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Abstract

Holonomic sequences are widely studied as many objects interesting to mathematicians
and computer scientists are in this class. In the univariate case, these are the sequences
satisfying linear recurrences with polynomial coefficients and also referred to as D-finite
sequences. A subclass are C-finite sequences satisfying a linear recurrence with constant
coefficients.

We investigate the set of sequences which satisfy linear recurrence equations with coeffi-
cients that are C-finite sequences. These sequences are a natural generalization of holonomic
sequences. In this paper, we show that C2-finite sequences form a difference ring and provide
methods to compute in this ring.

1 Introduction

Sequences that satisfy a linear recurrence with polynomial coefficients are known under the
names holonomic, D-finite or P -recursive. If the recurrence coefficients are just constants, these
sequences are also called C-finite or C-recursive. Many interesting combinatorial objects or
coefficient sequences of special functions are of this type [4, 11]. In this paper, we define C2-
finite sequences as sequences satisfying a linear recurrence relation with C-finite coefficients.
Holonomic and q-holonomic sequences are strictly contained in this set.

For holonomic functions or sequences, closure properties are a basic tool to systematically
construct new holonomic objects from given ones and, more importantly, to automatically prove
identities on holonomic objects. We set up C2-finite sequences in a way that allows to derive and
implement closure properties. The goal is to develop a toolkit for automated theorem proving as
is already available for holonomic sequences and functions [10]. The main computational issue
when working with this more general class compared to holonomic sequences is the presence of
zero divisors.

To our knowledge, C2-finite sequences have first been introduced formally by Kotek and
Makowsky [13] in the context of graph polynomials. Thanatipanonda and Zhang [16] give an
overview on different properties of polynomial, C-finite and holonomic sequences and consider
the extension under the name X-recursive sequences. The setting in these articles is slightly
different which leads to complications if one aims at developing an algorithmic approach.

∗The research was partially funded by the Austrian Science Fund (FWF) under the grants W1214-N15, project
DK15, and SFB F50-07
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In this paper, we show that C2-finite sequences form a difference ring with respect to termwise
addition and termwise multiplication and present a first step towards setting up the theory of
C2-finite sequences algorithmically. An implementation in SageMath [17] is under development
for proof-of-concept and later release. In Section 3, we provide the algebraic characterization of
C2-finite sequences that serves as the theoretical backbone, but cannot be used straightforward
in a constructive way. Next, in Section 4, we consider in full detail the closure property addition
of two C2-finite sequences. The multiplication can be handled analogously. Finally, in Section 5,
we state some of the classical closure properties such as partial sum or interlacing that can be
derived similar to the case of holonomic sequences.

2 Preliminaries

In this section, we introduce some notation that is used throughout the paper. Let K be a
computable field of characteristic zero and we denote by KN the set of sequences over K. These
sequences form a ring with termwise addition and multiplication (i.e., the Hadamard product).
The shift operator

σ : KN → KN, σ((a(n))n∈N) = (a(n+ 1))n∈N

is an endomorphism on KN. A difference subring is a subring R of KN which is closed under
shifts, i.e., σ is an endomorphism on R. The noncommutative ring of shift-operators over R is
denoted by R[σ] and elements C = c0 + c1σ + · · ·+ crσ

r ∈ R[σ] act in the natural way as

Ca = (c0(n)a(n) + c1(n)a(n+ 1) + · · ·+ cr(n)a(n+ r))n∈N

on a ∈ KN.
For a difference subring R ⊆ KN we denote by R× ⊆ R the set of sequences which are units in

KN, i.e., sequences which are nonzero everywhere. This is a multiplicatively closed subset of R.
Furthermore, Q(R) denotes the localization of R with respect to R×. We can consider Q(R) as
a subring of KN by ((a/b)(n))n∈N = (a(n)/b(n))n∈N ∈ KN for a/b ∈ Q(R).

The ring of C-finite sequences is a difference ring and we denote it by RC .

Definition 2.1. A sequence a ∈ KN is called C2-finite if there are sequences c0, . . . , cr ∈ RC

with cr ∈ R×C such that

c0(n)a(n) + c1(n)a(n+ 1) + · · ·+ cr(n)a(n+ r) = 0,

for all n ∈ N. We define the order ord(a) of a C2-finite sequence a as the minimal such r.

