
A calculus for monomials in Chow

group of zero cycles in the moduli space

of stable curves

Jiayue Qi

DK-Report No. 2020-11 09 2020

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF) Upper Austria

Editorial Board: Bruno Buchberger
Evelyn Buckwar
Bert Jüttler
Ulrich Langer
Manuel Kauers
Peter Paule
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho

Managing Editor: Diego Dominici

Communicated by: Peter Paule
Josef Schicho

DK sponsors:

• Johannes Kepler University Linz (JKU)

• Austrian Science Fund (FWF)

• Upper Austria

A calculus for monomials in Chow group of zero

cycles in the moduli space of stable curves

Jiayue Qi∗

Department of Mathematics
University of Linz
4040 Linz, Austria

jiayue.qi@dk-compmath.jku.at

Abstract

We introduce an algorithm for computing the value of all monomials in the Chow group of
zero cycles in the moduli space of stable curves.

Keywords: monomials in Chow ring, monomial value, tree representations, recursive algorithm
on forest

Chow rings and Chow groups are essential tools in intersection theory. Multiplication of ele-
ments in the Chow ring corresponds to the intersection of cycles (formal sums of subvarieties). For
a projective variety X of dimension r, the Chow ring A∗(X) is the direct sum of r + 1 groups,
each composed of cycles of a given dimension. In particular, the Chow group Ar(X) is the group
of cycles of dimension zero. The problem that we study in this paper shows up as a sub-problem
for counting the realization of Laman graphs (minimally rigid graphs) on a sphere [1]. However,
our algorithm applies in a wider context – in computing the value of any monomials in this Chow
group.

Let n ∈ N, n ≥ 3, set N := {1, . . . , n}. Mn denotes the moduli space of stable n-pointed curves
of genus zero. It is a well-studied object in algebraic geometry. A bipartition {I, J} of N where
both cardinality of I and J are at least 2 is called a cut; I and J are parts of this cut. For every
cut {I, J}, there is a variety DI,J in Mn; denote by δI,J its corresponding element in the Chow
ring. Note that DI,J = DJ,I and δI,J = δJ,I . It is a graded ring – denote it as A∗(n) – we have
A∗(n) =

⊕n−3
r=0 A

r(n). These homogeneous components are defined as Chow groups (of Mn); Ar(n)
is the Chow group of rank r. It is known that Ar(n) = {0} for r > n− 3 and An−3(n) ∼= Z. We
denote this isomorphism as

∫
: An−3(n)→ Z.

The set {δI,J | {I, J} is a cut} generates group A1(n), and also the whole ring A∗(n) (when
they are used as ring generators). Then,

∏n−3
i=1 δIi,Ji can be viewed as an element in An−3(n), since

we are in a graded ring. Denote M :=
∏n−3

i=1 δIi,Ji , we define the value of M to be
∫

(
∏n−3

i=1 δIi,Ji).

In this paper we calculate the value of a given monomial M =
∏n−3

i=1 δIi,Ji.

There are linear and quadratic relations between the generators. Denote εij|kl :=
∑

i,j∈I,k,l∈J δI,J .
Then we have the equalities εij|kl = εil|kj = εik|jl, we call it Keel’s linear relation [2]. Among the

∗The research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK9.

1

generators of A∗(n), we say that the two generators δI1,J1 , δI2,J2 fulfill Keel’s quadratic relation
[2] if the following four conditions hold: I1 ∩ I2 6= ∅; I1 ∩ J2 6= ∅; J1 ∩ I2 6= ∅; J1 ∩ J2 6= ∅. In this
case, δI1,J1 · δI2,J2 = 0.

Then we know that an easy case for our value computing problem is when two factors of the
monomial fulfill Keel’s quadratic relation – we simply get zero. Hence we only need to consider
the monomials where no two factors fulfill Keel’s quadratic relation; we call this type of monomial
tree monomial since there is a one-to-one correspondence between these monomials and loaded
trees (see Theorem 0.2).

Definition 0.1. A loaded tree with n labels and k edges is a tree (V,E) together with a
labeling function h : V → 2N and an edge multiplicity function m : E → N+ such that the
following three conditions hold:

1. {h(v)}v∈V,h(v) 6=∅ form a partition of N ;

2.
∑

e∈Em(e) = k;

3. For every v ∈ V , deg(v) + |h(v)| ≥ 3, note that here multiple edges are only counted once for
the degree of its incident vertices.

We define the monomial of a given loaded tree as follows: For each edge we collect the
labels on one side of it to form I and labels on the other side to form J . Then we say that {I, J} is
the corresponding cut for this edge. Monomial of this given loaded tree is

∏k
i=1 δIi,Ji ; each edge of

the tree contributes to the monomial a factor δI,J if {I, J} is the corresponding cut for this edge.
It is well-defined and each loaded tree has a unique monomial representation.

Theorem 0.2. There is a one-to-one correspondence between tree monomials M =
∏k

i=1 δIi,Ji and
loaded trees with n labels and k edges, where Ii ∪ Ji = N for all 1 ≤ i ≤ k.

