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1 Introduction

Let n ∈ N, Fq be a finite field and a ∈ Fq. The Dickson polynomials Dn(x; a),
defined by [15, 9.6.1]

Dn(x; a) =

bn2 c∑
j=0

n

n− j

(
n− j
j

)
(−a)j xn−2j, x ∈ Fq

where introduced by Leonard Eugene Dickson (1874 —1954) in his 1896 Ph.D.
thesis "The analytic representation of substitutions on a power of a prime
number of letters, with a discussion of the linear group" [5], published in two
parts in The Annals of Mathematics [6], [7]. The Dickson polynomials are
the unique monic polynomials satisfying the functional equation [15, 9.6.3]

Dn

(
y +

a

y
; a

)
= yn +

(
a

y

)n
, y ∈ Fq2 .

See [14] for further algebraic and number theoretic properties of the Dickson
polynomials.
In [21], Wang and Yucas extended the Dickson polynomials to a fam-

ily depending on a new parameter k = 0, 1, . . . , which they called Dickson
polynomials of the (k + 1)-th kind. They defined them by

Dn,k(x; a) =

bn2 c∑
j=0

n− kj
n− j

(
n− j
j

)
(−a)j xn−2j, (1)

with initial values

D0,k(x; a) = 2− k, D1,k(x; a) = x. (2)

They also showed that the polynomials Dn,k(x; a) satisfy the fundamental
functional equation

Dn,k(y +
a

y
; a) = yn +

(
a

y

)n
+ k

ayn − y2
(
a
y

)n
y2 − a , y 6= 0. (3)

Note that

lim
y→±

√
a

ayn − y2
(
a
y

)n
y2 − a = (n− 1)

(
±
√
a
)n
,
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and therefore

Dn,k(y +
a

y
; a) = [2 + (n− 1) k]

(
±
√
a
)n
, y = ±

√
a.

We clearly have

Dn,0(x; a) = Dn(x; a) (Dickson polynomials)

and

Dn,1(x; a) = En(x; a) (Dickson polynomials of the second kind).

In fact, since
n− kj
n− j = k − (k − 1)

n

n− j ,

we have [21, 2.1]

Dn,k(x; a) = kEn(x; a)− (k − 1)Dn(x; a).

The polynomials Dn,k(x; a) also satisfy the recurrence (see [21, Remark
2.5])

Dn+2,k = xDn+1,k − aDn,k. (4)

The first few Dickson polynomials of the (k + 1)-th kind are

D2,k(x; a) = x2 + a (k − 2) ,

D3,k(x; a) = x3 + a (k − 3)x,

D4,k(x; a) = x4 + a (k − 4)x2 + a2 (2− k) ,

D4,k(x; a) = x5 + a (k − 5)x3 + a2 (5− 2k)x.

They have zeros at

x = ±
√
a
√

2− k, if n = 2,

x = 0, ±
√
a
√

3− k, if n = 3, (5)

x = ±
√
a√
2

√
4− k ±

√
(k − 2)2 + 4, if n = 4,

x = 0, ±
√
a√
2

√
5− k ±

√
(k − 1)2 + 4, if n = 5,
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as can be verified using a mathematical symbolic computation program such
as Mathematica.
In this article, we study the polynomials Dn,k(x; a) over the field of com-

plex numbers, with a > 0 and k ∈ R. Our motivation is the three-term
recurrence relation (4), which suggests that the Dickson polynomials of the
(k+1)-th kind form a family of orthogonal polynomials with respect to some
linear functional L. However, from (5) we see that for k > 2 the polynomials
Dn,k(x; a) may have a pair of purely imaginary roots. Also, the polynomials
D3,3(x; a), D4,2(x; a), and D5, 5

2
(x; a) have a triple zero at x = 0. This implies

that the linear functional L is quasi-definite [4, Theorem 2.4.3], [9, Theorem
1].
The article is organized as follows: in Section 2, we derive some of the

main properties of the Dickson polynomials of the (k+ 1)-th kind, including
different expressions, a hypergeometric representation, differential equations,
and a generating function.
In Section 3, we present some basic results from the theory of orthogo-

nal polynomials that we will need to find the linear functional L. We also
stress the connection between the polynomials Dn,k(x; a) and the Chebyshev
polynomials of the first and second kind.
In Section 4 we introduce a family of orthogonal polynomials related to

Dn,k(x; a) and independent of a. They greatly simplify some of the compu-
tations needed to find L.We apply our results to the Dickson polynomials of
the (k + 1)-th kind and obtain a representation for their moment functional
L. We also find explicit expressions for the moments of L.
Finally, in Section 5 we summarize our results. In our hope that the

results would be of interest to researchers outside the field of orthogonal
polynomials and special functions, we have made the paper as self-contained
as possible.

2 Properties

We begin by checking the initial polynomial D0,k(x; a). It is not clear from
the definition (1) that D0,k(x; a) = 2 − k, but if we consider even and odd
degrees, we have the following result.

Proposition 1 The even and odd Dickson polynomials of the (k+1)-th kind

4



are given by

D2n,k(x; a) = (2− k) (−a)n +
n∑
l=1

(2− k)n+ kl

l + n

(
n+ l

2l

)
(−a)n−l x2l (6)

and

D2n+1,k(x; a) = x

n∑
l=0

(2− k)n+ kl + 1

l + n+ 1

(
n+ l + 1

2l + 1

)
(−a)n−l x2l. (7)

Proof. From (1), we have

D2n,k(x; a) =
n∑
j=0

2n− kj
2n− j

(
2n− j
j

)
(−a)j x2n−2j,

and switching the index to l = n− j, we get

D2n,k(x; a) =
n∑
l=0

(2− k)n+ kl

l + n

(
n+ l

n− l

)
(−a)n−l x2l.

Finally, we use the symmetry of the binomial coeffi cients(
n

k

)
=

(
n

n− k

)
.

A similar calculation gives (7).
Next, we will find a representation for Dn,k(x; a) in terms of the general-

ized hypergeometric function

pFq

(
a1, . . . , ap
b1, . . . , bq

;x

)
=

∞∑
j=0

(a1)j · · · (ap)j
(b1)j · · · (bq)j

xj

j!
,

where (u)j denotes the Pochhammer symbol (also called shifted or rising
factorial) defined by [16, 5.2.4]

(a)0 = 1

(a)j = a (a+ 1) · · · (a+ j − 1) , j ∈ N.
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Proposition 2 The Dickson polynomials of the (k + 1)-th kind admit the
hypergeometric representation

Dn,k(x; a) = xn 3F2

(
−n−1

2
,−n

2
, 1− n

k

1− n,−n
k

;
4a

x2

)
, k 6= 0. (8)

We also have

Dn,0(x; a) = xn 2F1

(
−n−1

2
,−n

2

1− n ;
4a

x2

)
.