Note that the set of C2-finite sequences contains holonomic sequences (and as such C-finite
sequences), since polynomial sequences are C-finite. A C2-finite sequence is described com-
pletely by a finite amount of data: the recurrence coefficients c0, . . . , cr ∈ RC and initial values
a(0), . . . , a(r− 1). The recurrence coefficients in turn have a finite description of the same form.
This way, C2-finite sequences can be represented exactly on a computer.

In operator notation, a sequence a ∈ KN is C2-finite if there is an A ∈ RC [σ] with lc(A) ∈ R×C
andAa = 0. Note that for a sequence c ∈ RC it is an open problem (the so called Skolem-Problem
[14]) whether it can be decided algorithmically if c ∈ R×C . However, even if in practice it may
not be possible to verify formally, usually it is easy to verify empirically.

Instead of working in the ring KN we could also work in the ring SK := KN/J for J :=⋃
i∈N ker(σi) where two sequences are equal if they are equal from some term on (cf. [15]). This

setting is also used in [13, 16]. Let us write π : KN → SK for the natural projection. We say
that a + J ∈ SK is C2-finite if there is an operator A ∈ π(RC)[σ] with lc(A) ∈ π(RC)× and
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A(a + J) = 0 + J . Equivalently, the sequence a ∈ KN satisfies a C2-finite recurrence from
some term n0 ∈ N on. By shifting the recurrence by n0 we would get a recurrence which holds
for every n ∈ N. The advantage of working over SK is that one can decide if an operator A
is of the desired shape since it can be decided whether lc(A) ∈ π(RC)× [3, 5]. For practical
computations, one is still limited by the Skolem-Problem. Thus, and since in our setting we
avoid certain technicalities, we stick to working over the ring KN as stated above.

We conclude this section by giving some first concrete examples of C2-finite sequences. More
examples can be found in [13] and [16].

Example 2.2. Let (a(n))n∈N count the number of graphs on n labeled nodes (sequence A006125
in the OEIS [7]). Then, a(n) = 2n(n−1)/2 and a is C2-finite as

2na(n)− a(n+ 1) = 0, for all n ∈ N.

Similarly, all sequences (αn2

)n∈N for α ∈ K are C2-finite. These grow faster than holonomic
sequences [6, Proposition 1.2.1]. Hence, the set of C2-finite sequences is a strict generalization
of holonomic sequences.

Example 2.3. Let (f(n))n∈N be the Fibonacci numbers. It was observed in [13] that

f(2n+ 3)(f(2n+ 1)f(2n+ 3)− f(2n+ 2)2)f(n2)

+f(2n+ 2)(f(2n+ 3) + f(2n+ 1))f((n+ 1)2)

−f(2n+ 1)f((n+ 2)2) = 0

holds for all n ∈ N. In particular, (f(n2))n∈N is C2-finite (A054783 in the OEIS).

Example 2.4. Let f be as above, l denote the Lucas numbers (with l(0) = 2, l(1) = 1), and

Fib(n, k) :=
∏k

i=1 f(n− i+1)/f(k) the fibonomial coefficient. It has been shown [12, Theorem 1]
that

∑n
k=0 Fib(2n + 1, k) =

∏n
k=1 l(2k) for all n ∈ N. This is an identity of C2-finite sequences

(A294349 in the OEIS).

3 Algebraic characterization

For a sequence a ∈ KN we consider the module of shifts

〈σia | i ∈ N〉Q(RC)

over the ring Q(RC) where the scalar multiplication is given by the Hadamard product of se-
quences in KN. We now prove that this module is finitely generated if and only if the sequence
is C2-finite.

Theorem 3.1. The following are equivalent:

1. The sequence a is C2-finite.

2. There exists A ∈ RC [σ] with lc(A) ∈ R×C and a C2-finite sequence b with Aa = b.

3. The module 〈σia | i ∈ N〉Q(RC) over the ring Q(RC) is finitely generated.

Proof. (1) =⇒ (3): Suppose A = c0 + c1σ + · · · + crσ
r ∈ RC [σ] is an annihilator of a with

lc(A) = cr ∈ R×C , i.e., Aa = 0. Let i ∈ N, then

σiA = σi(c0)σi + · · ·+ σi(cr)σi+r
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and lc(σiA) = σi(cr) ∈ R×C . Since (σiA)a = σi(Aa) = 0, we can write

σi+r(a) = −σ
i(c0)

σi(cr)
σi(a)− · · · − σi(cr−1)

σi(cr)
σi+r−1(a).