It is trivial to transfer to a monomial from a given loaded tree. Correspondingly to the above
theorem, we provide an algorithm transferring from a tree monomial to a loaded tree. See Algorithm
1. Note that in this algorithm we restrict the ambient group to be An−3(n), but it can apply to a
much wider context – transferring any tree monomial to its corresponding loaded tree. After this
step, we start from that loaded tree, go through several transformations, until finally value of the
given tree monomial is obtained.

Because of this one-to-one correspondence, we define value of a loaded tree T as
∫

(MT),
where MT is its corresponding monomial of T ; denote it as

∫
(T). Given a loaded tree with n labels

and n−3 edges, our calculus calculates its value. The calculus contains several steps. First: Check
whether the given monomial contains a pair which fulfills Keel’s quadratic relation. If yes, the value
of the monomial is 0; if no, we continue with the second step. We need the following known result
to explain the second step.

Theorem 0.3. If all factors are distinct in M = Πn−3
i=1 δIi,Ji, then

∫
(M) = 1. We call this type of

tree monomial clever monomial and its corresponding loaded tree clever tree.

In the second step, we check whether the given monomial is a clever monomial. If yes, we know
that the value is 1; if no, we go to the third step. The third step as well contains several sub-steps.
Main idea behind is that by using Keel’s linear relation, we can substitute some higher-power
factors. And hopefully finally get a sum of clever monomials (maybe with a negative sign). Then
the number of of clever monomials should be the absolute value of the given monomial. Based on
this idea, we have an algorithm for calculating the value of all tree monomials in An−3(n). Here we

Algorithm 1: monomial to tree

input : a tree monomial M in An−3(n)
output: a loaded tree with n labels and n− 3 edges
C ← collection of any cut that corresponds to some factor of M ;
P ← collection of all the parts of cuts in C;
c← any element c = {I, J} ∈ C;
for each element p ∈ P \ {I, J} do

if p ⊂ I or p ⊂ J then
c := c ∪ {p}

end if

end for
H ← the Hasse diagram of elements in c with respect to set containment order;
Consider H as a graph (V,E);
for each vertex V of H do

Define labelling set h(V) as its corresponding element in c;
Update the labelling set: h(V) := h(V) \ h(V1) if V1 is less than V in H

end for
E := E ∪ {{I, J}};
Attach this labelling function h to H;
Set the multiplicity function value m(e) for each edge e as the power of its corresponding
factor in M ;

return H = (V,E, h,m)

give the sketch of the second step: Input: a loaded tree with n labels and n− 3 edges. Output:
a natural number. (1) Transfer the loaded tree to a semi-redundancy tree. (2) Calculate the
sign of the tree value. (3) Construct a redundancy forest from the semi-redundancy tree.
(4) Apply a recursive algorithm to this redundancy forest, obtaining the absolute tree value. (5)
Product of the sign and absolute value gives us tree value.

Now we explain those terminologies. Given a loaded tree LT = (V,E, h,m). Define a weight
function w : V ∪E → N as follows: For any v ∈ V , w(v) := deg(v) + |h(v)|−3. From Definition 0.1
we see that the weight of any vertex must be non-negative. For any e ∈ E, w(e) := m(e)−1. From
Definition 0.1 we see that the weight of any edge is also non-negative. Then the semi-redundancy
tree (of LT) is SRT := (V,E,w). Start from this semi-redundancy tree, let S be the sum of vertex
weight (or edge weight) of LT . Sign of the tree value of loaded tree LT is (−1)S . It is not hard
to verify that weight sum of edges and of vertices are the same when the given loaded tree has
number of labels three more than the sum of multiplicity of its edges.

Next, how do we transfer a semi-redundancy tree (V,E,w) (assume LT = (V,E, h,m)) to a
redundancy forest? Replace each edge by a length-two edge with a new vertex connecting them
with the same weight as the replaced edge. Then we obtain the redundancy tree (of loaded tree
LT) RT := (V ∪ E,E1, w1). Union of subtrees of RT such that no vertex has weight zero is the
redundancy forest of LT .

Starting from the redundancy forest, we can compute the absolute value using a recursive
algorithm. Let RF = (V,E,w) be the redundancy forest of a loaded tree LT . We define the
value of RF as follows: Pick any leaf l ∈ V of this forest, denote the unique parent of l as l1. If
w(l) > w(l1), return 0 and terminate the process; otherwise, remove l from RF and assign weight
(w(l1)− w(l)) to l1, replacing its previous weight. Denote this new forest as RF1. Value of RF is

3

Figure 1: This is a loaded tree LT with 14 labels and 11 edges. Labels are tagged in black.

