruction process. Recently, matrix-free algorithms, such as CuReD
[37, 31, 32], HWR [3], both tested on sky [4], and FinECuReD [27, 36], were
introduced. Thus, starting from reconstructed wavefronts instead of WFS
measurements does not increase the computational complexity. Certain ef-
fects such as sensor noise still have to be modeled on measurement level and
then transferred onto the wavefront level, but these are computations which
can be done prior to the AO and PSF reconstruction run and therefore have
no effect on the runtime.

In [34] the command matrix is used to obtain a covariance matrix, which
is O(N2) for N subapertures on the WFS. In our approach, we do not go
directly from measurements to the covariance matrix, as we use a matrix-free
AO control algorithm (CuReD), being only O(N), where setting up the ma-
trix would use more computational power than actually needed. Therefore,
we split this into two parts: First from WFS data we reconstruct the incom-
ing wavefront on our bilinear spline basis φrec, second we compute from this
wavefront the structure function Dφrec . This approach benefits from the fact
that during AO run the AO control algorithm has to be stable, so it might
not be the best possible reconstruction, in a sense that the parameters of
the AO control algorithm will be fixed for one observation in order to meet
run time and quality requirements. However, one might think of recomputing
the DM updates from the WFS frames by using a different control algorithm,
which needs parameter tuning and/or longer run time, but provides supe-
rior reconstruction quality. In our two step approach, we can fine tune the
reconstruction method for one specific observation, using, e.g., additionally
available information on seeing and atmospheric conditions. Furthermore, it
is easy to adapt this approach for other WFS as, e.g., MICADO and METIS
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show tendencies to use Pyramid WFS for the SCAO modules. The only
modification needed is thus to replace the reconstruction method and while
the other components of the algorithm do not change.

The structure functions for noise and aliasing D̄φn and D̄φr are spatially
averaged, which we get by using Monte Carlo simulations to obtain realiza-
tions of φn and φr and computing these structure functions directly. We
assume a Gaussian white noise covariance matrix on the wavefront sensor
CWFS = 1

nphotons
I. To obtain φr, we simulate φ⊥, compute the respective SH

measurements Γφ⊥ and use CuReD as AO control algorithm. Furthermore,
note that the noise and aliasing structure functions are computed only once
as a starting point and updates can be performed offline, so one could use
available covariance matrices together with the Uij-functions as proposed in
[34]. However, when using a matrix-free AO control algorithm this would
mean that one needs to set up the matrix which can easily be done by com-
puting the response of the algorithm to only one non-zero measurement.

4 Numerical results

In this section, we present some further details on the estimation of the
structure function of the higher order components of the incoming phase
D̄φ⊥ . Furthermore, results for PSF reconstruction in an SCAO system are
shown for different guide star flux.

Note that we are not providing a direct comparison to the original Véran
algorithm for the following reason. We tried two implementations for our
algorithm: The first implementation evaluating the Uij-functions based on
bilinear splines which results in a huge computational effort even though
only few integrals have to be evaluated. For the second implementation, we
exploited the locality of the basis functions analytically and thus implemented
only the necessary operations for points where the Uij-functions are non-
zero, giving a matrix-free method. This change in implementation resulted
in avoiding the calculation and storage of all Uij-functions. Additionally, we
expect that when calculating Uij-functions from a Zernike basis we cannot
be sure that we took the same implementation as the authors of the original
work. Furthermore, we would need a tuned ELT-size MVM to map from WFS
data to incoming wavefronts. Note, that the original work was presented for
a curvature WFS but was already adapted to Shack-Hartmann WFS (see,
e.g., [23]).
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4.1 Setting for numerical simulations

To verify that the proposed algorithm works well, we tested it in ESO’s end-
to-end simulation tool OCTOPUS for a planned ELT SCAO setting using
WFS data from one NGS as described in Table 1. The decision for using
OCTOPUS is based on the fact that it can directly provide the PSF corre-
sponding to an AO loop for specified directions.