Hence, for all i ∈ N the sequence σi+ra is a Q(RC)-linear combination of the sequences
σia, . . . , σi+r−1a. By induction, σi+ra is a Q(RC)-linear combination of a, σa, . . . , σr−1a, so
the module 〈σia | i ∈ N〉Q(RC) is generated by a, σa, . . . , σr−1a.

(3) =⇒ (1): As the module is finitely generated, we can write

〈b0, . . . , bm〉Q(RC) = 〈σia | i ∈ N〉Q(RC)

for some m and some sequences b0, . . . , bm. There exists an r ∈ N such that the elements bj can

be written as bj =
∑r−1

i=0 ci,jσ
ia for some ci,j ∈ Q(RC). Then, σra is a Q(RC)-linear combination

of b0, . . . , bm, so in particular a linear combination of the a, σa, . . . , σr−1a. Hence, there exist
sequences c0, . . . , cr−1 ∈ RC and d0, . . . , dr−1 ∈ R×C with

σra =
c0
d0
a+

c1
d1
σa+ · · ·+ cr−1

dr−1
σr−1a.

Clearing denominators shows that a is C2-finite of order at most r.
(2) =⇒ (1): Since b is C2-finite, there exists an operator B ∈ RC [σ] with lc(B) ∈ R×C and

Bb = 0. Then, (BA)a = B(Aa) = Bb = 0. Furthermore, lc(BA) ∈ R×C .
(1) =⇒ (2): We can choose the C2-finite sequence b = 0.

Analogous results like Theorem 3.1 for C-finite and holonomic sequences are often used to
show that these sets form rings [11]. In these cases the base ring is a field and the key step makes
use of the fact that submodules of finitely generated modules over fields (i.e., finite dimensional
vector spaces) are again finitely generated. This holds more generally for Noetherian rings.
However, the rings RC and Q(RC) are not Noetherian as the next example shows.

Example 3.2. Let ck ∈ RC with ck(n) − ck(n + k) = 0, for every n ∈ N, and ck(0) = · · · =
ck(k−2) = 1, ck(k−1) = 0 (i.e., ck has a 0 at every k-th term and 1 else). Let Lm := 〈c2, . . . , c2m〉
be ideals in RC , then

L1 ( L2 ( L3 ( · · ·

is an infinitely properly ascending chain of ideals in RC . Therefore, RC is not a Noetherian ring.

Hence, to use a similar argument for C2-finite sequences, we construct a Noetherian subring
R ⊆ RC in the next theorem.

Theorem 3.3. The set of C2-finite sequences is a difference ring under termwise addition and
termwise multiplication.

Proof. Let a, b be C2-finite sequences andA = c0+c1σ+· · ·+cr1σr1 and B = d0+d1σ+· · ·+dr2σr2

the corresponding annihilating operators with c0, . . . , cr1 , d0, . . . , dr2 ∈ RC .
For a C-finite sequence c ∈ RC the K-vector space 〈σic | i ∈ N〉K is finitely generated. Then,

also the K-algebra
Rc := K[c, σc, σ2c, . . . ]

is finitely generated as an algebra. In particular, Rc is a Noetherian ring [1, Corollary 7.7].
Now, let R ( RC be the smallest ring containing the Noetherian rings Rc0 , . . . , Rcr1

,
Rd0

, . . . , Rdr2
. In particular, this ring R is finitely generated as a ring and therefore, R and
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Q(R) are Noetherian rings [1, Corollary 7.7, Proposition 7.3]. From the proof of Theorem 3.1 it
is clear that 〈σia | i ∈ N〉Q(R) and 〈σib | i ∈ N〉Q(R) are both finitely generated Q(R)-modules.
Hence, also the modules

〈σi(a+ b) | i ∈ N〉Q(R) ⊆ 〈σia | i ∈ N〉Q(R) + 〈σib | i ∈ N〉Q(R)

and

〈σi(ab) | i ∈ N〉Q(R) ⊆ 〈σi(a)σj(b) | i, j ∈ N〉Q(R)

are finitely generated as they are submodules of finitely generated modules over a Noetherian
ring. Again, from the proof of Theorem 3.1 we can see that a+b and ab are C2-finite. Therefore,
the set of C2-finite sequences is a ring.

