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Abstract

We perform a followup computational study of the recently proposed
space-time first order system least squares ( FOSLS ) method subject to
constraints referred to as CFOSLS where we now combine it with the new
capability we have developed, namely, parallel adaptive mesh refinement
(AMR) in 4D. The AMR is needed to alleviate the high memory demand
in the combined space time domain and also allows general (4D) meshes
that better follow the physics in space-time. With an extensive set of
computational experiments, performed in parallel, we demonstrate the
feasibility of the combined space-time AMR approach in both two space
plus time and three space plus time dimensions.

Keywords: CFOSLS, Space-time, Adaptivity, Finite element method

1 Introduction

This study is a continuation of previous work, [7, 10, 14] for discretizations and
solvers of time-dependent problems discretized in combined space-time domain.
We pursue a constrained first order systems least-squares approach, referred to
as CFOSLS [2], which in addition to the more classical FOSLS [1, 4, 8], imposes
certain equations (such as divergence) as constraints for better conservation
properties of the discretized problem. There has been a substantial interest
for combined space-time approaches, especially in the solvers community moti-
vated by the parallel-in-time approach for solving time-dependent PDEs, which
is viewed as a feasible approach for better utilization of the computational power
of the next generation (exascale) parallel computers. We build upon the devel-
oped general classes of 4D finite element spaces (in fact for the whole 4D de
Rham sequence) available in the highly scalable finite element software library
MFEM [9]. The results in the present paper are natural followup extension
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of the results from [14] where now we utilize our newly developed capability
of AMR (adaptive mesh refinement) for the same general classes of 4D finite
element spaces. The AMR allows the use of general meshes in 4D without hav-
ing the notion of time-stepping, thus having high resolution only in directions of
high variation of the physical quantities modeled by the time dependent PDEs of
interest. In this study, we consider parabolic and hyperbolic (transport) PDEs.
In the CFOSLS formulation we also exploit the use of weaker, negative Sobolev,
norms to impose less smoothness requirements on the solution. Overall, our
results indicate that the combined space-time AMR CFOSLS approach is fea-
sible; it does capture the physics for problems with anisotropy and generates
meshes with no time-stepping behavior, which in principle is an indication for
alleviating the global CFL-condition (in the case of transport equation). The
CFOSLS approach though, as noted in [14], poses the challenge to the solvers
since the FOSLS functionals are not uniformly elliptic and standard multigrid
(with geometric coarse spaces) is not algorithmically scalable although our tests
do show reasonable performance (in timings). This challenge needs to be ad-
dressed further, with possibly exploiting ideas from adaptive AMG that can
detect problem anisotropies (cf., e.g., [5] and [12])

The remainder of the paper consists of the following sections. In Section 2
we briefly describe the model problems we consider in this paper. In Section 3,
we define the space-time CFOSLS problem and derive a variational formulation.
In Section 4, we discretize the variational problems, and introduce the negative
norm CFOSLS formulation. In Section 5, we present solvers for the linear
systems arising from the finite element discretization. Section 6 contains three
numerical experiments we conducted, two examples for the parabolic model
problem and one for the transport problem. Finally, in Section 7, we draw some
conclusions and provide an outlook on future work.

2 Model time dependent PDEs used in our study

Throughout this paper, we consider the following model evolution problem:
Find w such that

Opu+ divy (L (u)) = f, in Q =Q x (0,T)

u = up on Yo, tr(u) =g on 3,

(1)

where 3o = Qx {0}, ¥ =90 x(0,T), L,(-) is a spatial differential operator, and
tr(-) represents a trace operator corresponding to the boundary condition(s). We
rewrite this problem using the space-time divergence div, ; into

dive ¢ (L(u)) = f, in Q@ @)

+ B.C,,
with the space-time differential operator L(u) = [L,(u) u]' and a (possibly
combined) space-time boundary condition (B.C.). We will consider two appli-
cations of the model problem (1), the parabolic heat equation

Opu — div,(Veu) = f, in @,

U = ug on Xg, U =g on X,

3)



ie., L;(u) = —V,u, and the hyperbolic transport equation

Opu + div, (Bu) = f, in Q,
u = ug on Xg, Bu- 7, =g on X;,,

ie., Ly(u) = Bu, and where X;, = {z € 00 : B(z) - fi,(z) < 0} x (0,T).