Proof. Let

Dn,k(x; a) = xn
bn2 c∑
j=0

cj,

with

cj =
n− kj
n− j

(
n− j
j

)
(−a)j x−2j. (9)

We have c0 = 1 and cj = 0 for j > n
2
. Using (9), we get

cj+1

cj
=

(2j − n+ 1) (2j − n) (jk + k − n)

(j − n+ 1) (jk − n) (j + 1)

a

x2
. (10)

Let k 6= 0. Then,

cj+1

cj
=

(
j − n

2
+ 1

2

) (
j − n

2

) (
j + 1− n

k

)
(j − n+ 1)

(
j − n

k

)
(j + 1)

4a

x2
,

and we obtain

cj =

(
−n−1

2

)
j

(
−n

2

)
j

(
1− n

k

)
j

(1− n)j
(
−n
k

)
j

1

j!

(
4a

x2

)j
.

Thus,

Dn,k(x; a) = xn
∞∑
j=0

(
−n−1

2

)
j

(
−n

2

)
j

(
1− n

k

)
j

(1− n)j
(
−n
k

)
j

1

j!

(
4a

x2

)j
.

If k = 0, we see from (10) that

cj+1

cj
=

4
(
j + 1−n

2

) (
j − n

2

)
(j − n+ 1) (j + 1)

a

x2
,
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and therefore

cj =

(
−n−1

2

)
j

(
−n

2

)
j

(1− n)j

1

j!

(
4a

x2

)j
.

Hence,

Dn,0(x; a) = xn
∞∑
j=0

(
−n−1

2

)
j

(
−n

2

)
j

(1− n)j

1

j!

(
4a

x2

)j
.

Remark 3 Note that from (8) it follows that

D2n,k(0; a) = (2− k) (−a)n ,

in agreement with (6).

Proposition 4 For n = 1, 2, . . . , the Dickson polynomials of the (k + 1)-th
kind satisfy the following relations:

Dn,k+2 − 2Dn,k+1 +Dn,k = 0,

−(x2 − 4a)
[
(k − 1)nx2 + a(k − 2)(kn− 2n− k)

]
D′′n,k

+x
[
(k − 1)nx2 + a

(
6k + 4n+ 3k2n− 4kn− 3k2

)]
D′n,k (11)

+
[
(k − 1)n3x2 + an (−k − 2n+ kn) (−2k − 2n+ kn)

]
Dn,k = 0,

(x2 − 4a)2D
(iv)
n,k + 10x(x2 − 4a)D′′′n,k +

[
(23− 2n2)x2 + 8a(n2 − 4)

]
D′′n,k

−3(2n2 − 3)xD′n,k + n2(n2 − 4)Dn,k = 0,

and

(x2 − 4a)D′′n,k − 4nDn+1,kD
′
n,k + (2n+ 3)xD′n,k + n (n+ 2)Dn,k = 0.

Proof. All the identities can be automatically found and proved using the
hypergeometric representation (8) and the Mathematica package Holonomic-
Functions [12].

Remark 5 The differential equation (11) already appeared in [21, Lemma
2.7].
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We can use the recurrence relation (4) to obtain a different representation
for the polynomials Dn,k(x; a).

Proposition 6 For x 6= ±2
√
a, the Dickson polynomials of the (k + 1)-th

kind are given by

Dn,k(x; a) =

(
1 + k

x−∆

2∆

)(
x+ ∆

2

)n
+

(
1− kx+ ∆

2∆

)(
x−∆

2

)n
, (12)

where
∆ =

√
x2 − 4a.

We also have,

Dn,k(±2
√
a; a) = (kn+ 2− k)

(
±
√
a
)n
. (13)

Proof. Let us assume that we can write

Dn,k(x; a) = Rn, (14)

for some function R(x, k, a). Using (14) in the recurrence (4), we obtain

R2 − xR + a = 0,

and therefore

R± =
x±∆

2

with
∆ =

√
x2 − 4a.

It follows that the general solution of (4) is given by

Dn,k(x; a) = C1 (x; a, k)

(
x+ ∆

2

)n
+ C2 (x; a, k)

(
x−∆

2

)n
. (15)

Using the initial conditions (2) in (15), we get

C1 (x; a, k) + C2 (x; a, k) = 2− k,

C1 (x; a, k)

(
x+ ∆

2

)
+ C2 (x; a, k)

(
x−∆

2

)
= x.

8



Thus, assuming that x 6= ±2
√
a,

C1 (x; a, k) = 1 + k
x−∆

2∆
, C2 (x; a, k) = 1− kx+ ∆

2∆
.

To verify (13), we replace it in the recurrence (4), and obtain

(kn+ 2 + k)
(
±
√
a
)n+2 −

(
±2
√
a
)

(kn+ 2)
(
±
√
a
)n+1

+ a (kn+ 2− k)
(
±
√
a
)n

= a
(
±
√
a
)n

[(kn+ 2 + k)− 2 (kn+ 2) + (kn+ 2− k)] = 0.

Using (12), we can obtain a generating function for the polynomials
Dn,k(x; a).

Proposition 7 The ordinary generating function of the polynomialsDn,k(x; a)
is given by

G(z;x, k, a) =
∞∑
n=0

Dn,k(x; a)zn =
2− k + (k − 1)xz

az2 − xz + 1
. (16)

Proof. From (12), we have (as formal power series)

G(z;x, k, a) =
∞∑
n=0

Dn,k(x; a)zn

=

(
1 + k

x−∆

2∆

) ∞∑
n=0

(
z
x+ ∆

2

)n
+

(
1− kx+ ∆

2∆

) ∞∑
n=0

(
z
x−∆

2

)n
=

(
1 + k

x−∆

2∆

)
1

1−
(
z x+∆

2

) +

(
1− kx+ ∆

2∆

)
1

1−
(
z x−∆

2

) .
Thus,

G(z;x, k, a) = 4
2− k + (k − 1)xz

(x2 −∆2) z2 − 4xz + 4

and the result follows since

∆2 = x2 − 4a.