The operator
Ã := σ(c0) + σ(c1)σ + · · ·+ σ(cr1)σr1 ∈ RC [σ]

annihilates σa as
Ã(σa) = (Ãσ)a = (σA)a = σ(Aa) = 0.

Furthermore, we have lc(Ã) = σ(cr1) ∈ R×C . Hence, the ring of C2-finite sequences is also closed
under shifts.

In [13, Theorem 1] it was shown that certain sparse subsequences of C-finite sequences are
C2-finite. Example 2.3 given earlier is just a special case of this. We provide an easier proof for
a similar result which uses the closed-form representation of C-finite sequences.

Corollary 3.4. Let c be a C-finite sequence over the field K and j, k, l ∈ N. Then,

(c(jn2 + kn+ l))n∈N

is C2-finite over the splitting field L of the characteristic polynomial of c.

Proof. By the closed-form representation of C-finite sequences (cf. [11, Theorem 4.1]) c is an
L-linear combination of sequences d with d(n) = niαn for i ∈ N and α ∈ L. Then,

d(jn2 + kn+ l) = (jn2 + kn+ l)i(αj)n
2

(αk)nαl.

Therefore, the sequence (d(jn2 +kn+ l))n∈N is C2-finite as it is the product of C-finite sequences

and the C2-finite sequence ((αj)n
2

)n∈N over L. Since C2-finite sequences are also closed under
L-linear combinations, (c(jn2 + kn+ l))n∈N is C2-finite.

4 Closure property addition

Classically, closure properties for holonomic functions or sequences are computed using an ansatz
method [10]. We describe such an approach for the addition of two C2-finite sequences. The
same technique can also be used for the multiplication of two sequences.

Let a, b be C2-finite. Then, we have recurrences

c̃0(n)a(n) + · · ·+ c̃r1−1(n)a(n+ r1 − 1) + c̃r1(n)a(n+ r1) = 0,

d̃0(n)b(n) + · · ·+ d̃r2−1(n)b(n+ r2 − 1) + d̃r2(n)b(n+ r2) = 0,
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for all n ∈ N, for c̃0, . . . , c̃r1−1, d̃0, . . . , d̃r2−1 ∈ RC with leading coefficients cr1 , dr2 ∈ R×C .
Therefore,

c0(n)a(n) + · · ·+ cr1−1(n)a(n+ r1 − 1) + a(n+ r1) = 0,

d0(n)b(n) + · · ·+ dr2−1(n)b(n+ r2 − 1) + b(n+ r2) = 0,

for all n ∈ N, with c0, . . . , cr1−1, d0, . . . , dr2−1 ∈ Q(RC). To get a recurrence for a + b we make
an ansatz of some order s with unknown coefficients x0, . . . , xs−1 ∈ Q(RC):

x0(n)(a(n) + b(n)) + · · ·+ xs−1(n)(a(n+ s− 1) + b(n+ s− 1)) + (a(n+ s) + b(n+ s)) = 0.

Repeated application of the recurrences and collecting a(n+ i) for i = 0, . . . , r1 − 1 and b(n+ i)
for i = 0, . . . , r2 − 1 yields

r1−1∑
i=0

αi(n) +

s−1∑
j=0

αi,j(n)xj(n)

 a(n+ i) +

r2−1∑
i=0

βi(n) +

s−1∑
j=0

βi,j(n)xj(n)

 b(n+ i) = 0

for some αi, αi,j , βi, βi,j ∈ Q(RC). This equation is certainly true for all n if the coefficient
sequences of a(n+ i) and b(n+ i) are zero. This yields a linear inhomogeneous system. To write
it concisely, let us denote

u>j = (α0,j , . . . , αr1−1,j), v>j = (β0,j , . . . , βr2−1,j),

for all j = 0, . . . , s− 1,

u>s = (α0, . . . , αr1−1), v>s = (β0, . . . , βr2−1)

and

w>j = (uj , vj) ∈ Q(RC)r1+r2 ,

for j = 0, . . . , s, and x> = (x0, . . . , xs−1) ∈ Q(RC)s, as well as the matrices U = (u0, . . . , us−1)
and V = (v0, . . . , vs−1). Now, the system that we obtain from equating the coefficient sequences
to zero reads as (

U
V

)
x = −ws.