3 Space-time CFOSLS

In this section, we will describe the space-time least squares formulations, fol-
lowing the work of Voronin et al. [14]. In the following, we will make use of the
function spaces: the space of square integrable functions Ly (Q), H(Q) = {u €

Ly(Q) : Vagu € [L2(Q)]*F1}, H(div, Q) = {o € L2(Q) : divy (o) € La(Q)}
Moreover, we need the following spaces with boundary conditions

R = {r € H(div,Q) : tr,(7) = 0},

V={ve  HY(Q) : tr,(v) =0}

Introducing a new variable o = L(u), we rewrite the model problem (2) as a

first order system,
o —L(u) =0,

diVI’t(O') = f
The corresponding FOSLS-functional is given by

()

J(o,u) = |lo = L)l + [ldive (o) = fII5,

that is well defined if f € L2(Q). Then, the constrained first order system least
squares (CFOSLS) problem is given by: find (o, u) € R x V such that

(o,u) = argmin J(7,v),
(t,w)ERXV (6)

subject to (s.t.) { divy o= f.

Note that, as we have the divergence constraint, we could omit the second term
in the FOSLS functional 7. However, we will use the localized functionals as
an indicator for adaptive refinement, and information about the data f might
be beneficial in that case.

3.1 Variational CFOSLS formulation

We introduce the notation A(o,u) = o — L(u). The first order, or Karush-
Kuhn-Tucker (KKT), optimality conditions for the constrained optimization
problem (6) are given by the saddle point problem: find (o, u,A\) € Rx V x W,
W = L2(Q), such that

(A(o,u), A(T,v)) + (A, divg (1)) Y(r,v) € RXV

Y (7)
(divy 0, 1) =(f,n) Vpew.

The above saddle point system is uniquely solvable; see [14] and the references
therein for details. We note that in (7), we look for a solution u € V.C HY(Q),



which may be too restrictive. For instance in case of the transport equation, the
operator L(u) does not include any derivatives, hence it is enough to look also
for solutions u € W. Moreover, we can eliminate one variable from the system.
In order to do that, we first deduce that we can express u in terms of o by a
simple manipulation of the first equation in (5), i.e.,
1
u = ﬁbTa,

withb = [3 1] T Inserting the above term into the FOSLS-functional J (o, u)
results in a slighty modified CFOSLS problem: find o € R such that

o = argmin J (1)
TER (8)
s.t. {divg(o) = f

with J(7) := ||K7'||(2) + ||divg e (T) — fH% and

1
K=I--—bb'.
b'b

The resulting variational saddle point problem reads: find o € R such that

(KO’, T) + (/\a divz,t(T» =0 Vre€R
(dive,¢o, 1) =(fin) Vnew

Remark. As already remarked in [14], we have to be careful with the above
matriz K. The matriz is rank-deficient in any point (z,t) (as K -b =0), but
the corresponding global operator is non-singular on the kernel of the divergence
operator. This is due to the assumption that the underlying differential problem
is well-posed. However, the rank deficiency will definitely influence the condition
number of the resulting linear system.

9)

4 Finite element discretization

In this section, we will discretize the saddle point systems from the previous sec-
tion using the finite element method (FEM). We need a conforming subdivision
Tr, of the space-time cylinder @ into (d + 1)-dimensional simplices, i.e.,

Q==

TETH

and we define the space-time element diameter h, = diam(r), 7 € Tp, and
h = max,cT, hr. Moreover, we need the following finite element function spaces:
Vi, C V is the space of globally continuous and piecewise polynomial functions,
Ry, C R is the space of H(div)-conforming functions, and W;, C W is the space
of piecewise polynomial functions. The space Ry, is also referred to as a Raviart-
Thomas (RT) space. Applying the usual (mixed) finite element discretization
to the systems (7) and (9) results in the linear systems

M gT DT Oh 0

g X Up| = |8 (10)
D An f



and
b 7517 a

respectively. Here op,un, Ap are the coefficient vectors associated with the
finite element functions o, up, Ap, respectively. The matrices M, G, X, and K
result from the discretization of the operators A(o,u) and Ko, respectively,
and D is the discrete space-time divergence operator.