Remark 8 The same generating function was obtained in [21, Lemma 2.6]
using the recurrence (4).
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3 Orthogonal polynomials

Let {µn} be a sequence of complex numbers and L : C [x] → C be a linear
functional defined by

L [xn] = µn, n = 0, 1, . . . .

Then, L is called the moment functional determined by the formal moment
sequence {µn} . The number µn is called the moment of order n.
A moment functional L is called positive-definite if L [q(x)] > 0 for every

polynomial q(x) that is not identically zero and is non-negative for all real
x. Otherwise, L is called quasi-definite.
A sequence {Pn} ⊂ C [x] , with deg (Pn) = n is called an orthogonal

polynomial sequence with respect to L provided that [3]

L [PnPm] = hnδn,m, n,m = 0, 1, . . . ,

where hn 6= 0 and δn,m is Kronecker’s delta.
One of the fundamental properties of orthogonal polynomials is that they

satisfy a three-term recurrence relation.

Theorem 9 Let L be a moment functional and let {Pn} be the sequence of
monic orthogonal polynomials associated with it. Then, there exist βn ∈ C
and γn ∈ C \ {0} such that

Pn+1 = (x− βn)Pn − γnPn−1, n = 1, 2, . . . . (17)

Proof. See [3, Theorem 4.1].

Remark 10 In this paper, we will say that {Pn} is a sequence of "monic
polynomials" if deg (Pn) = n and

Pn (x) = xn + · · · , n = 1, 2, . . . .

However, we will allow the first polynomial P0 (x) to be any constant (not
necessarily equal to 1).

A second solution of (17) is given by the so-called associated orthogonal
polynomials P ∗n (x) defined by [3, 4.3]

xP ∗n = P ∗n+1 + βnP
∗
n + γnP

∗
n−1, P ∗0 = 0, P ∗1 = 1. (18)

Note that degP ∗n (x) = n− 1.
The converse of Theorem 9 is given by Favard’s Theorem.
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Theorem 11 Let {Pn} be a sequence of polynomials satisfying the recurrence
relation

xPn = Pn+1 + βnPn + γnPn−1, n = 1, 2, . . . ,

where βn ∈ C and γn ∈ C\{0} . Then, there exists a unique linear functional
L such that L [P0] = 1 and

L [PnPm] = hnδn,m,

with h0 = P0, h1 = γ1 and

hn = γnhn−1, n = 2, 3, . . . . (19)

Proof. We follow [3, Theorem 4.4] and define L by

L [P0] = 1,

L [Pn] = 0, n = 1, 2, . . . .

Then,

h0 = L
[
P 2

0

]
= P0L [P0] = P0,

h1 = L [xP1] = γ1,

and
L [xPn] = 0, n > 1.

Similarly, we find that for n = 2, 3, . . . ,

L
[
xkPn

]
= 0, 0 ≤ k < n

hn = L [xnPn] = L
[
xn−1γnPn−1

]
= γnhn−1.

Remark 12 It follows from (4) and Favard’s theorem that (at least for k 6=
2) {Dn,k} is a sequence of monic orthogonal polynomials with respect to a
moment functional L 1 satisfying

L [Dn,kDm,k] = hn (k) δn,m, (20)

with
h0 (k) = 2− k, hn (k) = an, n = 1, 2, . . . . (21)

In Section 4 we will find a representation for the moment functional L.
1In the remainder of the paper L will denote the moment functional associated with

the polynomials Dn,k(x; a).

11



Proposition 13 Let L be a moment functional and {Pn} be the sequence
of monic orthogonal polynomials associated with it. Then, the following are
equivalent:
(a) All the moments of odd order are zero,

L
[
x2n+1

]
= 0, n = 0, 1, . . . .

(b)
Pn (−x) = (−1)n Pn (x) , n = 0, 1, . . . .

(c) All the coeffi cients βn in the three-term recurrence relation (17) are
zero

Pn+1 = xPn − γnPn−1, n = 1, 2, . . . .

Proof. See [3, Theorem 4.3].

Proposition 14 Let k 6= 2 and µn (k) denote the moments of the linear
functional defined by (20). Then, we have

µ0 (k) =
1

2− k , (22)

µ2n+1 (k) = 0, n = 0, 1, . . . , (23)

and

µ2n = −
n−1∑
l=0

(2− k)n+ kl

l + n

(
n+ l

2l

)
(−a)n−l µ2l, n = 1, 2, . . . .

The first few nonzero moments are

µ2 (k) = a, µ4 (k) = −a2 (k − 3) , µ6 (k) = a3(k2 − 6k + 10),

µ8 (k) = −a4(k3 − 9k2 + 29k − 35).

Proof. From (21), we see that

2− k = h0 = L
[
D2

0,k

]
= D2

0,kL [1] = (2− k)2 µ0,

from which (22) follows.
Using (1), it is clear that

Dn,k (−x; a) = (−1)nDn,k (x; a) , (24)

12



and Proposition 13 gives

µ2n+1 (k) = 0, n = 0, 1, . . . .

From (6) we have

D2n,k(x; a) =

n∑
l=0

(2− k)n+ kl

l + n

(
n+ l

2l

)
(−a)n−l x2l,

and therefore

0 = L [D2n,k] =
n∑
l=0

(2− k)n+ kl

l + n

(
n+ l

2l

)
(−a)n−l µ2l (k)

=
n−1∑
l=0

(2− k)n+ kl

l + n

(
n+ l

2l

)
(−a)n−l µ2l (k) + µ2n (k) .

Remark 15 In Section 4 we will find an explicit expression for µ2n (k) .

The task of finding an explicit integral representation for the functional
L is called a moment problem [1],[13],[17]. A moment functional L is called
determinate if there exists a unique (up to an additive constant) distribution
ψ (t) such that

L [xn] =

∫
Λ

tndψ. (25)

Otherwise, L is called indeterminate [2], [18].
A criteria to decide if the moment functional L is determinate is due to

Torsten Carleman [17, P 59]: If γn > 0 and

∞∑
n=1

1
√
γn

=∞,

then L is determinate.
One method to find a distribution function satisfying (25) is given by

Markov’s theorem.