In the next section, we show how the vectors wj can be computed. Then, in Section 4.2, we
see that the order of the ansatz s can be chosen big enough such that the inhomogeneous system
has a solution in Ks at every term. Finally, from Lemma 4.5 it follows that there is a solution
x ∈ Q(RC)s of the inhomogeneous system.

In the case that one of the C2-finite sequences has order 1, the inhomogeneous system has a
special structure. We use this to derive a bound for the order of the addition of the two sequences
in Section 4.3.

4.1 Computing the ansatz

Let a be C2-finite of order r with recurrence

c0(n)a(n) + · · ·+ cr−1(n)a(n+ r − 1) + a(n+ r) = 0,

for all n ∈ N, and for c0, . . . , cr−1 ∈ Q(RC). We write the components of a vector uj ∈ Q(RC)r

as uj,i for i = 0, . . . , r − 1. The j-th unit vector is denoted by ej ∈ Q(RC)r for j = 0, . . . , r − 1.
Note that, e.g., e0(n) = (1, 0, . . . , 0), for all n ∈ N.

The following lemma shows a straightforward recurrence which can be used to compute the
vectors uj in the ansatz matrix.
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Lemma 4.1. Let uj := ej ∈ Q(RC)r be the j-th unit vector for j = 0, . . . , r − 1. Now, define

uj(n) := −
r−1∑
k=0

ck(n+ j − r)uj−r+k(n), for all n ∈ N, (1)

inductively. These uj(n) satisfy

a(n+ j) =

r−1∑
i=0

uj,i(n)a(n+ i), for all n ∈ N, (2)

for all j ∈ N.

Proof. Shifting the defining recurrence of a(n) yields

a(n+ j) = −
r−1∑
k=0

ck(n+ j − r)a(n+ j − r + k), for all n ∈ N,

for j ≥ r. We show equation (2) by induction on j. It clearly holds for j = 0, . . . , r − 1 by the
definition of the uj . Let n ∈ N and let us assume that equation (2) holds for a(n), . . . , a(n+j−1).
Then,

r−1∑
i=0

uj,i(n)a(n+ i) = −
r−1∑
i=0

r−1∑
k=0

ck(n+ j − r)uj−r+k,i(n)a(n+ i)

= −
r−1∑
k=0

ck(n+ j − r)a(n+ j − r + k) = a(n+ j).

A different way to compute the vectors uj is to use the companion matrix of a sequence. The
companion matrix Ma of the sequence a is defined as

Ma :=


0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...

...
. . .

...
...

0 0 . . . 1 −cr−1

 ∈ Q(RC)r×r.

Lemma 4.2. Let Ma be the companion matrix of a. Let

u0 := e0 = (1, 0, . . . , 0)

and define
uj(n) := Ma(n)uj−1(n+ 1), for all n ∈ N,

inductively for j ≥ 1.

1. These uj are identical to the vectors from Lemma 4.1.

2. The uj satisfy equation (2).
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Proof. (1): Clearly uj = ej for j = 0, . . . , r − 1 by the definition of the companion matrix. For
j ≥ r we show that equation (1) from Lemma 4.1 is satisfied using induction on j. For j = r we
have

ur(n) = (−c0(n), . . . ,−cr(n)), for all n ∈ N,

by the definition of the companion matrix and therefore,

−
r−1∑
k=0

ck(n)uk(n) = −
r−1∑
k=0

ck(n)ek(n) = ur(n), for all n ∈ N.

Now, we assume that equation (1) from Lemma 4.1 holds for j − 1, i.e.,

uj−1(n) = −
r−1∑
k=0

ck(n+ j − 1− r)uj−1−r+k(n), (3)

for all n ∈ N. Using equation (3) shifted n→ n+ 1 and the definition of the uj we have

−
r−1∑
k=0

ck(n+ j − r)uj−r+k(n) = −Ma(n)

r−1∑
k=0

ck(n+ j − r)uj−1−r+k(n+ 1)

= Ma(n)uj−1(n+ 1) = uj(n),

for all n ∈ N.
(2): Follows directly from part (1) and Lemma 4.1.