4.1 Negative Norm CFOSLS

Instead of minimizing the Ly-norm of the two equations in the first order system
(5), we can define an alternative FOSLS-functional, while keeping the constraint,
ie.,

min J (o, u) := ||o — L(w)||2, + ||divs.(o) - fI2,

o,u (12)

s.t. { divy o= f,

where ||.]|—s denotes the norm of the negative index Sobolev space H %, 0 <
s < 1. The finite element counterpart of (13) reads similarly, i.e.,

min j(o'ha uh)a
ThsUh (13)
s.t. { divgon = f,

with J as above. In order to obtain a computationally feasible problem, we
introduce two additional constraints,

Qn(on — L(uy)) =0, (14a)
Qh(diVLt(Gh) — f) =0, (14b)

where Qp, is the La-projection to the space of piecewise constants w.r.t. the
elements of the mesh 7y, i.e.,

Qn(on — L(up)) = /(o-h — L(up)) d(z,t) for all T € Ty,

T

Note that the second additional constraint (14b) is automatically satisfied by
the already existing divergence constraint, hence we can omit it. We refer to
(13)—(14a) as negative norm CFOSLS. We will now derive a computationally
feasible formulation of (13)—(14a). Using (14a) and the well known standard
error estimate, we obtain for the first term in the negative norm functional

lon—L(un)|? s = 1(1-Qu)(on=L(un) |2, < C Y h*lon—L(up)l5,. (15)
TETh

Furthermore, as we are dealing with finite element functions, we can apply the
inverse inequality and obtain

lon = Lun)llo,r < Chz*llon — Lup)l| s~

Summing up over all 7 € T, we can deduce the bound

Y B2le —L@)l3, <C D lon—Lun)|?,, < Cllon — Lu)|,. (16)
T€ETH TETH



Deriving analogous bounds for the divergence constraint, and combining them
with (15) and (16), we obtain an equivalent, but computationally feasible for-
mulation of (13), i.e.

(oh,up) = argmin jh('rh,vh)
(Th,Vh)ERR XV},

din’tO' = f
st { Qn(on —L(up)) =0

with the locally scaled least squares functional

Tn(Thovn) =Y W2 (llrn = L(wn) I3, + [ divae(mn) = £II3,) -
TETH

The saddle point problems corresponding to the negative norm formulations of
(6) and (9) read then

M G Dy & ] [on 0

Gn A Fil lun| &

Dy, Al T g (18)

En Fn Bh 0

and

ICh D;lr g; Oh 0
D, Al = | (19)
Ep Hh 0

respectively. Here, subscript h indicates that the local element matrices and
vectors have been scaled by h2°, and &£, F originate from the discretization of

T

the additional constraint (14a).

4.2 Alternative Formulation for the Transport Problem

Instead of reformulating the transport problem (4) as a first order system, we
can formulate a constrained least squares problem: find u € V such that

u = arg min j(v)7
veV (20)
sit. { divg(bu) = f,
with the LS functional
T (v) := el|Vol[§ + ldiva,e (bv) = fII3,

where ¢ is a (localized) regularization parameter, e.g., e ~ O(1) or € ~ O(h%),
a € (0,2). We proceed as above, i.e., we define the bilinear forms, derive the
KKT system, and after discretizing, we obtain the saddle point problem

b 7Bl

where L is a discrete Laplace operator, locally scaled by e.