13



Theorem 16 Let the moment functional L be determinate and Pn(z) be the
monic orthogonal polynomials with respect to L and P ∗n (z) be the associated
polynomials. Then, there exists a set Λ ⊂ C such that

lim
n→∞

µ0
P ∗n (z)

Pn(z)
=

∫
Λ

dψ (t)

z − t , z /∈ Λ, (26)

where µ0 is the first moment of L and the convergence is uniform on compact
subsets of C \ Λ.

Proof. See [20].
The function

S(z) =

∫
Λ

dψ (t)

z − t , z /∈ Λ, (27)

is called the Stieltjes transform of ψ (t) [19]. To recover the distribution
function ψ (t) from (27), we can use the Stieltjes-Perron inversion formula
[19, A.1.2]

[ψ] (s)− [ψ] (t) =
1

π
lim
y→0+

t∫
s

ImS (x+ iy) dx, (28)

where [ψ] denotes the jump operator

[ψ] (s) = lim
ε→0+

ψ (s+ ε) + ψ (s− ε)
2

.

The absolutely continuous part of ψ is given by

ψ′ (t) = − 1

π
lim
y→0+

ImS (t+ iy) .

The function S(z) has the asymptotic behavior [10, Section 12.9]

S(z) ∼ µ0

z
+
µ1

z2
+
µ2

z3
+ · · · , z →∞. (29)

It is clear from the three-term recurrence relation (4) that the polynomials
Dn,k(x; a) are related to the Chebyshev polynomials. In the next section, we
review their main properties.
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3.1 Chebyshev polynomials

The Chebyshev polynomials of the first kind Tn (x) are defined by [11, 9.8.35]

Tn (x) = 2F1

(
−n, n

1
2

;
1− x

2

)
,

and the Chebyshev polynomials of the second kind Un (x) are defined by [11,
9.8.36]

Un (x) = (n+ 1) 2F1

(
−n, n+ 2

3
2

;
1− x

2

)
.

They are independent solutions of the recurrence relation

yn+1 − 2xyn + yn−1 = 0, (30)

with initial conditions [11, 9.8.39]

T0 (x) = 1, T1 (x) = x, (31)

and [11, 9.8.40]
U0 (x) = 1, U1 (x) = 2x. (32)

Using (32) in (30) we note that

U−1 (x) = 0. (33)

Their ordinary generating functions are [11, 9.8.50]

∞∑
n=0

Tn (x) zn =
1− xz

1− 2xz + z2
, (34)

and [11, 9.8.56]
∞∑
n=0

Un (x) zn =
1

1− 2xz + z2
. (35)

From (33) and

∞∑
n=0

[Un (x)− xUn−1 (x)] zn =
∞∑
n=0

Un (x) zn − x
∞∑

n=−1

Un (x) zn+1

=
1− xz

1− 2xz + z2
,
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we see that
Tn (x) = Un (x)− xUn−1 (x) , n = 0, 1, . . . . (36)

The Chebyshev polynomials satisfy the orthogonality relations [11, 9.8.37]

1

π

1∫
−1

Tn (t)Tm (t)
dt√

1− t2
=

1

2
(1 + δn,0) δn,m (37)

and [11, 9.8.38]

1

π

1∫
−1

Un (t)Um (t)
√

1− t2dt =
1

2
δn,m. (38)

The Stieltjes transforms of their distributions are given by [19]

1

π

1∫
−1

1√
1− t2

dt

z − t =
1

z
√

1− z−2
, z ∈ C \ [−1, 1] , (39)

and

1

π

1∫
−1

√
1− t2
z − t dt = z

(
1−
√

1− z−2
)
, z ∈ C \ [−1, 1] , (40)

where here and in the rest of the paper

√
: C→

{
z ∈ C | −π

2
< arg (z) ≤ π

2

}
denotes the principal branch of the square root. Note that

√
1− z−2 ∼ 1, z →∞.

From (32) and (33) we see that the associated polynomials T ∗n (x) , U∗n (x)
are

T ∗n (x) = U∗n (x) = Un−1 (x) .

Using Markov’s theorem (26), we conclude that

lim
n→∞

Un−1(z)

Tn (z)
=

1

z
√

1− z−2
, z ∈ C \ [−1, 1] , (41)

and

lim
n→∞

Un−1(z)

Un(z)
= z

(
1−
√

1− z−2
)
, z ∈ C \ [−1, 1] . (42)
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Remark 17 Note that Markov’s theorem (26) refers to monic orthogonal
polynomials and the first moment µ0 appears in the limit formula. However,
since the monic Chebyshev polynomials T̂n (x) , Ûn (x) are given by T̂0 (x) = 1
and

T̂n (x) = 21−nTn (x) , n = 1, 2, . . . ,

Ûn (x) = 2−nUn (x) , n = 0, 1, . . . ,

the first moment µ0 = 1
2
is cancelled in (42).

We can now relate the polynomials Dn,k(x; a) and the Chebyshev poly-
nomials.

Proposition 18 The Dickson polynomials of the (k+1)-th kind can be writ-
ten as

Dn,k(x; a) = a
n
2

[
2 (1− k)Tn

(
x

2
√
a

)
+ kUn

(
x

2
√
a

)]
. (43)

Proof. Comparing the generating functions (34)-(35) with the generating
function of Dn,k(x; a) (16), we see that

∞∑
n=0

a
n
2

[
2 (1− k)Tn

(
x

2
√
a

)
+ kUn

(
x

2
√
a

)]
zn

= 2 (1− k)
1− x

2
√
a
z
√
a

1− 2 x
2
√
a
z
√
a+ az2

+ k
1

1− 2 x
2
√
a
z
√
a+ az2

=
2− k + (k − 1)xz

az2 − xz + 1
=
∞∑
n=0

Dn,k(x; a)zn,

and the result follows.

Remark 19 If we use the values of the Chebyshev polynomials at x = 0 [16,
18.6.1]

Tn (0) = cos
(nπ

2

)
= Un (0) ,

and the representation (43), we get

Dn,k(0; a) = (2− k) a
n
2 cos

(nπ
2

)
,

in agreement with (6)-(7).

17



If k = 0, 1, (43) gives

Dn,0(x; a) = 2a
n
2 Tn

(
x

2
√
a

)
,

Dn,1(x; a) = a
n
2Un

(
x

2
√
a

)
,

and in particular, for a = 1, we have

Dn(2x) = Dn,0(2x; 1) = 2Tn (x) ,

En(2x) = Dn,1(2x; 1) = Un (x) ,

as it was observed in [21]. For k = 2, we obtain the following result.