To get a better view on the effects of guide stars with different bright-
ness on the PSF, the tests are performed for different photon flux from the
NGS, but during one test run the flux is fixed. The photon flux varies for all
tests between 100 and 1000 photons/subaperture/time frame. We do con-
sider only small noise coming from the detector readout and the incoming
photons. Note that the WFS setting stems from a preliminary design for the
METIS instrument at the ELT, but a similar setting is also planned for the
MICADO instrument. For reconstructing the incoming wavefront, and thus
controlling the DM, CuReD (cf, [37, 31]) is used. The atmosphere in our
simulations is a proprietary ELT ESO atmosphere[24] with 10 layers and a
seeing r0 = 12.1 cm at 500 nm (see Table 2). We use this atmosphere as it
was communicated as preliminary setting for our AO control tests and there-
fore we already had a good and stable AO control algorithm when starting
this project.

Telescope diameter 37 m

central obstruction 10.36 m

1 NGS Shack-Hartmann WFS 74× 74 subapertures

WFS wavelength λ 0.7 µm

WFS integration time 2 ms

DM actuator spacing dDM 0.5 m

science wavelength λ 2.2 µm

Simulation time 4 s real time (2000 time steps)

Table 1: Description of the simulated SCAO system

4.2 High order components of the incoming phase

In order to reconstruct the PSF properly, we need to have an estimate for
D̄φ⊥ . This estimate can only be obtained by simulation, in our case using
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Layer 1 2 3 4 5 6 7 8 9 10

Height (m) 123.8 251.4 415 740.9 1394 2699 5309 9079 12849 16329

c2n-profile 0.59 0.02 0.04 0.06 0.01 0.05 0.09 0.04 0.05 0.05

windspeed (m/s) 6.555 5.865 5.06 4.485 5.06 8.28 16.33 30.245 34.27 17.48

Table 2: 10-layer atmosphere

OCTOPUS. As a feature, OCTOPUS provides the possibility to save incom-
ing phase screens φ and the residual screens after AO correction. Note that
this is a different simulation run then the one used for performing the recon-
struction of the PSF. Even for application to on-sky data, this simulation will
always be necessary in order to estimate D̄φ⊥ for the atmospheric conditions
of the observation.

We filter out the DM modes from the simulated incoming screens to ex-
tract the residual phase φ⊥ from φ and then downsample the residual phase
to bigger pixel size as otherwise calculating the structure function would be
computationally too heavy. In this downsampling procedure, the choice of
the basis functions for numerical implementation plays a crucial role. If one
wants to choose a basis built up by bilinear splines, calculating D̄φ⊥ on the
same grid as the DM updates (and WFS measurements) will not be success-
ful. The main reason for this is that a DM with linear influence functions is
able to perfectly correct for bilinear splines. Thus a finer grid for the calcula-
tion of φ⊥,n, and therefore D̄φ⊥ is needed. Results are provided for pixel size
δx = 1

4
dDM = 0.125 m, as dDM = 0.5 m is the spacing of the DM actuators

in our simulations, and also the size of one WFS subaperture.

Additionally, in order to avoid temporal correlation in D̄φ⊥ , we perform
the temporal average not over every φ⊥ but take only every 5th of these resid-
ual phases. Extensive test runs have shown that taking every 5th screen is a
good trade-off between computational needs and resulting accuracy. This is
also in good agreement with the turbulence coherence time for the minimal
turbulence scale of interest δx = 0.125 m. Note that this temporal down-
sampling is done only for the computation of D̄φ⊥ .

Note, that the c2
n-profile used for the simulation is not changing and will

in reality not perfectly match with the one during observation. OCTOPUS
has a parameter called turbulent seed, defining the starting point for the gen-
eration of atmospheric layers in a pseudo-random way. In order to avoid an
unrealistic setting, we take different values of turbulent seed for estimating
D̄φ⊥ and the on-the-fly computation for estimating Dφ‖ . In particular, this
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Figure 1: Comparison of the true PSF (yellow) and the reconstructed PSF
(blue) for nph = 1000, cut through the main diagonal.

prevents that D̄φ⊥ and Dφ‖ match perfectly for the used atmosphere. How-
ever, using the same atmospheric profile still is a very optimistic approach.

