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1 Introduction

Let {φn} , {ψn} , and {Pn} be three bases of C[x], related by

φi (x) =
i∑

k=0

ai,kPk (x) ,

and

ψj (x) =

j∑
m=0

bj,mPm (x) .

Then, we clearly have

φi (x)ψj (x) =
i∑

k=0

j∑
m=0

ai,kbj,mPk (x)Pm (x) . (1)

If {µn} is a sequence of complex numbers and L : C [x] → C is the linear
functional defined by

L [xn] = µn, n = 0, 1, . . . ,

then L is called the moment functional determined by the formal moment
sequence {µn} [31]. The number µn is called the moment of order n.

If the polynomials Pn (x) satisfy

L [PnPm] = hnδn,m, n,m = 0, 1, . . . , (2)

where h0 = µ0, hn 6= 0 and δn,m is Kronecker’s delta

δn,m =

{
1, n = m
0, n 6= m

,

then {Pn} is called an orthogonal polynomial sequence with respect to
L.

Applying L to (1) and using (2), we get

L [φiψj] =
∑
k,m

ai,kbj,mL [PkPm] =
∑
k,m

ai,kbj,mhkδk,m =
∑
k

ai,kbj,khk. (3)

If we define the matrices An, Bn, Dn, and Hn by

(An)i,j =

{
ai,j i ≥ j
0 i < j

, 0 ≤ i, j ≤ n− 1,
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(Bn)i,j =

{
bi,j i ≥ j
0 i < j

, 0 ≤ i, j ≤ n− 1,

(Dn)i,j =

{
hi i = j
0 i 6= j

, 0 ≤ i, j ≤ n− 1,

and
(Hn)i,j = L [φiψj] , 0 ≤ i, j ≤ n− 1,

then we see from (3) that

Hn = AnDnB
T
n . (4)

In particular, if we choose φn(x) = ψn(x) = xn and the polynomials Pn(x)
are monic, Hn becomes a Hankel matrix

(Hn)i,j = µi+j−2, 1 ≤ i, j ≤ n,

and we define the Hankel determinants by ∆0 = 1 and

∆n = det (Hn) , n = 1, 2, . . . .

It is well known that (2) is equivalent to the condition

∆n 6= 0, n = 1, 2, . . . .

The theory of orthogonal polynomials has a long history, from the first
work of Adrien-Marie Legendre [51] on the gravitational potential in spherical
coordinates, to the present day. See [18], [22], [28], [31], [44], [47], [49], [50],
[52], [55], [59], [63], [66], [67].

The standard approach is to use the monomial basis and apply the theory
of Hankel determinants. However, one could consider more general bases and
work instead with matrix factorizations of the form (4). In particular, if the
bases φn(x), ψn(x) are the same, one would have an LDL decomposition [72],
[46].

The links between the theory of (infinite, semi-infinite) matrices and or-
thogonal polynomials have been studied by multiple authors. The bibliog-
raphy on this subject has grown exponentially in the last years, and any
attempt to review all the references will be almost impossible. Moreover,
there are now connections with several fields of mathematics, physics, and
statistics, including:
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1. Random matrices [7], [10], [12], [27], [32], [57].

2. Toda lattices [3], [4], [5], [11], [14], [53], [54], [68].

3. Matrix orthogonal polynomials [17], [37].

4. Multiple orthogonal polynomials [15], [19], [38].

5. Multivariate orthogonal polynomials [21], [36].

6. Orthogonal polynomials on the unit circle [16], [20], [64], [65].

7. Skew orthogonal polynomials [1], [2], [45], [58].

8. Darboux transformations [8], [9].

9. Christoffel transformations [13].

10. Geronimus transformations [33], [41].

11. Riemann–Hilbert Problems [6], [25], [26].

and

12. Painlevé equations [23], [29], [30], [39], [40].

The objective of this article is to present some basic elements of the theory
of orthogonal polynomials based on matrix factorizations. We apply these
ideas to one specific family of discrete semiclassical orthogonal polynomials
(the Meixner polynomials), and outline the general case.

The paper is structured as follows: in Section 2, we introduce all the
elements necessary for the theory. We show how to compute the coefficients
in the three-term recurrence relation satisfied by the orthogonal polynomials
using the Modified Chebyshev algorithm.

In Section 3, we consider some special classes of orthogonal polynomials,
called semiclassical. We focus our attention on the linear functionals that
satisfy a Pearson equation with respect to the shift operator. We derive
a system of partial difference equations that can be used to compute the
coefficients in the three-term recurrence relation.

Finally, in Section 4 we summarize the results and discuss possible exten-
sions.
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2 Main theory

2.1 Definitions

We begin with a few definitions.

Definition 1 Let N0 denote the set

N0 = N ∪ {0} = 0, 1, 2, . . . .

A semi-infinite matrix M ∈ C∞×∞ is a function M : N0 × N0 → C. We
write

M (i, j) = Mi,j.

(i) We say that U is an upper triangular matrix if

Ui,j = 0, i > j.

We say that U is a unit upper triangular (UUT) matrix if U is upper
triangular and

Ui,i = 1, i ∈ N0.

(ii) We say that L is a lower triangular matrix if

Li,j = 0, i < j.

We say that L is a unit lower triangular (ULT) matrix if L is lower
triangular and

Li,i = 1, i ∈ N0.

Remark 2 For material on semi-infinite matrices and their connections
with orthogonal polynomials, see [70].

Definition 3 We say that −→q ∈ C [x]∞×1 is a basis of C [x] if qn (x) ∈ C [x]
and deg (qn) = n.

We say that −→q is a monic basis if qn (x) is a monic polynomial for all
n ∈ N0.

The basis that we will use in our examples is constructed with the falling
factorials.
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Example 4 The basis of falling factorial (or binomial) polynomials is
defined by φ0 (x) = 1 and

φn (x) =
n−1∏
j=0

(x− j) , n ∈ N. (5)

Remark 5 Using the definition (5), we immediately obtain the recurrence
relation

φn+1 (x) = (x− n)φn (x) . (6)

Definition 6 We define the Pochhammer (or rising factorial) polynomials
by (x)0 = 1 and

(x)n =
n−1∏
k=0

(x+ k) , n ∈ N. (7)

Remark 7 The Pochhammer polynomials can be generalized to complex val-
ues of n using the formula [61, 5.2.5]

(x)n =
Γ (x+ n)

Γ (x)
, − (x+ n) /∈ N0, (8)

where Γ (z) is the Gamma function.