Corollary 20 We have

Dn,2(x; a) = a
1
2

(n−1)xUn−1

(
x

2
√
a

)
. (44)

Proof. Setting k = 2 in (43), we get

Dn,2(x; a) = 2a
n
2

[
Un

(
x

2
√
a

)
− Tn

(
x

2
√
a

)]
and using (36) we obtain

Dn,2(x; a) = 2a
n
2
x

2
√
a
Un−1

(
x

2
√
a

)
.

Remark 21 A representation of Dn,2(x; a) in terms of associated Legendre
functions of the first and second kinds [16, 14.3] was given in "A representa-
tion of the Dickson polynomials of the third kind by Legendre functions" by
Neranga Fernando and Solomon Manukure (arXiv:1604.04682).

Lemma 22 Let D∗n(x; a) denote the associated Dickson polynomials of the
(k + 1)-th kind satisfying the recurrence (4) with initial conditions

D∗0(x; a) = 0, D∗1(x; a) = 1.

Then,

D∗n(x; a) = a
n−1
2 Un−1

(
x

2
√
a

)
. (45)

18



Proof. Let the polynomials yn (x) be defined by

yn (x) = a
n−1
2 Un−1

(
x

2
√
a

)
.

Then,

yn+1 − xyn + ayn−1 = a
n
2Un

(
x

2
√
a

)
−xan−12 Un−1

(
x

2
√
a

)
+ aa

n−2
2 Un−2

(
x

2
√
a

)
.

Changing variables to x = 2
√
as and using (30) we get

yn+1 − xyn + ayn−1 = a
n
2 [Un (s)− 2sUn−1 (s) + Un−2 (s)] = 0.

Finally, using (32) and (33) we have

y0 (x) = a−
1
2U−1

(
x

2
√
a

)
= 0

y1 (x) = U0

(
x

2
√
a

)
= 1.

Hence, yn (x) = D∗n(x; a).

4 Main results

4.1 The scaled polynomials

Let’s introduce the scaled polynomials dn(x; k) defined by

dn(x; k) = a−
n
2Dn,k(2

√
ax; a). (46)

The polynomials dn(x; k) are a solution of the same recurrence (30) satisfied
by the Chebyshev polynomials, with initial conditions

d0(x; k) = 2− k, d1(x; k) = 2x.

From (43) it follows that

dn(x; k) = 2 (1− k)Tn (x) + kUn (x) , (47)
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and from (45) we have

d∗n(x) = Un−1 (x) = a
1−n
2 D∗n(2

√
ax; a), (48)

where d∗n(x) denote the associated polynomials satisfying (30) with initial
conditions

d∗0(x) = 0, d∗1(x) = 1.

Using (47) and (48) we can find the Stieltjes transform of the distribution
associated with the polynomials dn(x; k).

Proposition 23 Let z ∈ C \ [−1, 1] and

ω (k) =
1

2

k − 2√
k − 1

i. (49)

Then,

lim
n→∞

d∗n(z)

dn(z; k)
= s(z; k), (50)

where

s(z; k) = z
(k − 2)

√
1− z−2 + k

4 (k − 1) z2 + (k − 2)2 (51)

and z 6= ±ω if k 6= 1.

Proof. Let z ∈ C \ [−1, 1] . From (41)-(42), we have

lim
n→∞

Tn (z)

Un−1(z)
= z
√

1− z−2,

and

lim
n→∞

Un(z)

Un−1(z)
=

1

z
(
1−
√

1− z−2
) = z

(
1 +
√

1− z−2
)
. (52)

Using (47) and (48), we get

lim
n→∞

dn(z; k)

d∗n(z)
= 2 (1− k) z

√
1− z−2 + kz

(
1 +
√

1− z−2
)
.

If k 6= 1 and z 6= ±ω,we obtain

lim
n→∞

d∗n(z)

dn(z; k)
=

1

2 (1− k) z
√

1− z−2 + kz
(
1 +
√

1− z−2
)

= z
(k − 2)

√
1− z−2 + k

4 (k − 1) z2 + (k − 2)2 .
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If k = 1, we see from (47) that

dn(z; 1) = Un (z) ,

and using (52) we obtain

lim
n→∞

d∗n(z)

dn(z; 1)
=

1

z
(
1 +
√

1− z−2
)

= z
(

1−
√

1− z−2
)

= s(z; 1).

Our next objective is to represent the function s(z; k) as the Stieltjes
transform of a distribution. We begin with a couple of lemmas.

Lemma 24 Let z, b ∈ C \ [−1, 1] . Then,

1

π

1∫
−1

√
1− t2
t2 − b2

1

z − tdt = z

√
1− b−2 −

√
1− z−2

z2 − b2
. (53)

Proof. We can write

1

(t2 − b2) (z − t) =
1

(z2 − b2) (z − t)

+
1

2b (b− z) (b− t) +
1

2b (b+ z) (−b− t) .

Using (40), we obtain

1

π

1∫
−1

√
1− t2
t2 − b2

1

z − tdt =
z
(
1−
√

1− z−2
)

z2 − b2
+
b
(
1−
√

1− b−2
)

2b (b− z)

−
b
(
1−
√

1− b−2
)

2b (b+ z)
, z, b ∈ C \ [−1, 1] ,

and the result follows.

Lemma 25 Let ω (k) be defined by (49). Then,

ω (k) ∈ C \ [−1, 1] , k ∈ R \ {0, 1, 2} .
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Proof. The result follows immediately from the definition

ω (k) =
1

2

k − 2√
k − 1

i,

since

ω (k) ∈ (−∞,−1) , k ∈ (−∞, 0) ,

ω (0) = −1,

ω (k) ∈ (−∞,−1) , k ∈ (0, 1) ,

−iω (k) ∈ (−∞, 0) , k ∈ (1, 2) ,

ω (2) = 0,

−iω (k) ∈ (0,∞) , k ∈ (2,∞) .

The function s(z; k) has a branch cut on the segment [−1, 1] and (perhaps
removable) poles at z = ±ω if k 6= 1. In the next proposition we split s(z; k)
in two parts, one analytic in C \ [−1, 1] and the other analytic in C \ {±ω} .