4.3 Numerical results for high photon flux

We investigate the high flux case with nph = 1000, i.e., 1000 photons reach
each subaperture in every time step in the setting of Table 1. In Figure 1, we
compare (on a log-scale) cuts through the x-axis of the PSF reconstructed by
our algorithm and the PSF calculated by ESO’s OCTOPUS simulation tool.
The latter one is a reference as it is calculated directly from the simulated
atmosphere and averaged over time. However, both PSFs are in the plane of
the WFS and not in the plane of the science image, but still at the science
wavelength of 2.2 µm. This means that the simulation does not account
for non common path errors of the system. Furthermore, also effects of the
telescope, such as jitter, are not simulated.

In our simulations, we find a very good agreement between the recon-
structed and the true PSF in the core. As our spatial resolution is limited,
this translates into a limited coverage of the wings. However, we observe
only little errors inside the DM control region. In order to provide a clearer
view on the core of the PSF, we show a zoom in Figure 2 to highlight the
differences between the reconstructed and the true PSF. From the PSF sev-
eral parameters can be deduced, for example, the Strehl ratio. As the Strehl
ratio relates the peaks of the seeing limited PSF and the diffraction limited
PSF, dividing the peak of the reconstructed PSF by the peak of the true
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Figure 2: Zoom to the center of the true PSF (yellow) and the reconstructed
PSF (blue) for nph = 1000, cut through the main diagonal.

PSF gives the accuracy of the Strehl ratio, i.e.,

|SRtrue − SRrec|
SRtrue

,

where SRtrue and SRrec are the Strehl ratios calculated from the true and
the reconstructed PSF, respectively. Note, that without particular tuning
of the loop gain, the used AO control algorithm, CuReD [37, 31], reaches a
Strehl ratio of 77.9%. In our computations, we find that the peak (and thus
the Strehl ratio) is underestimated by only 0.4%, i.e., our reconstructed PSF
suggests a Strehl ratio of only 77.6%.

Here, we do not present more parameters of the PSF for characterization
as this work shall just demonstrate the feasibility of PSF reconstruction on
ELTs and the science cases for the respective instruments are still under
development. Therefore, also the metrics to be used are still not defined.

4.3.1 Influence of 2D and 4D structure function

In Section 3.1, we modified the PSF reconstruction for SCAO by using a
4D structure function Dφ‖(x, ρ) instead of the 2D version used in Véran’s
algorithm. We now want to compare the effect of using these two different
versions of the structure function. Clearly, the 4D version is computationally
more demanding, but still can be computed in reasonable time on a modern
computer.
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Figure 3: Comparison of the true PSF (yellow), the reconstructed PSF with a
2D structure function (red) and 4D structure function (blue) for nph = 1000,
cut through the main diagonal.

The result when using the above high flux setting is shown in Figure 3.
We found that the reconstruction of the PSF slightly improves when using
the 4D structure function instead of the 2D. Comparing the Strehl ratios
leads to an improvement from an error of 1% with the 2D structure function
to an error of 0.4% error with the 4D structure function. Zooming into the
center (see Figure 4) highlights another improvement in the first PSF ring,
which is less overestimated using a 4D structure function. These results
show that even if a 4D structure function can be computed and used for
PSF reconstruction in realistic conditions, i.e., in the presence of noise and
NCPAs, still a 2D structure function might be adequate. However, as long
as the computation time for a 4D structure function is feasible, it will be our
method of choice in order to avoid methodical errors.

4.4 Numerical results for low photon flux

In the previous subsections, we considered a fixed physical setup and varied
some computational parameters. In real observations also the physical setup,
mainly the photon flux coming from the guide star, will vary from one ob-
servation to another. In particular, certain observations will require the use
of faint guide stars. Therefore, the proposed algorithm should give reliable
results also for lower photon flux.

The telescope and simulation setup remains as in Table 1. For this sec-
tion, we also test both versions, the 2D and the 4D structure function, for
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Figure 4: Zoom to the center of the comparison of the true PSF (yellow), the
reconstructed PSF using a 2D structure function (red) and a 4D structure
function (blue) for nph = 1000, cut through the main diagonal.

φ‖. Furthermore, the c2
n-profile remains constant and therefore we can use

the same D̄φ⊥ as in the previous section.