The Pochhammer polynomials satisfy many identities, including the re-
currence [60, 18:5:12]

(x)n+m = (x)n (x+ n)m , n,m ∈ N0, (9)

the change of sign identity

(−x)n = (−1)n (x− n+ 1)n , (10)

and the ratio formulas [60, 18:5:10]

(x−m)n
(x)n

=
(x−m)m

(x−m+ n)m
=

(1− x)m
(1− x− n)m

, m ∈ N0. (11)

We see from the definitions (5) and (7) that the polynomials φn (x) and
(x)n are related by [61, 5.2.6]

φn (x) =
n−1∏
j=0

(x− j) = (−1)n
n−1∏
j=0

(−x+ j) = (−1)n (−x)n .
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Using (10), we get

φn (x) = (−1)n (−x)n = (x− n+ 1)n . (12)

Remark 8 Note that from (8) and (12) we get

φn (x) =
Γ (x+ 1)

Γ (x− n+ 1)
= n!

(
x

n

)
. (13)

In particular, using the recurrence relation for the binomial coefficients
[61, 26.3.5], we obtain

φn (x+ 1)

n!
=

(
x+ 1

n

)
=

(
x

n

)
+

(
x

n− 1

)
=
φn (x)

n!
+
φn−1 (x)

(n− 1)!
.

Therefore,
φn (x+ 1) = φn (x) + nφn−1 (x) . (14)

Using the forward difference operator (acting on the variable x)

∆f (x) = f (x+ 1)− f (x) ,

we can write (14) as ∆φn = nφn−1. For higher powers of ∆, we have the
following lemma.

Lemma 9 For all i, j ∈ N0, we have

∆iφj (x) = φi (j)φj−i (x) . (15)

Note that from (5) we see that

φi (j) = 0, i > j.

Proof. We use induction on i. The case i = 0 is an identity. Assuming the
result to be true for i ≥ 0, we have

∆i+1φj (x) = ∆ [φi (j)φj−i (x)] = φi (j) ∆φj−i (x)

= φi (j) (j − i)φj−i−1 (x) ,

where we have used (14). The result now follows from (6), since

(j − i)φi (j) = φi+1 (j) .

Using the Pochhammer polynomials we can construct the generalized
hypergeometric function.
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Definition 10 The generalized hypergeometric function pFq is defined
by [61, 16.2]

pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
=
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
. (16)

Remark 11 The convergence of the series (16) depends on the values of p
and q. We have three different cases to consider:

1. If p < q + 1, pFq is an entire function of z.

2. If p = q + 1, pFq is analytic inside the unit circle, |z| < 1.

3. If p > q + 1, pFq diverges for z 6= 0, unless one or more of the top
parameters ai is a negative integer. If we take a1 = −N, with N ∈ N0,
then pFq becomes a polynomial of degree N.

For example, we write the exponential generating function for the Pochham-
mer polynomials as a 1F0 function.

Example 12 Using the binomial theorem and (13), we have

(1 + z)x =
∞∑
n=0

(
x

n

)
zn =

∞∑
n=0

φn (x)

n!
zn.

From (12), we get

1F0

(
x
− ; z

)
=
∞∑
n=0

(x)n
zn

n!
=
∞∑
n=0

(−1)n φn (−x)
zn

n!
= (1− z)−x , |z| < 1.

(17)

In the next section, we will need the following result.

Proposition 13 The polynomials φn (x) satisfy the connection formula

φn (x)φm (x) =
∞∑
k=0

(
n

k

)(
m

k

)
k!φn+m−k (x) . (18)
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Proof. Using (13), we can write

∞∑
k=0

(
n

k

)(
m

k

)
k!φn+m−k (x) =

∞∑
k=0

φk (n)φk (m)φn+m−k (x)

k!
,

or, using (12),

∞∑
k=0

(
n

k

)(
m

k

)
k!φn+m−k (x) =

∞∑
k=0

(−n)k (−m)k (x+ 1 + k − n−m)n+m−k
1

k!
.

But from (9), we have

(x+ 1− n−m)k (x+ 1− n−m+ k)n+m−k = (x+ 1− n−m)n+m

and therefore
∞∑
k=0

(
n

k

)(
m

k

)
k!φn+m−k (x) = (x+ 1− n−m)n+m

∞∑
k=0

(−n)k (−m)k
(x+ 1− n−m)k

1

k!
.

Using (16), we get

∞∑
k=0

(
n

k

)(
m

k

)
k!φn+m−k (x) = (x+ 1− n−m)n+m 2F1

(
−n,−m

x+ 1− n−m ; 1

)
.

If we use the Chu–Vandermonde identity [61, 15.4.24]

2F1

(
−n, b
c

; 1

)
=

(c− b)n
(c)n

, n ∈ N0,

we obtain
∞∑
k=0

(
n

k

)(
m

k

)
k!φn+m−k (x) = (x+ 1− n−m)n+m

(x+ 1− n)n
(x+ 1− n−m)n

,

and (9) gives
(x+ 1− n−m)n+m

(x+ 1− n−m)n
= (x+ 1−m)m .

Thus, using (12),

∞∑
k=0

(
n

k

)(
m

k

)
k!φn+m−k (x) = (x+ 1− n)n (x+ 1−m)m = φn (x)φm (x) .
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2.2 Linear functionals

In this section we consider linear functional acting on the space of polyno-
mials C [x] , i.e., belonging to the dual vector space C∗ [x] .

Definition 14 Let L : C [x] → C be a linear functional and −→q ∈ C [x]∞×1

be a monic basis.
(i) The numbers

νn = L [qn] , n ∈ N0,

are called the (generalized) moments of L. We write

−→ν = L [−→q ] ∈ C [x]∞×1 .

(ii) We define the Gram matrix G by

G = L
[−→q −→q T ] ∈ C∞×∞.

As an example, we consider the basis of falling factorial polynomials.