Consider two C2-finite sequences a, b. To compute the vectors wj in the ansatz matrix for
a+ b we can concatenate the vectors which we get from Lemma 4.1. Alternatively, following the
approach from [8], we can use Lemma 4.2 and compute wj(n) = M(n)wj−1(n + 1), for n ∈ N,
where

M = Ma ⊕Mb =

(
Ma 0
0 Mb

)
is the direct sum of the companion matrices of a and b.

For the product ab we can do an analogous method and use the Kronecker product

M = Ma ⊗Mb

of the matrices Ma and Mb.

4.2 Computations in the ring

In Section 4.1 we have seen constructive ways to compute the ansatz matrix. Lemma 4.3 below
yields that this ansatz can be chosen large enough such that the corresponding inhomogeneous
system has a solution at every term. Lemma 4.5 then states that such termwise solvable systems
are even solvable in the C-finite sequence ring. For both results we adapt some techniques which
were used in [13]. As a consequence, we obtain a (semi-)constructive way to compute the addition
and multiplication in the C2-finite sequence ring.

Lemma 4.3. Let a, b be C2-finite sequences. Then, the order s of the ansatz for the sum a+ b
and the product ab can be chosen in such a way that the corresponding inhomogeneous system
has a solution at every term.
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Proof. Let w0, w1, . . . ∈ Q(RC)r (with r = r1 +r2 if we consider the sum a+b and r = r1r2 if we
consider the product ab) be the columns of the ansatz matrix. Let S ( RC be the smallest ring
containing all K-algebras K[c, σc, σ2c, . . . ] where c is a coefficient in the annihilating operator of
a or b. In the proof of Theorem 3.3 we have seen that Q(S) is a Noetherian ring. Now, denote

Aj := (w0, . . . , wj) ∈ Q(S)r×(j+1). Furthermore, let I
(t)
j E Q(S) be the ideals generated by the

minors of order t of Aj . For fixed t ∈ {0, . . . , r}, these I
(t)
j form an increasing chain of ideals.

Let s ∈ N be such that I
(t)
s−1 = I

(t)
s for all t ∈ {0, . . . , r}. Then, As−1(n)x(n) = −ws(n) has a

solution for every n: Suppose

t := rank(As(n)) > rank(As−1(n)).

Then, there exists a nonzero minor φ(n) of order t of As(n). On the other hand, all minors
φ0(n) = · · · = φm(n) = 0 of order t of As−1(n) are zero. By the choice of s, the nonzero
minor φ(n) is a Q(S)-linear combination of the minors φ0(n), . . . , φm(n), a contradiction. Hence,
As−1(n) and As(n) have equal rank and, by the Rouché-Capelli theorem, the linear equation has
a solution.

The proof of Lemma 4.3 is not constructive as the Noetherian ring only gives us the existence
of the number s. To make this argument constructive we would need to be able to solve instances
of the ideal membership problem over Q(RC).

The order of the addition and multiplication of C-finite sequences is bounded by the sum and
product of the orders of the sequences respectively. Lemma 4.3 does not provide such bounds.
The next example shows that these classical bounds do not work in some cases.

Example 4.4. Consider

(−1)na(n) + a(n+ 1) = 0, b(n) + b(n+ 1) = 0, for all n ∈ N.

Actually, a is also C-finite of order 2. Making an ansatz of order 2 for the sequence a + b with
coefficients x0, x1 ∈ Q(RC) yields the linear system(

1 −(−1)n

1 −1

)(
x0(n)
x1(n)

)
=

(
1
−1

)
.

This system is not solvable for even n ∈ N. Hence, our technique cannot yield a recurrence for
a+ b of order 2. However, with an ansatz of order 3 we get the recurrence(

1
2 (−1)n+1 + 1

2

)
(a(n) + b(n))

+
(
1
2 (−1)n + 1

2

)
(a(n+ 2) + b(n+ 2))

+(a(n+ 3) + b(n+ 3)) = 0,

for every n ∈ N. Setting up a classical homogeneous ansatz as in [16] yields the recurrence

((−1)n + 1)(a(n) + b(n)) + 2(a(n+ 1) + b(n+ 1)) + (1− (−1)n)(a(n+ 2) + b(n+ 2)) = 0

with a leading coefficient which has infinitely many zeros. Such a recurrence fits in the framework
of X-recursive sequences from [16] but is not a C2-finite recurrence in our sense.