Figure 5 shows the reconstructed PSF and the true PSF for nph = 500.
The Strehl ratio calculated from OCTOPUS is 77.4%. As in the high flux
case, the difference between the true and the reconstructed PSF is small and
the Strehl ratio is estimated very well. Using a 4D structure function the
error in the Strehl ratio is again only 0.4% for the 4D version, and is thus in
the same regime as for the high flux case. Using the 2D structure function
gives a similar quality loss as in the high flux case and results in an error for
the Strehl ratio of 1%.

Reducing the flux further to nph = 100 gives the results displayed in Fig-
ure 6 and a drop of the Strehl ratio to 73%. For our simulation setting, we
obtain an error in Strehl ratio in the same regime as for higher photon flux,
for both the 2D and 4D version of the structure function.

5 Conclusion and outlook

In this work, we presented an algorithm for PSF reconstruction in an SCAO
system for the upcoming generation of ELTs. In contrast to Véran’s algo-
rithm, our approach is based on wavefronts rather than on measurements and
uses the 4D structure function for the mirror modes, while sticking to a 2D
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Figure 5: Zoom to the center of the comparison of the true PSF (yellow) and
the reconstructed PSF with 4D structure function (blue) and 2D structure
function (red) for nph = 500, cut through the main diagonal.

Figure 6: Zoom to the center of the comparison of the true PSF (yellow) and
the reconstructed PSF with 4D structure function (blue) and 2D structure
function (red) for nph = 100, cut through the main diagonal.
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calculation for the perpendicular part. First simulations show qualitatively
good reconstruction of the PSF compared to the PSF calculated directly from
the simulated incoming wavefront. Furthermore, the used algorithm has a
reasonable runtime and memory consumption.

The algorithm can be further improved by a more accurate model for the
noise covariance used in Dφ‖ .

Future goals, are to develop a version of the proposed algorithm which can
be used for PSF reconstruction in a multi-conjugate adaptive optics (MCAO)
system, where PSF knowledge across the whole field of view is required an
can be obtained using measurements from all GS. Furthermore, we want to
include the effects of anisoplanatism for off-axis PSF reconstruction into our
algorithm.

Additionally, we want to use the reconstructed PSFs as input in a blind
deconvolution algorithm for image improvement, which can be done after the
observation on the telescope. Such an approach leads to a further improve-
ment of the quality of the reconstructed PSF and simultaneously improves
the quality of the observed image. First results for a simplified setting can
be found, e.g., in [14].

As PSF reconstruction shall be performed on the ELT once it is op-
erational, there are several steps to tackle before that. Once the hardware
specifications are fixed, we want to further investigate the performance of the
algorithm when using a faint guide star as well as with bad seeing conditions.
The next steps will then be the incorporation to a bench before moving to
an existing telescope. In order to complete these steps successfully, we need
to incorporate residual NCPAs after internal correction into our algorithm.
Furthermore, as for the ELT most likely the science target will be off-axis,
our algorithm has to be extended to deal with anisoplanatism.
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19



References

[1] D. S. Acton. Correction of static optical errors in a segmented adaptive
optical system. Appl. Opt., 34(34):7965–7968, Dec 1995.

[2] M. Aubailly, M. Roggemann, and T. Schulz. Approach for reconstructing
anisoplanatic adaptive optics images. Applied Optics, 46(24):6055–6063,
Aug 2007.

[3] N. Bharmal, U. Bitenc, A. Basden, R. Myers, and N. Dipper. A hierar-
chical wavefront reconstruction algorithm for gradient sensors. In Third
AO4ELT Conference – Adaptive Optics for Extremely Large Telescopes,
2013.

[4] U. Bitenc, A. Basden, N. Ali Bharmal, T. Morris, N. Dipper, E. Gen-
dron, F. Vidal, D. Gratadour, G. Rousset, and R. Myers. On-sky
tests of the CuReD and HWR fast wavefront reconstruction algorithms
with CANARY. Monthly Notices of the Royal Astronomical Society,
448(2):1199–1205, 2015.

[5] B. Brandl, T. Agócs, G. Aitink-Kroes, T. Bertram, F. Bettonvil, R. van
Boekel, O. Boulade, M. Feldt, A. Glasse, A. Glauser, M. Güdel, N. Hur-
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