Example 15 Let L : C [x]→ C be defined by

L [q] =
∞∑
x=0

q(x) (a)x
zx

x!
, q ∈ C [x] . (19)

The moments of L on the falling factorial basis are given by

νn (z) = L [φn] =
∞∑
x=0

φn (x) (a)x
zx

x!
.

From (13), we get

νn (z) =
∞∑
x=n

x!

(x− n)!
(a)x

zx

x!
=
∞∑
x=0

(a)x+n
x!

zx+n,

or using (9) and (17)

νn (z) = zn (a)n

∞∑
x=0

(a+ n)x
zx

x!
= zn (a)n (1− z)−a−n , |z| < 1. (20)
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Using (20) and (18), we get

Gi,j = L [φi, φj] =
∞∑
k=0

(
i

k

)(
j

k

)
k!zi+j−k (a)i+j−k (1− z)−a−i−j+k

= (1− z)−a
(

z

1− z

)i+j ∞∑
k=0

(−i)k (−j)k
k!

(a)i+j−k

(
1− z
z

)k
.

From (9) and (10), we have

(a)i+j
(a)i+j−k

= (a+ i+ j − k)k = (−1)k (1− i− j − a)k .

Therefore,

Gi,j = (1− z)−a
(

z

1− z

)i+j
(a)i+j

∞∑
k=0

(−i)k (−j)k
k!

(−1)k

(1− i− j − a)k

(
1− z
z

)k
= (1− z)−a

(
z

1− z

)i+j
(a)i+j 2F1

(
−i,−j

1− i− j − a ;
z − 1

z

)
.

Using the identity [61, 15.8.7]

2F1

(
−n, b
c

; z

)
=

(c− b)n
(c)n

2F1

(
−n, b

1 + b− c− n ; 1− z
)
, n ∈ N0,

we obtain

Gi,j = (1− z)−a
(

z

1− z

)i+j
(a)i+j

(1− i− a)i
(1− i− j − a)i

2F1

(
−i,−j
a

;
1

z

)
.

But using (11) and (9),

(1− i− a)i
(1− i− a− j)i

=
(a)i

(a+ j)i
= (a)i

(a)j
(a)i+j

.

Thus, we conclude that

Gi,j = (1− z)−a
(

z

1− z

)i+j
(a)i (a)j 2F1

(
−i,−j
a

;
1

z

)
, (21)

where −a /∈ N0, and we choose the branch z /∈ [1,∞).
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Remark 16 Note that the matrix G defined by (21) is symmetric, and all
the entries are finite sums, since the hypergeometric series terminates for all
i, j ∈ N0.

Example 17 Also, z = 0 is not a singularity of Gi,j, since the power zi+j

cancels the powers of z−1.

Definition 18 We say that L is a quasi-definite functional with respect
to a monic basis −→q ∈ C [x]∞×1if the matrix L

[−→q −→q T ] admits the LDL
decomposition [46, 4.12]

L
[−→q −→q T ] = G = CHCT , (22)

where C ∈ C∞×∞ is a ULT matrix and H ∈ C∞×∞ is a nonsingular diagonal
matrix

Hi,j = hiδi,j, hi 6= 0, i, j ∈ N0.

If hi > 0 for all i ∈ N0, we say that L is a positive-definite functional.

Proposition 19 If L is a quasi-definite functional with respect to −→q , then
we can compute the entries of C and H in (22) by the following iterative
formula:

h0 = G0,0, Ci,0 =
Gi,0

h0
, Ci,i = 1, i ∈ N0,

Ci,j = 0, i < j,

and for i ∈ N,

hi = Gi,i −
i−1∑
k=0

(Ci,k)
2 hk,

Ci,j =
1

hj

(
Gi,j −

j−1∑
k=0

Ci,kCj,khk

)
, j = 1, . . . , i− 1.

Proof. Let i ≥ j. Then,

Gi,j =
(
CHCT

)
i,j

=
∞∑
k=0

Ci,khkCj,k

=

j∑
k=0

Ci,khkCj,k = Ci,jhj +

j−1∑
k=0

Ci,khkCj,k.
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Solving for Ci,j, we get

Ci,j =
1

hj

(
Gi,j −

j−1∑
k=0

Ci,khkCj,k

)
.

In particular, when i = j

1 = Ci,i =
1

hi

[
Gi,i −

i−1∑
k=0

(Ci,k)
2 hk

]
.

Example 20 Let the matrix G be defined by (21). Since

∞∑
k=0

Ci,khkCj,k =
∞∑
k=0

(
i

k

)
(a)i
(a)k

(
z

1− z

)i−k
(a)k k!zk

(1− z)2k+a

(
j

k

)
(a)j
(a)k

(
z

1− z

)j−k
= (1− z)−a

(
z

1− z

)i+j
(a)i (a)j

∞∑
k=0

(
i

k

)(
j

k

)
k!

(a)k
z−k

= (1− z)−a
(

z

1− z

)i+j
(a)i (a)j 2F1

(
−i,−j
a

;
1

z

)
,

we see that the matrices C and H in the LDL decomposition (22) have entries

Ci,j =

(
i

j

)
(a)i
(a)j

(
z

1− z

)i−j
, i, j ∈ N0, (23)

and Hi,j = hiδi,j, with

hi =
(a)i i! z

i

(1− z)2i+a
, i ∈ N0. (24)

We conclude that L is a quasi-definite functional if −a /∈ N0, z 6= 0, and
z /∈ [1,∞). The functional L will be positive definite if a > 0 and 0 < z < 1.

2.3 Orthogonal polynomials

In this section, we introduce sequences of polynomials orthogonal with re-
spect to linear functionals.
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Definition 21 If L is a quasi-definite functional with respect to −→q , we define
the sequence of monic orthogonal polynomials (MOPS) with respect to
L by

−→p = C−1−→q ∈ C [x]∞×1 . (25)

Example 22 Let the matrix C be defined by (23). We have

∞∑
k=0

(−1)i−k Ci,kCk,j =
∞∑
k=0

(−1)i−k
(
i

k

)
(a)i
(a)k

(
z

1− z

)i−k (
k

j

)
(a)k
(a)j

(
z

1− z

)k−j
=

(a)i
(a)j

(
z

1− z

)i−j ∞∑
k=0

(−1)i−k
(
i

k

)(
k

j

)
.