5 Linear Solvers for CFOSLS

In contrast to FOSLS-discretizations, which result in a system of linear equa-
tions with a positive definite system matrix, we have to deal with an indefinite
system matrix in the case of CFOSLS. Hence, in general we cannot use the
conjugated gradient method (CG), but we have to use some solver suitable
for indefinite problems, e.g. the minimal residual method (MINRES) or the
(flexible) generalized minimal residual method (GMRES). In order to speed up
the convergence of the iterative solver, we will employ different preconditioning
strategies, which we describe in the following subsections.

5.1 Block Diagonal Preconditioners

One straight forward method of preconditioning the linear systems (7) and (9)
is to use the following block diagonal preconditioners

ijll -1

B;l , and, [B’C Bl }7

B-1

S(M)
respectively, where S(-) = Ddiag(-)~"'D". The choice for the block precondi-
tioners can be made w.r.t. the discretized problem, i.e., for the heat equation,
we choose Bpg to be a Jacobi-smoother, and Bx and Bs(aq) to be algebraic
multigrid (AMG) preconditioners.
In case of negative norm CFOSLS, the saddle point system (18) has an addi-
tional block. We again formulate a Schur complement preconditioner for the
last block, i.e.
BMh
BXh,
Bs,
Bs,

with Bs, the locally scaled equivalent of Bs(aq) and Sp = Ediag(M)1ET +
Fdiag(X)~'FT. We can derive an analogous preconditioner for (19), given by

Bk,
Bs,
Bs,

with Bs, and Bg, defined correspondingly.

5.2 Monolithic Geometric Multigrid Preconditioners

Instead of treating the preconditioning of each block in (7) separately, we can
apply a geometric multigrid method to the whole system. Let {sz)}fczo,
{P‘(,Iz)}f,czo and {P‘E[},CZHC:O be the sequences of prolongation operators between
the hierarchy of corresponding finite element spaces. Then the prolongation
operators for the block system (7) are given by



Moreover, as we apply the solver in an adaptive scheme, we reuse the already
assembled block system matrices from the coarser refinement levels in our multi-
grid hierarchy. We describe the application of one multigrid V-cycle in the
following algorithm.

Algorithm 5.1. Assume we have a hierarchy of matrices {A(k)}kzo, prolon-
gation operators {P)}th_o and smoothers {My)}:_o. At level k for given v,

the computation of 88246;1; consists of:

e Pre-smooth, i.e., solve M)z = v
e Restrict residual, i.e., compute r, = 73(—,';) (v —Ampx)
e Coarse grid correction, i.e.,

if k+1=1, solve exactly, i.e, set x. = A(_l)l”'c

_ B(k‘f‘l)

else, apply the multigrid recursively, i.e, set x. aavraTe

Prolongate and update, i.e., T = T + Pz,
Post-smooth, i.e., solve M (y — ) =v — Ay,

o This results in ng&/[c:” =y.

We still need to choose a smoother, or sequence of smoothers. A suitable
choice is to use some least squares method, e.g. MINRES, preconditioned by
the BDP-preconditioner from Section 5.1 as a smoother. We stop the iterative
smoother either after reducing the relative residual by a factor 4%, or after
reaching a fixed, but small number of maximum iterations ng\]f[). In Section 6
we solve the linear system (7) be means of flexible GMRES with one V-cycle of
the multigrid described above, using v*) = 0.01 and ng\’}) = 100. We can derive
analogous preconditioners for the systems (9), (18), and (19).

5.3 Divergence Free Solvers

An alternative way of solving systems (7) and (9) is to reformulate the problem
already on the continuous level into a divergence-free setting. We will briefly
summarize the method, for details see [14, Section 3]. The key idea is to split
the function

oc=0+0 (21)

into a function & satisfying the divergence constraint, i.e.,

(divx,t(a:)v :U‘) = (fv :u) Ve w,

and a divergence free function & fulfilling tr, (&) = 0. Next, we recall the
properties of the de Rahm sequence, i.e., there exists an differential operator d
and a Sobolev space N, such that for any ¥ € N with trq(¢) = 0, the image
is in R, i.e., d¢p € R and, in addition, div,:(d¢) = 0. For example, in 3D
space-time, d = curl and N = H(curl, Q). Now we can formulate the solving
procedure in two steps:

Step 1 Find any o € R satisfying

(divei(a), 1) = (fi ) Vi€ La(Q)



Step 2 Find the divergence free correction & = di). We use the decomposition
(21) to rearrange system (7) into

(AT, u), A(T,v)) + (A, divy (7)) = — (A(F,u), A(T,v)) V(T,v) € ]?;;)V

(f —divg o, u0) =0 YueW.
(23)

(divm,ti7 /’L)

Now we insert o from Step 1, and replace @ = d), which automatically
fullfils the second equation. Moreover, it is sufficient to only test with
7 = d¢, ¢ € N. Thus, we have to solve the following problem: Find
(v,u) € N x V such that

(A(dp,u), A(de,v)) = —(A(F,u), A(d$,v)) V(é,v) € N X V.
Then the solution o is obtained by summing up o + &.

We can again derive an analogous scheme for system (9).

6 Numerical Experiments

6.1 Implementation and Experimental Setup

We implemented the finite element methods described in Section 4 by means
of the finite element library MFEM [9], which has also an implementation for
4D adaptive finite elements in a development branch!. In order to realize the
solvers described in Section 5, we use the AMG implementation boomerAMG
provided by the linear solver library hypre?. Both libraries are developed at
LLNL. All of our numerical experiments are performed on the Quartz cluster,
also located at LLNL.

We tested the following combinations of functionals, constraints and spaces in
the numerical experiments:

e CFOSLS for the heat equation
min J(oh,up),
(oh,un)ERR XV (P1)
s.t. { divy o = f

e CFOSLS for the transport equation

a'r;LnEl%h T(n), (P2)
s.t. { divgon = f .

e Negative Norm CFOSLS for the transport equation
Juin Ju(on), N
. P2
st { dlvz,to'h = fv ( )

Qn(Kop) =0.

Thttps://github.com/mfem/mfem/tree/4d_dev
2http://wuw.1lnl.gov/casc/hypre/




e H'-seminorm functional with divergence constraint

min j up),
up €V ( h) (PS)

s.t. { divg i (bup) = f,

In all numerical experiments we use the localized least squares functional 7, as
an indicator for refinement, e.g., for (P1) we define 7, (o, un) = J(oh,up)l|+,
7 € Tp. The elements then are marked using Dorfler’s marking strategy [6], i.e.,
we mark all elements 7 € '771 C Tp, where ’771 is the set with minimal cardinality,
which, for given 6 € (0,1), fulfills

0T (oh,up) < Z T-(oh,up).

TE7~7L

In particular, we implemented the algorithm recently proposed by Pfeiler et al.
[11], which in addition is very easy to parallelize. Once we have a set of marked
elements, we apply the bisection algorithm by Arnold et al. [3] in 3D space-time,
and the bisection algorithm by Stevenson [13] in 4D space-time, to subdivide the
marked elements. Both algorithms ensure that the family of adaptive refined
meshes (75)n stays conforming, i.e. we do not introduce any hanging nodes,
and that the mesh elements do not degenerate, i.e. there is a lower bound for
the interior angles for all h. Unless stated otherwise, we will always use an bulk
parameter 6 = 0.25.

We also compared the convergence rates for different polynomial degree of the
finite element ansatz functions. With p = 0 we denote the lowest order finite
elements, i.e., piecewise constants for Lo-conforming elements, and piecewise
linear, globally continuous functions for H!-conforming elements. The use of
next-to-lowest-order elements is denoted by p = 1.

When we refer to the solvers and preconditioners presented in Section 5, we will
use the following abbreviations: BDP for MINRES preconditioned by the block
diagonal preconditioner described in Section 5.1, MGMG for flexible GMRES
preconditioned by the monolithic geometric multigrid introduced in Section 5.2,
and MG for the divergence free solver defined in Section 5.3.