Proposition 26 Let k 6= 2 and z ∈ C\ [−1, 1] , with z 6= ±ω if k 6= 1. Then,
we have

s(z; k)

2− k = sc(z; k) + χ (k) sd(z; k), (54)

where χ (k) is the characteristic function defined by

χ (k) =

{
0, k ∈ [0, 2]

1, k ∈ R \ [0, 2]
, (55)

sc(z; k) =
1

π

1∫
−1

√
1− t2

4 (k − 1) t2 + (k − 2)2

1

z − tdt, (56)

sd (z; k) =
2k

2− k
z

4 (k − 1) z2 + (k − 2)2 , (57)

and s(z; k) was defined in (51).

Proof. Let k ∈ R \ {0, 1, 2} . From (51) we have

s(z; k)

2− k =
z

4 (k − 1)

−
√

1− z−2 + k
2−k

z2 + (k−2)2

4(k−1)

,
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or
s(z; k)

2− k = − z

4 (k − 1)

√
1− z−2 + k

k−2

z2 − ω2
.

Since we know that ω (k) ∈ C \ [−1, 1] from Lemma 25, we can use (53)
with b = ω and obtain

s(z; k)

2− k =
1

4 (k − 1)

1

π

1∫
−1

√
1− t2

t2 − ω2

1

z − tdt

− 1

4 (k − 1)

(√
1− ω−2 +

k

k − 2

)
z

z2 − ω2
.

But we have

1− ω−2 =
k2

(k − 2)2 (58)

and therefore

√
1− ω−2 +

k

k − 2
=

∣∣∣∣ k

k − 2

∣∣∣∣+
k

k − 2

=

{
0, k ∈ [0, 2)

2k
k−2

, k ∈ R \ [0, 2]
.

Thus, for k ∈ (0, 2) \ {1} we get

s(z; k)

2− k =
1

4 (k − 1)

1

π

1∫
−1

√
1− t2

t2 − ω2

1

z − tdt,

and for k ∈ R \ [0, 2]

s(z; k)

2− k =
1

4 (k − 1)

1

π

1∫
−1

√
1− t2

t2 − ω2

1

z − tdt

+
2k

2− k
1

4 (k − 1)

z

z2 − ω2
.

If k = 0, then we have from (51)

s(z; 0) =
z

2

√
1− z−2

z2 − 1
=

1

2z
√

1− z−2
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and using (39) we get

s(z; 0)

2
=

1

4π

1∫
−1

1√
1− t2

dt

z − t

=
1

π

1∫
−1

√
1− t2

4 (1− t2)

1

z − tdt = sc(z; 0).

If k = 1, then we have from (51)

s(z; 1) = z
(

1−
√

1− z−2
)

and using (40) we get

s(z; 1)

1
=

1

π

1∫
−1

√
1− t2
z − t dt = sc(z; 1).

Remark 27 Note that the function sc(z; k) is analytic for z ∈ C \ [−1, 1] ,
since it is the Stieltjes transform of a distribution [19, A.1]

sc(z; k) =
1

4 (k − 1)

1

π

1∫
−1

√
1− t2

t2 − ω2

1

z − tdt.

In fact, (53) gives

sc(z; k) =
z

4 (k − 1)

√
1− ω−2 −

√
1− z−2

z2 − ω2
, k 6= 1 (59)

which is analytic at z = ±ω with

lim
z→±ω

sc(z; k) = ± 1

4 (k − 1)

√
1− ω−2

2ω (1− ω2)
, k 6= 0, 1.

For k = 0, we have

sc(z; 0) =
z

4

√
1− z−2

z2 − 1
=

1

4

1√
1− z−2

,
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since ω (0) = −1.
Finally, rewriting (59) as

sc(z; k) = z

√
1− ω−2 −

√
1− z−2

4 (k − 1) z2 + (k − 2)2 ,

we see that

sc(z; 1) = z
(√

1− ω−2 −
√

1− z−2
)

= z
(

1−
√

1− z−2
)
,

since ω−2 → 0 as k → 1.

4.2 The Dickson polynomials

We can now apply the previous results to the Dickson polynomials of the
(k+ 1)-th kind Dn,k(x; a), related to the scaled polynomials dn(x; k) by (46).

Proposition 28 Let z ∈ C \ [−2
√
a, 2
√
a] and

Ω (k, a) = (k − 2)

√
a

k − 1
i. (60)

Then,

lim
n→∞

D∗n(z; a)

Dn,k(z; a)
= S (z; k, a) ,

where

S (z; k, a) =
z

2

(k − 2)
√

1− 4az−2 + k

(k − 1) z2 + a (k − 2)2 (61)

and z 6= ±Ω if k 6= 1.

Proof. Using (46), (48) and (50), we have

lim
n→∞

D∗n(z; a)

Dn,k(z; a)
= lim

n→∞

a
n−1
2 d∗n

(
z

2
√
a

)
a
n
2 dn

(
z

2
√
a
; k
) =

1√
a
s

(
z

2
√
a

; k

)
, (62)

as long as
z

2
√
a
/∈ [−1, 1] ,

z

2
√
a
6= ±ω if k 6= 1.
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Also,

1√
a
s

(
z

2
√
a

; k

)
=

z

2a

(k − 2)

√
1−

(
z

2
√
a

)−2

+ k

4 (k − 1)
(

z
2
√
a

)2

+ (k − 2)2

=
z

2

(k − 2)
√

1− 4az−2 + k

(k − 1) z2 + a (k − 2)2 .

We finally have all the necessary elements to find an explicit representa-
tion for the moment functional L associated with the polynomials Dn,k(x; a).

Theorem 29 Let k 6= 2 and L : C [x] → C be the linear functional defined
by (20). Then, L admits the representation

L [q] = Lc [q] + χ (k)Ld [q] ,

where χ (k) was defined in (55),

Lc [q] =
1

2π

2
√
a∫

−2
√
a

q (t)

√
4a− t2

(k − 1) t2 + a (k − 2)2dt (63)

and

Ld [q] =
k

2 (k − 1) (2− k)
[q (Ω) + q (−Ω)] , (64)

with Ω defined by (60).

Proof. From (22) we know that the first moment of L is given by

µ0 =
1

2− k .

Thus, from Markov’s theorem (26) we have

lim
n→∞

1

2− k
D∗n(z; a)

Dn,k(z; a)
=

∫
Λk

dψ (t; k)

z − t , z ∈ C\Λk.
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From (62) we get

lim
n→∞

1

2− k
D∗n(z; a)

Dn,k(z; a)
=

1√
a

1

2− ks
(

z

2
√
a

; k

)
and from (54) we obtain

lim
n→∞

1

2− k
D∗n(z; a)

Dn,k(z; a)
=

1√
a

[
sc

(
z

2
√
a

; k

)
+ χ (k) sd(

z

2
√
a

; k)

]
.