If we use the formula for higher order differences [62, 6.1]

∆pf (x) =

p∑
j=0

(
p

j

)
(−1)p−j f (x+ j) , (26)

we see that

∞∑
k=0

(−1)i−k
(
i

k

)(
k

j

)
=

i∑
k=0

(
i

k

)
(−1)i−k

(
k

j

)
=

[
∆i

(
x

j

)]
x=0

.

From (13) and (15), we have[
∆i

(
x

j

)]
x=0

=
1

j!

[
∆iφj (x)

]
x=0

=
φi (j)

j!
φj−i (0) = δi,j,

since φi (i) = i!.
Thus, we conclude that

∞∑
k=0

(−1)i−k Ci,kCk,j =
(a)i
(a)j

(
z

1− z

)i−j
δi,j = δi,j,

and therefore
(−1)i−k Ci,k =

(
C−1

)
i,k
. (27)
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The polynomials −→p = C−1
−→
φ are known as (monic) Meixner polyno-

mials [47, 6.1]. Using (23) and (27), we get

pn (x) =
∞∑
j=0

(
C−1

)
n,j

φj (x) =
∞∑
j=0

(−1)n−j
(
n

j

)
(a)n
(a)j

(
z

1− z

)n−j
(−1)j (−x)j .

From (13) and (12), we have(
n

j

)
=
φj (n)

j!
=

(−1)j (−n)j
j!

.

Therefore, we obtain the hypergeometric representation [34]

pn (x) = (a)n

(
z

z − 1

)n
2F1

(
−n,−x

a
; 1− z−1

)
.

Theorem 23 Let L be a quasi-definite functional with respect to −→q and −→p
be the corresponding MOPS. Then,

Proposition 24 (i) The polynomials pn (x) satisfy the orthogonality re-
lation

L
[−→p −→p T

]
= H. (28)

(ii) We have
L [−→p ] = h0

−→e0 , (29)

where
(−→ek )j = δk,j.

(iii) If
−→
ψ is a monic basis of C [x] , then

L
[−→p −→ψ T

]
= HU,

where U is a UUT matrix. In other words, for all i, j ∈ N0

L [piψj] =

{
hi, i = j
0, i > j

. (30)
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Proof. (i) Using (25), we have

L
[−→p −→p T

]
= L

[
C−1−→q −→q TC−T

]
= C−1GC−T = H,

where
C−T =

(
CT
)−1

=
(
C−1

)T
.

(ii) Using (28), we have

(L [−→p ])j = L [pj] = L [pjp0] = h0δj,0.

(iii) If
−→
ψ is a monic basis of C [x] , then there exists a ULT matrix L such

that −→
ψ = L −→q .

Using (25), we get

L
[−→p −→ψ T

]
= L

[
C−1−→q −→q TLT

]
= C−1GLT = HCTLT .

Since C and L are ULT matrices, the matrix CTLT is UUT.

Example 25 Meixner polynomials. Using (19), (24) and (28), we obtain
the orthogonality relation for the (monic) Meixner polynomials [34]

∞∑
x=0

pn (x) pm (x) (a)x
zx

x!
=

n! zn (a)n
(1− z)a+2n δn,m, n,m ∈ N0.

Definition 26 Let −→p be the MOPS with respect to a quasi-definite func-
tional L. We define the Jacobi matrix J ∈ C∞×∞ by

J = L
[
x−→p −→p T

]
H−1. (31)

Theorem 27 (i) The Jacobi matrix J defined by (31) is a tridiagonal matrix
with entries

Ji,j = δi+1,j + βiδi,j + γiδi−1,j, (32)

where the coefficients βi, γi are given by

βi =
L [xp2i ]

hi
, i ∈ N0,

γ0 = 0 and

γi =
L [xpipi−1]

hi−1
=

hi
hi−1

6= 0, i ∈ N. (33)
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Proposition 28 (ii) The polynomials −→p satisfy the eigenvalue equation

J −→p = x−→p . (34)

By linearity, this extends to

q (x)−→p = q (J)−→p , q ∈ C [x] . (35)

(iii) Let q ∈ C [x] . Then, q (J)H is a symmetric matrix.
(iv) Let q ∈ C [x] be given by

q (x) = −→p T −→ω , −→ω ∈ C [x]∞×1 . (36)

Then,

ωk =
h0
hk

[q (J)]k,0 . (37)

Proof. (i) Using (30) in two different ways, we have

L [pi xpj] =

{
hi, i = j + 1
0, i > j + 1

,

and

L [pj xpi] =

{
hj, j = i+ 1
0, j > i+ 1

.

Thus, from (31) we obtain

(JH)i,j = 0, j /∈ {i− 1, i, i+ 1} .

The three nonzero entries are given by

Ji,i−1hi−1 = L [xpipi−1] = hi,

Ji,ihi = L
[
xp2i
]

= hiβi,

and
Ji,i+1hi+1 = L [xpipi+1] = hi+1.

(ii) Representing x−→p with respect to the basis −→p , we have

x−→p = M−→p ,
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for some matrix M. Multiplying by −→p T and applying L on both sides of the
equation, we get

JH = L
[
x−→p −→p T

]
= ML

[−→p −→p T
]

= MH,

where we have used (28) and (31). Since H is nonsingular, M = J.
(iii) Using (35), we have

L
[
q−→p −→p T

]
= L

[
q (J)−→p −→p T

]
= q (J)L

[−→p −→p T
]

= q (J)H.

But on the other hand,

L
[
q−→p −→p T

]
= L

[−→p −→p T q
]

= L
[−→p −→p T q

(
JT
)]

= Hq
(
JT
)
.

Therefore,
[q (J)H]T = HT [q (J)]T = Hq

(
JT
)

= q (J)H. (38)

(iv) From (36), we have

L [−→p q] = L
[−→p −→p T −→ω

]
= H −→ω .

Using (35),

L [−→p q] = L [q−→p ] = L [q (J)−→p ] = q (J)L [−→p ] .

Finally, from (29)
q (J)L [−→p ] = q (J)h0

−→e0 .

Thus, we conclude that

hjωj = (H −→ω )j =
∑
k

[q (J)]j,k h0δk,0 = h0 [q (J)]j,0 .