6.2 Example 1: Parabolic Evolution Problem

We consider the computational domain @ = (0,1)4*! d = 2,3, and use the
manufactured solution

d
u(z,t) = t2e! H sin((4 — @)a;m).

We consider only the heat equation (3), thus we use formulation (P1). The
manufactured solution is very smooth and has no distinct features, so adaptive
refinement will improve the overall convergence rate only by a constant factor.
In Table 1, we present the total number of iterations needed to reduce the initial
residual by a factor of 1076, with the elapsed time in parentheses, using 8 nodes
(or 288 cores) on Quartz. While we can observe stable iteration counts for
the monolithic geometric multigrid, the cost per iteration is significantly higher
than for the other solvers.

10



Table 1: Iteration numbers and solving times for Example 1.

83912769 410
168798273 437
337645377 490

231.08s) 31 (69.64s)
467.87s) - ()
-) -0

(b)p=0,d=3
#dofs BDP MGMG MG
(a) p=0,d=2 169281 229 (0.64s) 3 (1.49s) 28 (2.22s)
332481 256 (0.71s) 3 (3.15s) 23 (1.99s)
dofs BDP MGMG MG 668097 234 (0.99s) 3 (5.00s) 31 (2.965)
80177 105 (045s) 5 (1.33s) 32 (0.53s) 1336881 274 (159s) 3 (813s5) 33 (364)
. : 2656865 298 (2.15s5) 3 (12.30s) 34 (4.93s)
631905 145 (0.83s) 6 (231s) 46 (0.79%) oo o S S
0 : 5268065 312 (323s) 4 (24.66s) 30 (5.98s)
5017793 193 (222s) 7 (5.33s) 65 (L53s) :
: 10594913 203 (471s) 3 (28.19s) 32 (10.13s)
30993720 262 (12.49s) 8 (24.685) 92 (6.97s) x . 2816 : ,
319357607 366 (145.67s) 8 (241.61s) 135 (7450s) 21199809 339 (9.86s) 4 (60.93s) 34 (19.16s)
: 42133560 376 (2046s) 4 (10156s) 35 (38.19s)
( 5 (
( 5 (
( -

For the sake of completeness, we also include plots of the convergence rates; see
Fig. 1 and Fig. 2. As expected, for problems without singularities or without
localized (anisotropic) features adaptive refinement improves the convergence
rates only by a constant factor.

6.3 Example 2: The Transport equation

For our second example, we will consider only the transport equation (4). Here,
the space-time cylinder is given by @ = {x € R? : ||z[ls, < 1} x (0,2). We
choose the vector fields

—Z2 2 NG
ﬂ:2 T ) and /3:(].—1'3) T1 )
! 0

and the initial data

— ¢~ 100((21-0.5)%+23) — o~ 100((21-0.5)%+a3+23)
- ) - )

uo(x) and  ug(x)
for d = 2 and d = 3, respectively. We prescribe no source terms, i.e., f = 0.
Hence, we expect that the profile of the initial data should only be transported
along the vector field 3; see Fig. 3 for plots of the initial data. Moreover, as we
consider a hyperbolic evolution equation, there should be no dissipation. This
solution is very localized and has sharp gradients, thus we expect a significant
improvement in the convergence rates by using adaptive refinement. We will
compare formulations (P2)—(P3), as well as different values of the index s for
formulation (I—”\é)

First we consider the case d = 2. Here, the spatial domain is the unit circle and
the flow field is a counter-clockwise, circular motion. In Fig. 4a, we plot the
relative Lo-error in the variable u. We can observe that, in comparison with
uniform refinement, more than one order of magnitude less #dofs is needed
to reach a certain threshold with adaptive refinement. Moreover, comparing
formulations (P2) and (P2), we deduce that the additional constraint does not
really improve the convergence behavior for this example. In Fig. 5, we present
cuts through the space-time mesh at certain times ¢. The mesh was obtained
after 17 adaptive refinements. We can clearly see that the mesh is very fine
along the movement of the peak, whereas stays relatively coarse where nothing
happens. Next we consider the case d = 3, where the spatial domain is the