Figure 2: This shows the semi-redundancy tree SRT of the loaded tree LT in Figure 1. Weight
function is marked in red.

the product of binomial coefficient
(w(l1)
w(l)

)
and the value of RF1. Whenever we reach a degree-zero

vertex, if it has non-zero weight, return 0 and terminate the process; otherwise return 1. Product
of absolute value of the corresponding redundancy forest of LT and sign of its tree value gives us
the value of LT . In the sequel, we explain this process with an example, to show it more intuitively.

Example 0.4. Given a loaded tree LT , see Figure 1. Follow the definition (construction) of semi-
redundancy tree, we obtain Figure 2. Sum of vertex weight S = 1 + 4 + 1 + 0 + 1 = 7, so the sign of
LT value is (−1)7 = −1. From SRT , follow the construction for the redundancy forest, we obtain
Figure 3. Finally we get the absolute value of RF as [

(
1
1

)
× 1] × [

(
2
1

)
×
(
4
1

)
×
(
4
3

)
×
(
1
1

)
× 1] = 32.

Combining with the sign −1, we obtain the value of LT as −32.

It is not hard to verify that the above process terminates. It is well-defined – the result is
independent of the sequence of leaves we choose (to apply the recursive algorithm on the redundancy
forest) – because of the following identity in binomial coeffients:(

c

a

)
·
(
c− a
b

)
≡
(
c

b

)
·
(
c− b
a

)
.

Therefore it is indeed an algorithm. We call it forest algorithm.

Theorem 0.5. The forest algorithm is correct, i.e., it indeed calculates the value of a given loaded
tree, or equivalently, the value of its corresponding (tree) monomial.

Figure 3: This is the redundancy forest RF of loaded tree LT in Figure 1. Weight function is
marked in red.

4

Acknowledgement

I thank Josef Schicho for introducing to me the problem background and posting to me the spherical-
Laman-graph counting problem. I thank Josef Schicho for general discussion and the proof of
correctness of forest algorithm. I thank Matteo Gallet for discussion and detailed suggestions on
the motivation/background part of this paper, as well as some detailed modification suggestions.

References

[1] Matteo Gallet, Georg Grassegger, Josef Schicho. Counting realizations of Laman graphs on
the sphere. The Electronic Journal of Combinatorics, Volume 27, Issue 2 (2020).

[2] Sean Keel. Intersection theory of moduli space of stable n-pointed vurves of genus zero.
Transaction of the American Mathematical Society, 330 (1992), no. 2, 545-574.

5

Technical Reports of the Doctoral Program

“Computational Mathematics”

2020

2020-01 N. Smoot: A Single-Variable Proof of the Omega SPT Congruence Family Over Powers of 5
Feb 2020. Eds.: P. Paule, S. Radu

2020-02 A. Schafelner, P.S. Vassilevski: Numerical Results for Adaptive (Negative Norm) Constrained
First Order System Least Squares Formulations March 2020. Eds.: U. Langer, V. Pillwein

2020-03 U. Langer, A. Schafelner: Adaptive space-time finite element methods for non-autonomous
parabolic problems with distributional sources March 2020. Eds.: B. Jüttler, V. Pillwein

2020-04 A. Giust, B. Jüttler, A. Mantzaflaris: Local (T)HB-spline projectors via restricted hierarchical
spline fitting March 2020. Eds.: U. Langer, V. Pillwein

2020-05 K. Banerjee, M. Ghosh Dastidar: Hook Type Tableaux and Partition Identities June 2020.

Eds.: P. Paule, S. Radu

2020-06 A. Bostan, F. Chyzak, A. Jiménez-Pastor, P. Lairez: The Sage Package comb walks for
Walks in the Quarter Plane June 2020. Eds.: M. Kauers, V. Pillwein

2020-07 A. Meddah: A stochastic multiscale mathematical model for low grade Glioma spread June

2020. Eds.: E. Buckwar, V. Pillwein

2020-08 M. Ouafoudi: A Mathematical Description for Taste Perception Using Stochastic Leaky
Integrate-and-Fire Model June 2020. Eds.: E. Buckwar, V. Pillwein

2020-09 A. Bostan, A. Jiménez-Pastor: On the exponential generating function of labelled trees July

2020. Eds.: M. Kauers, V. Pillwein

2020-10 J, Forcan, J. Qi: How fast can Dominator win in the Maker-Breaker domination game? July

2020. Eds.: V. Pillwein, J. Schicho

2020-11 J. Qi: A calculus for monomials in Chow group of zero cycles in the moduli space of stable
curves Sept 2020. Eds.: P. Paule, J. Schicho

The complete list since 2009 can be found at

https://www.dk-compmath.jku.at/publications/

Doctoral Program

“Computational Mathematics”

Director:
Assoc. Prof. Dr. Veronika Pillwein
Research Institute for Symbolic Computation

Deputy Director:
Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address:
Johannes Kepler University Linz
Doctoral Program “Computational Mathematics”
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

E-Mail:
office@dk-compmath.jku.at

Homepage:
http://www.dk-compmath.jku.at

Submissions to the DK-Report Series are sent to two members of the Editorial Board
who communicate their decision to the Managing Editor.