Corollary 29 Let −→p be the MOPS with respect to a quasi-definite functional
L. Then, the polynomials −→p satisfy the three-term recurrence relation

xpn = pn+1 + βnpn + γnpn−1, n ∈ N0, (39)

with initial conditions
p−1 = 0, p0 = 1.
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The following result is known as the Modified Chebyshev algorithm [43,
2.1.7].

Proposition 30 Let −→p be the MOPS with respect to a quasi-definite func-
tional L and −→q be a monic basis of C [x] satisfying

x−→q = T −→q , (40)

where T is a tridiagonal matrix with entries

Ti,j = δi+1,j + ηiδi,j + ξiδi−1,j. (41)

Let the ”modified moments” be defined by

R = L
[−→q −→p T

]
.

Then, the entries of R satisfy the recurrence

Ri,j+1 = Ri+1,j + (ηi − βj)Ri,j + ξiRi−1,j − γjRi,j−1,

with initial values

Ri,−1 = 0, Ri,0 = L [qi] = νi, i ∈ N0.

Moreover, the coefficients in the three-term recurrence relation (39) are
given by

βi = ηi +
Ri+1,i

Ri,i

− Ri,i−1

Ri−1,i−1
, (42)

and

γi =
Ri,i

Ri−1,i−1
. (43)

Proof. Let L be the ULT matrix satisfying

−→q = L −→p .

Then,
R = L

[−→q −→p T
]

= L
[
L −→p −→p T

]
= LH. (44)

Hence, R is a lower triangular matrix and

Ri,i = hi. (45)
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Using (34) and (40), we have

T −→q −→p T = x−→q −→p T = −→q x−→p T = −→q −→p TJT ,

and therefore

TR = L
[
T −→q −→p T

]
= L

[−→q −→p TJT
]

= R JT .

Using (32) and (41), we get

Ri+1,j + ηiRi,j + ξiRi−1,j = Ri,j+1 + βjRi,j + γjRi,j−1. (46)

Since R is a lower triangular matrix, we have

Ri,j = 0, i < j, (47)

and setting i = j − 1 in (46), we obtain

γj =
Rj,j

Rj−1,j−1
. (48)

Note that from (45) and (48) we have

γj =
hj
hj−1

,

in agreement with (33).
If we set i = j in (46) and use (48) and (47), we obtain

βj = ηj +
Rj+1,j − γjRj,j−1

Rj,j

= ηj +
Rj+1,j

Rj,j

− Rj,j−1

Rj−1,j−1
.

Finally, solving for Ri,j+1 in (46), we get

Ri,j+1 = Ri+1,j + (ηi − βj)Ri,j + ξiRi−1,j − γjRi,j−1.

Example 31 Meixner polynomials. The falling factorial polynomials satisfy
the 3-term recurrence relation (6). Comparing with (41), we see that

ηn = n, ξn = 0,
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and therefore
Ti,j = δi+1,j + iδi,j.

Using (44), we get

Ri,j =
∞∑
k=0

Ci,kHk,j = Ci,jhj =

(
i

j

)
(a)i
(a)j

(
z

1− z

)i−j (a)j j! z
j

(1− z)2j+a

= j!

(
i

j

)
(a)i

zi

(1− z)i+j+a
.

Finally, using (42) and (43) we obtain [34]

βn = n+
Rn+1,n

Rn,n

− Rn,n−1

Rn−1,n−1
=
n+ (n+ a) z

1− z
(49)

and

γn =
Rn,n

Rn−1,n−1
=
n (n− 1 + a) z

(1− z)2
. (50)

In the next section, we will consider a class of orthogonal polynomials
that includes the Meixner family as a particular case.

3 Semiclassical orthogonal polynomials

Let Υ : C [x] → C [x] be a linear operator and let −→p be the MOPS with
respect to a quasi-definite functional L . We say that −→p is semiclassical
(with respect to Υ) if there exist fixed polynomials λ (x) , τ (x) such that the
functional L satisfies the Pearson equation

L [λΥq] = L [τq] , q ∈ C [x] . (51)

We define the class of −→p to be the number

s = max {deg (λ)− 2, deg (λ− τ)− 1} . (52)

The polynomials of class s = 0 are called classical.
In particular, let’s suppose that the operator Υ is the shift operator

Υq (x) = q (x+ 1) , q ∈ C [x] , (53)
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and the functional L has the form

L [q] =
∞∑
x=0

q (x) ρ (x) , q ∈ C [x] , (54)

for some weight function ρ : N0 → C with

ρ (−1) = 0. (55)

Using (54) in (51), we have

∞∑
x=0

λ (x− 1) q (x) ρ (x− 1) =
∞∑

x=−1

λ (x) q (x+ 1) ρ (x) =
∞∑
x=0

τ (x) q (x) ρ (x) ,

where we have used (55).
We conclude that the weight function ρ (x) must satisfy

λ (x− 1) ρ (x− 1) = τ (x) ρ (x) ,

or
ρ (x+ 1)

ρ (x)
=

λ (x)

τ (x+ 1)
. (56)

If the polynomials λ (x) , τ (x) are given by

λ (x) = z (x+ a1) (x+ a2) · · · (x+ al) , (57)

τ (x) = x (x+ b1) (x+ b2) · · · (x+ bt−1) ,

then solving (56) we see that

ρ (x) =
(a1)x (a2)x · · · (al)x

(b1 + 1)x (b2 + 1)x · · · (bt−1 + 1)x

zx

x!
. (58)

Note that (55) is satisfied, since 1
x!

= 0 at x = −1. In [35], we classified the
weight functions satisfying (56), with deg (λ− τ) = 2 and 1 ≤ deg (τ) ≤ 3.
For a recent book on discrete semiclassical polynomials, see [69].

Suppose that the shift operator Υ is represented by the matrix S on the
basis −→p ,

Υ−→p = S−→p . (59)

Since −→p is a monic basis, it follows that S is a ULT matrix. It’s relation to
the Jacobi matrix is given in the following result.
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Proposition 32 Let J be the Jacobi matrix defined in (31) and S be defined
by (59). Then,

[J, S] = S, (60)

where the commutator [A,B] is defined by

[A,B] = AB −BA.