Using (56) we have

1√
a
sc

(
z

2
√
a

; k

)
=

1

π
√
a

1∫
−1

√
1− t2

4 (k − 1) t2 + (k − 2)2

dt
z

2
√
a
− t ,

as long as z
2
√
a
/∈ [−1, 1] (see Remark 27). Changing variables to t = τ

2
√
a
, we

get

1√
a
sc

(
z

2
√
a

; k

)
=

1

2πa

2
√
a∫

−2
√
a

√
1− τ2

4a

4 (k − 1) τ2

4a
+ (k − 2)2

dτ
z

2
√
a
− τ

2
√
a

=
1

2π

2
√
a∫

−2
√
a

√
4a− τ 2

(k − 1) τ 2 + a (k − 2)2

dτ

z − τ .

Using (56) we have

1√
a
sd

(
z

2
√
a

; k

)
=

1√
a

2k

2− k
z

2
√
a

1

4 (k − 1) z2

4a
+ (k − 2)2

=
k

2− k
z

(k − 1) z2 + a (k − 2)2 ,

as long as

z

2
√
a
/∈ [−1, 1] ,

z

2
√
a
6= ±ω if k 6= 1.
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If k 6= 1, we can write

1√
a
sd

(
z

2
√
a

; k

)
=

k

(2− k) (k − 1)

z

z2 + a (k−2)2

(k−1)

=
k

(2− k) (k − 1)

z

z2 − Ω2

and using partial fractions,

1√
a
sd

(
z

2
√
a

; k

)
=

k

2 (2− k) (k − 1)

(
1

z − Ω
+

1

z + Ω

)
,

with z 6= ±Ω.
Therefore, we conclude that

dψ (t; k) =
1

2π

√
4a− τ 2

(k − 1) τ 2 + a (k − 2)2dt = dψc (t; k) , k ∈ [0, 2),

dψ (t; k) = dψc (t; k) + k
δ (t− Ω) + δ (t+ Ω)

2 (2− k) (k − 1)
dt, k ∈ R \ [0, 2] ,

where δ (t− t0) denotes the Dirac delta function and

Λk =

{
[−2
√
a, 2
√
a] , k ∈ [0, 2)

[−2
√
a, 2
√
a] ∪ {−Ω,Ω} , k ∈ R \ [0, 2]

.

Remark 30 We get the same result if we apply the Stieltjes-Perron inver-
sion formula (28) to the function S (z; k, a) .

Although Theorem 29 seems to be valid only when k 6= 2, we can find a
valid interpretation even in this case.

Lemma 31 Let k 6= 1 and Ω be defined by (60). Then,

Dn,k (Ω; a) = (2− k)

(
−i

√
a

k − 1

)n
(65)
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Proof. Lets assume that

Dn,k (Ω; a) = b0B
n,

for some functions b0 (k, a) and B (k, a) . Using (4), we have

0 = b0B
n+2 − Ωb0B

n+1 + ab0B
n = b0B

n
(
B2 − ΩB + a

)
.

Using (2), we get
b0 = D0,k(ω; a) = 2− k

and
Ω = D1,k (Ω; a) = (2− k)B (k, a) .

Thus,

B (k, a) =
Ω

2− k = −
√

a

k − 1
i,

and clearly
B2 − ΩB + a = 0.

It follows from the previous Lemma that the discrete part of L is well
defined when k = 2.

Proposition 32 Let Ω be defined by (60) and Ld be defined by (64). Then,
for k 6= 1

Ld [Dn,kDm,k] =

[
1 + (−1)n+m

2

]
(2− k) k

k − 1

(
i

√
a

k − 1

)n+m

.

Proof. From (65) we have

Dn,k (Ω; a)Dm,k (Ω; a) = (2− k)2

(
−i

√
a

k − 1

)n+m

.

Using (24), we get

Dn,k (Ω; a)Dm,k (Ω; a) +Dn,k (−Ω; a)Dm,k (−Ω; a)

= (2− k)2

(
i

√
a

k − 1

)n+m [
1 + (−1)n+m] .
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Thus,

Ld [Dn,kDm,k] =

[
1 + (−1)n+m

2

]
(2− k) k

k − 1

(
i

√
a

k − 1

)n+m

.

We can now extend Theorem 29 to all values of k.

Corollary 33 Let hn (k) be defined by (21) and χ (k) be defined by (55).
Then,

1

2π

2
√
a∫

−2
√
a

√
4a− t2Dn,k (t)Dm,k (t)

(k − 1) t2 + a (k − 2)2 dt (66)

+χ (k)

[
1 + (−1)n+m

2

]
(2− k) k

k − 1

(
i

√
a

k − 1

)n+m

= hn (k) δn,m.

Remark 34 If we set k = 2 in (66), we obtain

1

2π

2
√
a∫

−2
√
a

√
4a− t2
t2

Dn,2 (t)Dm,2 (t) dt = hn (k) δn,m, (67)

which seems to make no sense, since the integrand is singular at t = 0.
However, if we use (44) we have

Dn,2(t; a) = a
1
2

(n−1)tUn−1

(
t

2
√
a

)
,

and we can write (67) as

a
1
2

(n+m)−1 1

2π

2
√
a∫

−2
√
a

√
4a− t2Un−1

(
t

2
√
a

)
Um−1

(
t

2
√
a

)
dt = hn (k) δn,m,

or changing variables to τ = t
2
√
a

a
n+m
2

2

π

1∫
−1

√
1− τ 2Un−1 (τ)Um−1 (τ) dτ = hn (k) δn,m.
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This agrees with (38), since we have U−1 = 0 from (33) and h0 (2) = 0 from
(21), while for n,m ≥ 1 we know from (21) that

a−
n+m
2 hn (k) δn,m = δn,m.

Finally, we will use the function S (z; k, a) to find explicit expressions for
the moments of L.