11
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Figure 1: Convergence rates for uniform and adaptive refinements, for d = 2.
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Figure 2: Convergence rates for uniform and adaptive refinements, for d = 3.
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(a) d =2 (b)d=3

Figure 3: Plot of the initial data ug.

unit ball, and the flow field is again a circular motion in the zi-x2-plane, with
a varying intensity depending on the x3 variable. In Fig. 4b, we also plot
the relative Lo-error in w. Again, the adaptive refinement results in a huge
improvement in the convergence rates. However, here, formulations (P2) and
(135) differ more than previously. The adaptive refinement for negative norm

CFOSLS seems to result in worse convergence behavior than adaptivity for
standard CFOSLS.

6.4 Example 3: Adaptive Benchmark

For the third example we consider the NIST adaptive benchmark problem3
“Moving Circular Wave Front”. The space-time cylinder is given by Q = (0, 10) x
(=5,5) x (0,10), i.e., d = 2. We again use a manufactured solution

B(z)arctan(t) (5 — arctan (a (|2 — 2¢||s,)))
C )

u(z,t) =
with a bubble function

and where x. is the origin of the wavefront, a controls the steepness of the
wave, and C' is a constant to scale the function value. For this example, we
choose @ = 20, C = 10000, and z, = 0. The original benchmark is for a
parabolic model problem, i.e., the heat equation (3). However, we can use the
manufactured solution u also for the transport problem (4), with the flow field

sin(Fx1) cos(% (w2 + 5))
—cos(Fwy)sin(E(z2 +5)) |

8=

We again compare the convergence rates in the Lo-norm of u;, and o, for the
different formulations (P1)-(P3), as well as different values of s. For lowest

3https://math.nist.gov/amr-benchmark /index.html
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Figure 5: Meshes for Example 2, cut at times t.

Figure 6: Solution plot of Example 3 at ¢t = 5.
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order elements, i.e. p = 0, we observe an improvement in the convergence rates
for both, the parabolic and the hyperbolic problem. In particular, for the heat
equation, we need more than one order of magnitude less dofs to reach a certain
threshold compared to uniform refinement; see Fig. 7b. For the hyperbolic
problem, we can observe a similar behavior, where we also save roughly one
order of magnitude of dofs when comparing adaptive and uniform refinement.

For next-to-lowest-order elements, i.e. p = 1, we now in addition compare
different values of the negative norm index s. The parabolic problem again shows
a sharp improvement in the convergence rates for adaptive refinement, e.g., in
order to reach an relative Lo-error of 10% for o, we need around 5 x 10° dofs
for adaptive refinement, compared to >10% dofs needed in the case of uniform
refinement; see Fig. 8b. The hyperbolic transport problem behaves a little
different from in the lowest order case. In order to see an improvement in the
convergence rates, we first need to reach certain amount of dofs. Then we again
need around one order of magnitude less #dofs to reach a certain threshold in
the errors. When comparing the standard CFOSLS to negative norm CFOSLS,
we can further reduce the needed number of degrees of freedom by a factor of
2, depending on the choice of s; see Fig. 8.

7 Conclusion

The overall conclusion of the presented computational study is that the space-
time FOSLS technique poses in addition to the main constraint of high memory
demand the challenge of finding scalable solvers which is due to the lack of full
ellipticity of the FOSLS functionals. As we have demonstrated, that with the
help of AMR, the severe memory constraints can be alleviated and also with the
AMR we can benefit in terms of generating meshes (not necessarily exploiting
time-stepping) that follow the physics and not posing a global CFL constraint on
the discretization. Future research is needed in the direction of designing more
scalable solvers and one possible venue for that is to exploit recent advances of
adaptive AMG methods that can take advantage of specialized coarsening to
detect possible anisotropy [5, 12] and not necessarily require ellipticity of the
bilinear forms. Moreover, in order to take full advantage of the parallel AMR,
we need to introduce some kind of load balancing to ensure that the work is
equally distributed among the cores.
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