Proof. Using (34), we have

(x+ 1)−→p (x+ 1) = J−→p (x+ 1) = JΥ−→p = JS−→p .

On the other hand, from (59) we get

(x+ 1)−→p (x+ 1) = (x+ 1) Υ (−→p ) = (x+ 1)S−→p = Sx−→p +S−→p = SJ−→p +S−→p .

Thus,
SJ + S = JS.

Remark 33 If we use (32), we can write the commutator equation (60) in
extended form

([J, S])i,j =
∑
k

(δi+1,k + βiδi,k + γiδi−1,k)Sk,j −
∑
k

Si,k (δk+1,j + βkδk,j + γkδk−1,j)

= Si+1,j + βiSi,j + γiSi−1,j − Si,j−1 − βjSi,j − γj+1Si,j+1 = Si,j.

Hence,

Si+1,j − Si,j−1 + (βi − βj − 1)Si,j + γiSi−1,j − γj+1Si,j+1 = 0. (61)

Since S is a ULT matrix, the equations (61) are automatically true for i <
j − 1. For i = j − 1, we have

Sj,j − Sj−1,j−1 + (βj−1 − βj − 1)Sj−1,j + γj−1Sj−2,j − γj+1Sj−1,j+1

= 1− 1 + 0 + 0− 0 = 0.

Finally, for i = j, we obtain

Sj+1,j − Sj,j−1 + (βj − βj − 1)Sj,j + γjSj−1,j − γj+1Sj,j+1

= Sj+1,j − Sj,j−1 − 1 = 0.
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Summing the last equation from j = 0 to n− 1, we get

Sn,n−1 − S0,−1 = n,

and since S0,−1 = 0, we conclude that

Sn,n−1 = n. (62)

The same result can be obtained by using the fact that

pn (x+ 1)− pn (x) = (x+ 1)n − xn + · · · = nxn−1 + · · · = npn−1 (x) + · · · ,

where · · · denotes lower order terms.

Example 34 Meixner polynomials. We claim that for these polynomials,

Si,j =

(
z

z − 1

)i−j−1+δi,j i!
j!
χ (i ≥ j) , (63)

where χ (i ≥ j) denotes the characteristic function

χ (i ≥ j) =

{
1, i ≥ j
0, i < j

.

Clearly Si,i = 1 and

Si,i−1 =
i!

(i− 1)!
= i,

in agreement with (62). Hence, we only need to verify (61) for i > j.
If i = j + 1,

Sj+2,j − Sj+1,j−1 + (βj+1 − βj − 1)Sj+1,j + γj+1Sj,j − γj+1Sj+1,j+1

= Sj+2,j − Sj+1,j−1 + (βj+1 − βj − 1)Sj+1,j.

Using (63), we have

Sj+2,j − Sj+1,j−1 =
2z

z − 1
(j + 1) , Sj+1,j = j + 1,

and from (49)

βj+1 − βj − 1 = − 2z

z − 1
.
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Hence,
Sj+2,j − Sj+1,j−1 + (βj+1 − βj − 1)Sj+1,j = 0.

Finally, for i > j + 1

Si+1,j − Si,j−1 =

(
z

z − 1

)i−j
(i− j + 1)

i!

j!
,

(βi − βj − 1)Si,j = −
(

z

z − 1

)i−j
(i+ 1− j) z + i− 1− j

z

i!

j!
,

and from (50)

γiSi−1,j − γj+1Si,j+1 =

(
z

z − 1

)i−j
(i− j − 1)

z

i!

j!
.

Therefore,

Si+1,j − Si,j−1 + (βi − βj − 1)Si,j + γiSi−1,j − γj+1Si,j+1

=

(
z

z − 1

)i−j
i!

j!

[
i− j + 1− (i+ 1− j) z + i− 1− j

z
+

(i− j − 1)

z

]
= 0.

The inverse of the shift operator is given by

Υ−1q (x) = q (x− 1) , q ∈ C [x] ,

and is represented by the matrix S−1, since

−→p (x) = Υ−1 [Υ−→p (x)] = Υ−1S−→p (x) = SΥ−1−→p (x) .

Example 35 Meixner polynomials. The inverse of the matrix S defined by
(63) is given by

(
S−1

)
i,j

=
(−1)1+δi,j

(z − 1)i−j−1+δi,j
i!

j!
χ (i ≥ j) . (64)

To see this, consider

Ui,j =
∑
k

(
z

z − 1

)i−k−1+δ(i,k)
i!

k!
χ (i ≥ k)

(−1)1+δ(k,j)

(z − 1)k−j−1+δ(k,j)
k!

j!
χ (k ≥ j) .
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Clearly, Ui,j = 0 for i < j. For i ≥ j, we have

Ui,j =
i!

j!

i∑
k=j

(−1)1+δ(k,j)
zi−k−1+δ(i,k)

(z − 1)i−2+δ(i,k)−j+δ(k,j)
,

and we see that Ui,i = 1.
When i > j,

Ui,j =
i!

j!

[(
z

z − 1

)i−j−1
− 1

(z − 1)i−j−1
−

i−1∑
k=j+1

zi−k−1

(z − 1)i−2−j

]

=
i!

j!

[(
z

z − 1

)i−j−1
− 1

(z − 1)i−j−1
− zi−j−1 − 1

(z − 1)i−j−1

]
= 0.

Therefore, Ui,j = δi,j.

3.1 Laguerre-Freud equations

If −→p is a family of semiclassical polynomials, then the coefficients in the
3-term recurrence relation (39) satisfy a (in general) nonlinear system of
equations, known as ”Laguerre-Freud equations” [24], [56]. In this section,
we derive a system of matrix equations that leads to the Laguerre-Freud
equations. We presented some of these ideas at the meeting ”Challenges
in 21st Century Experimental Mathematical Computation” held at ICERM,
Brown University, Providence, RI, on July 21-25, 2014.

We begin with a matrix analogue of the Pearson equation.

Theorem 36 Let J be the Jacobi matrix defined in (31) and S be defined by
(59). If the linear functional L satisfies the Pearson equation (51), then

Sλ (J)HST = Hτ
(
JT
)
. (65)

Proof. Since the shift operator Υ is multiplicative, we can use (59) and
obtain

Υ
(−→p −→p T

)
= (Υ−→p ) (Υ−→p )

T
= S −→p −→p TST .