Proposition 35 Let L be the linear functional defined by (20). Then, the
moments of L of even order

µ2n (k) = L
[
x2n
]
,

are given by

µ2n (1) = 22n+1

(
1
2

n+ 1

)
(−a)n , n = 0, 1, . . . , (68)

µ2n (2) = −22n−1

(
1
2

n

)
(−a)n , n = 1, 2, . . . , (69)

and if k 6= 1, 2,

µ2n (k) = −1

2

(k − 2)2n

(k − 1)n+1 (−a)n
(

k

k − 2
+

n∑
l=0

(
1
2

l

)[
4 (k − 1)

(k − 2)2

]l)
. (70)

Proof. From (29) and (61), we have

∞∑
l=0

µl (k)

zl+1
=
S (z; k, a)

2− k = −z
2

√
1− 4az−2 + k

k−2

(k − 1) z2 + a (k − 2)2 .

Using (23), we get

∞∑
l=0

µ2l (k)

z2l
= −1

2

√
1− 4az−2 + k

k−2

k − 1 + a (k − 2)2 z−2
.

Letting u = z−2, we see that

∞∑
l=0

µ2l (k)ul = −1

2

√
1− 4au+ k

k−2

k − 1 + a (k − 2)2 u
,
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and therefore

√
1− 4au+

k

k − 2
= −2

[
k − 1 + a (k − 2)2 u

] ∞∑
l=0

µ2lu
l

= −
∞∑
l=0

2 (k − 1)µ2lu
l −

∞∑
l=1

2a (k − 2)2 µ2(l−1)u
l.

Since
√

1− 4au =
∞∑
l=0

(
1
2

l

)
(−4au)l ,

we obtain

1 +
k

k − 2
= −2 (k − 1)µ0,

and (
1
2

l

)
(−4a)l = −2 (k − 1)µ2l − 2a (k − 2)2 µ2(l−1), l = 1, 2, . . . .

If k = 1, we get(
1
2

l

)
(−4a)l = −2aµ2(l−1), l = 1, 2, . . . ,

or

µ2n (1) = 22n+1

(
1
2

n+ 1

)
(−a)n , n = 0, 1, . . . .

If k = 2, we have

µ2n (2) = −22n−1

(
1
2

n

)
(−a)n , n = 1, 2, . . . .

If k 6= 1, 2, we set yl = µ2l, and obtain the recurrence

yl+1 = −a (k − 2)2

k − 1
yl −

(−4a)l+1

2 (k − 1)

(
1
2

l + 1

)
,

with
y0 =

1

2− k .
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As it is well known, the general solution of the initial value problem

yn+1 = cnyn + gn, yn0 = y0,

is [8, 1.2.4]

yn = y0

n−1∏
j=n0

cj +

n−1∑
k=n0

(
gk

n−1∏
j=k+1

cj

)
.

Thus,

yn =
1

2− k

[
−a (k − 2)2

k − 1

]n
−

n−1∑
l=0

(−4a)l+1

2 (k − 1)

(
1
2

l + 1

)[
−a (k − 2)2

k − 1

]n−l−1

,

or

yn = − 1

2 (k − 1)

[
−a (k − 2)2

k − 1

]n(
k

k − 2
+

n∑
l=0

(
1
2

l

)[
4 (k − 1)

(k − 2)2

]l)

and the result follows.

Remark 36 If k = 0, we get from (70)

µ2n (0) =
(4a)n

2

n∑
l=0

(−1)l
(

1
2

l

)
,

and using the identity [16, 26.3.10]

n∑
l=0

(−1)l
(
α

l

)
= (−1)n

(
α− 1

n

)
,

we obtain

µ2n (0) = 22n−1

(
−1

2

n

)
(−a)n .

This agrees with (63), since

µ2n (0) =
1

2π

2
√
a∫

−2
√
a

t2n√
4a− t2

dt.
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When k = 1, we have from (63)

µ2n (1) =
1

2πa

2
√
a∫

−2
√
a

t2n
√

4a− t2dt,

and therefore (68) gives

1

2πa

2
√
a∫

−2
√
a

t2n
√

4a− t2dt = 22n+1

(
1
2

n+ 1

)
(−a)n ,

which can be verified directly.
When k = 2, we can write (see Remark 34)

µ2n (2) =
1

2π

2
√
a∫

−2
√
a

t2n
√

4a− t2
t2

dt =
1

2π

2
√
a∫

−2
√
a

t2(n−1)
√

4a− t2dt,

where n = 1, 2, . . . . Hence,

µ2n (2) = aµ2(n−1) (1) = a22(n−1)+1

(
1
2

n

)
(−a)n−1 , n = 1, 2, . . . ,

in agreement with (69).

5 Conclusions

We have shown that the Dickson polynomials of the (k + 1)-th kind defined
by

Dn,k(x; a) =

bn2 c∑
j=0

n− kj
n− j

(
n− j
j

)
(−a)j xn−2j

satisfy the orthogonality relation

1

2π

2
√
a∫

−2
√
a

√
4a− t2Dn,k (t)Dm,k (t)

(k − 1) t2 + a (k − 2)2 dt

+χ (k)

[
1 + (−1)n+m

2

]
(2− k) k

k − 1

(
i

√
a

k − 1

)n+m

= hn (k) δn,m,
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where a > 0, k ∈ R,

χ (k) =

{
0, k ∈ [0, 2]

1, k ∈ R \ [0, 2]
,

and
h0 (k) = 2− k, hn (k) = an, n = 1, 2, . . . .

We hope that this work will outline some connections between finite fields
and orthogonal polynomials, and that it would be of interest to researchers
in both areas.
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2017-10 A. Jiménez-Pastor, V. Pillwein: A Computable Extension for Holonomic Functions: DD-

Finite Functions December 2017. Eds.: P. Paule, M. Kauers
2017-11 D. Dominici: Mehler-Heine Type Formulas for Charlier and Meixner Polynomials II. Higher

Order Terms December 2017. Eds.: P. Paule, M. Kauers
2017-12 D. Dominici: Orthogonality of the Dickson Polynomials of the (k + 1)-th Kind December

2017. Eds.: P. Paule, M. Kauers

2016

2016-01 P. Gangl, U. Langer: A Local Mesh Modification Strategy for Interface Problems with Appli-

cation to Shape and Topology Optimization November 2016. Eds.: B. Jüttler, R. Ramlau
2016-02 C. Hofer: Parallelization of Continuous and Discontinuous Galerkin Dual-Primal Isogeomet-

ric Tearing and Interconnecting Methods November 2016. Eds.: U. Langer, W. Zulehner
2016-03 C. Hofer: Analysis of Discontinuous Galerkin Dual-Primal Isogeometric Tearing and Inter-

connecting Methods November 2016. Eds.: U. Langer, B. Jüttler
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