Thus, from (51), we get

τ (J)H = L
[
τ (J)−→p −→p T

]
= L

[
τ−→p −→p T

]
= L

[
λΥ
(−→p −→p T

)]
= L

[
λS −→p −→p TST

]
= SL

[
λ −→p −→p T

]
ST

= SL
[
λ (J) −→p −→p T

]
ST = Sλ (J)HST .
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Finally, from (38), we have

Sλ (J)HST = τ (J)H = Hτ
(
JT
)
.

Remark 37 If we eliminate S from the system

[J, S] = S, Sλ (J)HST = Hτ
(
JT
)
,

we obtain nonlinear relations among the entries of J, i.e., between the coeffi-
cients in the 3-term recurrence relation βn and γn. For a different approach,
see [48].

In [34], we developed a method for obtaining Laguerre-Freud equations
from (60) and (65). Our approach was to introduce the matrices

A = Sλ (J) , B = S−1τ (J) . (66)

Then, it follows from (60) that

[J,A] = JSλ (J)−Sλ (J) J = JSλ (J)−SJλ (J) = [J, S]λ (J) = Sλ (J) = A,
(67)

where we have used the fact that

q (J) J = Jq (J) , q ∈ C [x] .

From (65), we obtain

BT = τ
(
JT
)
S−T = H−1Sλ (J)H = H−1AH. (68)

Next, we need the concept of banded matrices [46, 4.3].

Definition 38 Let A ∈ C∞×∞. We say that A is a (k1, k2)−banded ma-
trix if

Ai,j = 0, j > i+ k1 or j < i− k2,

where k1, k2 ∈ N0. The quantities k1 and k2 are called the upper and lower
bandwidth, respectively.

The bandwidth of the matrix is defined by k = max {k1, k2} . Note that

Ai,j = 0, |i− j| > k.
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The advantage of using A,B is that they are banded matrices.

Theorem 39 Let
λ (x)−→p (x+ 1) = A−→p (x) (69)

and
τ (x)−→p (x− 1) = B−→p (x) . (70)

Then, A is a (l, t)−banded matrix and B is a (t, l)−banded matrix.

Proof. From (69), we have

λ (x) pn (x+ 1) =
∑
k

An,kpk (x) .

Since deg (λ) = l, we get An,k = 0, k > n+ l. Similarly, from (70)

τ (x) pn (x− 1) =
∑
k

Bn,kpk (x) ,

and since deg (τ) = t, we obtain Bn,k = 0, k > n+ t.
But from (68), we see that

hk
hn
An,k = Bk,n = 0, n > k + t,

and

Bn,k =
hn
hk
Ak,n = 0, n > k + l.

Remark 40 In [42], the authors study a characterization of semiclassical
polynomials with respect to the derivative operator using banded matrices.

Next, we introduce a sequence of functions that can be used to find the
entries of the matrix A.

Theorem 41 Let αk (n) be defined by

λ (x) pn (x+ 1) =
l∑

k=−t

αk (n) pn+k (x) . (71)
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Then, αk (n) satisfies the system of partial difference equations

αk−1 (n+ 1)− αk−1 (n) = (1 + βn+k − βn)αk (n) (72)

+γn+k+1αk+1 (n)− γnαk+1 (n− 1) , −t ≤ k ≤ l,

with boundary conditions

αk (n) = 0, k /∈ [−t, l] , αl (n) = z, α−t (n) =
hn
hn−t

, (73)

and initial conditions

αk (0) =
h0
hk

[λ (J)]k,0 , α−k (k) = [τ (J)]k,0 . (74)

Proof. Comparing (69) with (71), we see that

αk−n (n) = An,k. (75)

From (67), we know that A = [J,A] , and using (61) with S replaced by A,
we get

Ai+1,j − Ai,j−1 + (βi − βj − 1)Ai,j + γiAi−1,j − γj+1Ai,j+1 = 0.

Thus, using (75) we obtain

αj−i−1 (i+ 1)−αj−i−1 (i)+(βi − βj − 1)αj−i (i)+γiαj−i+1 (i− 1)−γj+1αj−i+1 (i) = 0,

from which (72) follows after setting i→ n, j − i→ k.
From (68) and (75), we have

Bn,k =
hn
hk
Ak,n =

hn
hk
αn−k (k) .

Therefore, we can rewrite (70) as

τ (x) pn (x− 1) =
n+t∑
k=n−l

hn
hk
αn−k (k) pk (x) =

t∑
k=−l

hn
hn+k

α−k (n+ k) pn+k (x) .

(76)
Comparing coefficients in (71) and using (57), we get

αl (n) = z,
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while from (76) we obtain

hn
hn+t

α−t (n+ t) = 1,

from which (73) follows.
Finally, setting n = 0 in (71) we have

λ (x) =
l∑

k=0

αk (0) pk (x) .

Hence, using (37)

αk (0) =
h0
hk

[λ (J)]k,0 .

Similarly, setting n = 0 in (76), we get

τ (x) =
t∑

k=0

h0
hk
α−k (k) pk (x) ,

and (37) gives
h0
hk
α−k (k) =

h0
hk

[τ (J)]k,0 .

Example 42 Meixner polynomials. From (19), we have

ρ (x) = (a)x
zx

x!
,

and using (9) we get
ρ (x+ 1)

ρ (x)
=
z (x+ a)

x+ 1
.

Comparing with (56), we conclude that

λ (x) = z (x+ a) , τ (x) = x. (77)

Hence, l = t = 1, and it follows from (52) that the Meixner polynomials are
classical.
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Setting k = 1, 0,−1 in (72), we obtain

α0 (n+ 1)− α0 (n) = (1 + βn+1 − βn)α1 + γn+2α2 (n)− γnα2 (n− 1) ,

α−1 (n+ 1)− α−1 (n) = α0 (n) + γn+1α1 (n)− γnα1 (n− 1) ,

α−2 (n+ 1)− α−2 (n) = (1 + βn−1 − βn)α−1 (n) + γnα0 (n)− γnα0 (n− 1) ,

and from (73) we see that

α2 = 0, α−2 = 0, α1 = z, α−1 =
hn
hn−1

= γn,

where we have used (33).
Thus, we have

α0 (n+ 1)− α0 (n) = z (1 + βn+1 − βn) ,

γn+1 − γn = α0 (n) + z (γn+1 − γn) ,

0 = (1 + βn−1 − βn) γn + γn [α0 (n)− α0 (n− 1)] ,

and we conclude that

α0 (n) = α0 (0) + z (n+ βn − β0) ,

α0 (n) = (1− z) (γn+1 − γn) ,

α0 (n) = α0 (0)− n− β0 + βn.

Using (74), we get

αk (0) = z
h0
hk

(J + aI)k,0 , α−k (k) = Jk,0,

and therefore
z (β0 + a) = α0 (0) = β0.

Hence,

β0 = a
z

1− z
,

and
α0 (n) = z (n+ a+ βn) = (1− z) (γn+1 − γn) = −n+ βn,
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from which it follows that

βn =
n+ z (a+ n)

1− z
, γn = γ0 +

n (n+ a− 1) z

(1− z)2
.

Since γ0 = 0, we recover (49) and (50).
Moreover, from (71) we have

z (x+ a) pn (x+ 1) = γnpn−1 (x) + (βn − n) pn (x) + zpn+1 (x) , (78)

and from (76)

xpn (x− 1) = zγnpn−1 (x) + (βn − n) pn (x) +
hn
hn+1

γn+1pn+1 (x) .

But
hn+1

hn
= γn+1,

and therefore

xpn (x− 1) = zγnpn−1 (x) + (βn − n) pn (x) + pn+1 (x) . (79)

z (x+ a)Mn (x+ 1) + [n− x− z (x+ a+ n)]Mn (x) + xMn (x− 1) = 0,

Adding (78) and (79), we obtain

z (x+ a) pn (x+ 1)+xpn (x− 1) = (1 + z) γnpn−1 (x)+2 (βn − n) pn (x)+(1 + z) pn+1 (x) ,

and from (39),

(1 + z) γnpn−1 (x) + (1 + z) pn+1 (x) = (1 + z) (x− βn) pn (x) .

Thus, we obtain the difference equation [61, 18.22.12]

z (x+ a) pn (x+ 1) + xpn (x− 1) = [(1 + z) (x− βn) + 2 (βn − n)] pn (x)

= [z (x+ a+ n) + x− n] pn (x) .

Remark 43 Difference equations for discrete orthogonal polynomials using
a matrix approach were derived in [71].
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Remark 44 If we use (63), (64), and (77) in (66), we obtain

An,k
z

= [S (J + aI)]n,k =
∑
j

(
z

z − 1

)n−j−1+δn,j n!

j!
χ (n ≥ j) [δj+1,k + (βj + a) δj,k + γjδj−1,k]

=

(
z

z − 1

)n−k+δn,k−1 n!

(k − 1)!
χ (n ≥ k − 1) + (βk + a)

(
z

z − 1

)n−k−1+δn,k n!

k!
χ (n ≥ k)

+ γk+1

(
z

z − 1

)n−k−2+δn,k+1 n!

(k + 1)!
χ (n ≥ k + 1) ,

and

Bn,k =
(
S−1J

)
n,k

=
∑
j

(−1)1+δn,j

(z − 1)n−j−1+δn,j

n!

j!
χ (n ≥ j) [δj+1,k + βjδj,k + γjδj−1,k]

=
(−1)1+δn,k−1

(z − 1)n−k+δn,k−1

n!

(k − 1)!
χ (n ≥ k − 1) + βk

(−1)1+δn,k

(z − 1)n−k−1+δn,k

n!

k!
χ (n ≥ k)

+ γk+1
(−1)1+δn,k+1

(z − 1)n−k−2+δn,k+1

n!

(k + 1)!
χ (n ≥ k + 1) .

The only nonzero terms are

An,n+1

z
= 1,

An,n
z

= n+βn+a,
An,n−1
z

=
z

z − 1
n (n− 1)+(βn−1 + a)n+γn,

and

Bn,n+1 = 1, Bn,n = −n+ βn, Bn,n−1 =
−1

z − 1
n (n− 1)− nβn−1 + γn.

But from (68), we have

1 = Bn,n+1 =
hn
hn+1

An+1,n =
z

γn+1

[
z

z − 1
n (n+ 1) + (βn + a) (n+ 1) + γn+1

]
,

−n+ βn = Bn,n = An,n = z (n+ βn + a) ,

and
n (n− 1)

1− z
− nβn−1 + γn = Bn,n−1 =

hn
hn−1

An−1,n = zγn.

Solving for βn and γn, we obtain once again (49) and (50).
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4 Conclusions

We have presented an introduction to a theory of polynomials −→p ∈ C [x]∞×1 ,
orthogonal with respect to a linear functional L : C [x] → C, based on the
assumption that the Gram matrix

G = L
[−→q −→q T ] ∈ C∞×∞

admits the LDL decomposition G = CHCT for some monic basis −→q ∈
C [x]∞×1, where C ∈ C∞×∞ is a unit upper triangular matrix and H ∈
C∞×∞ is a nonsingular diagonal matrix. The polynomials −→p are defined by
−→p = C−1−→q , and satisfy the orthogonality condition

L
[−→p −→p T

]
= H.

The advantages of this approach are manifold, including the simplification
of many proofs, and the shining of new light on many formulas that are
standard in the theory of orthogonal polynomials.

Many other papers have explored the same topic, especially in the fields
of mathematical physics, random matrices, and integrable systems. In most
cases, the authors have used the monomial basis(−→q )i = xi and studied or-
thogonal polynomials that are eigenfunctions of differential operators.

In this work, we have used the basis of falling factorials, and consider
orthogonal polynomials with respect to a functional that satisfies a Person
equation for the shift operator (called discrete semiclassical polynomials). We
have illustrated our methodology using the family of Meixner polynomials,
because this is a case were the formulas can be evaluated explicitly, and some
of them can be compared with classical results.

Much is left to be done, and we plan to expand the theory in further
articles. Directions to be considered include Toda systems, discrete and
continuous Painlevé equations for the 3-term recurrence coefficients, higher
order difference equations, and linear functionals with added point masses.
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[54] M. Mañas, L. Mart́ınez Alonso, and C. Álvarez Fernández.
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