In order to show how to solve systems over the ring Q(RC) we use the Skolem-Mahler-Lech
Theorem [5]. It states that the zeros of a sequence c ∈ RC (and therefore also c ∈ Q(RC))
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are exactly at finitely many arithmetic progressions from some term on. Hence, for a sequence
c ∈ RC there exist n0, p ∈ N such that

(c(n0 + pk), . . . , c(n0 + pk + p− 1))

has the same zero-pattern for every k ∈ N. This number p is called the zero-cycle period of the
sequence c.

Lemma 4.5. Let A ∈ Q(RC)r×s and w ∈ Q(RC)r. Suppose the system A(n)x(n) = w(n) has
a solution for every n ∈ N. Then, there is a solution x ∈ Q(RC)s such that Ax = w in Q(RC).

Proof. All minors of A are sequences in Q(RC). Consider the set of all these. By the Skolem-
Mahler-Lech Theorem the zeros of these minors are cyclic. Let p ∈ N be the common zero-cycle
period of all minors from some term n0 ∈ N on.

We write A = (w0, . . . , ws−1) for w0, . . . , ws−1 ∈ Q(RC)r. Now, for every
m ∈ {n0, . . . , n0 + p − 1} we can choose a subset jm ⊆ {0, . . . , s − 1} such that the vectors
{wj(m) | j ∈ jm} ⊆ Kr are maximally linearly independent, i.e., they are linearly independent
and generate the same subspace as {w0(m), . . . , ws−1(m)}. By the choice of n0 and p this is also
true for all n = m + pk for k ∈ N, i.e., the vectors {wj(m + pk) | j ∈ jm} ⊆ Kr are maximally
linearly independent for every k ∈ N. Let us denote by Am ∈ Q(RC)r×|jm| the submatrix of A
where we keep the columns wj with j ∈ jm.

For every m we can solve the system

Am(m+ pk)xm(k) = w(m+ pk), for all k ∈ N, (4)

using the Moore-Penrose-Inverse: By the choice of m, p, n0, the matrix Am(m + pk) has linear
independent columns for every k ∈ N. Therefore, the Gramian matrix

G(k) = AT
m(m+ pk)Am(m+ pk)

is regular for every k and (det(G(k)))k∈N ∈ R×C . Now, let

xm(k) =
1

det(G(k))
cof (G(k))AT

m(m+ pk)w(m+ pk)

where cof(·) denotes the transposed cofactor matrix. Then, since equation (4) has a termwise
solution, (xm(k))k∈N ∈ Q(RC)|jm| satisfies equation (4) by the theory of Moore-Penrose-Inverses.
Let x′m ∈ Q(RC)s be the vector where we add 0 ∈ Q(RC) at the indices j ∈ jm−{0, . . . , s− 1}.

Now, the solution x for the entire system can be computed as the interlacing
of x′n0

, . . . , x′n0+p−1 from n0 on and the first n0 values can be computed explicitly. Then,
x ∈ Q(RC)s as Q(RC) is closed under interlacing and specifying finitely many initial values.

The arithmetic progressions from the Skolem-Mahler-Lech Theorem can be found effectively.
Hence, the zero-cycle period of a C-finite sequence can be computed. It is, however, not known
whether the index n0 ∈ N such that the zeros beyond this index are cyclic can be found algorith-
mically (cf. Skolem-Problem [14]). Hence, the proof of Lemma 4.5 is not constructive in general.
However, in many cases this index n0 can be computed (or at least estimated empirically). If
we can compute the zeros of the minors of the matrix A, then the proof of Lemma 4.5 gives an
algorithm to compute a solution.

Lemma 4.5 also shows a possible algorithm to solve the ideal membership problem in Q(RC)
from Lemma 4.3: The problem whether c ∈ 〈d1, . . . , ds〉 for c, d1, . . . , ds ∈ Q(RC) is equivalent to
solving the inhomogeneous equation dx = c with d = (d1, . . . , ds) for unknown x ∈ Q(RC)s. With
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Lemma 4.5 we can compute a possible solution x. Then, we can check with closure properties
whether dx = c indeed holds in Q(RC). If it does, we have shown that c is in the ideal. If dx 6= c,
then c is not in the ideal, because otherwise we would have a termwise solution and therefore
with Lemma 4.5 a solution in Q(RC).

Lemma 14 in [13] states that the components wj ∈ KN of a vector w = (w0, . . . , wr−1) are
C2-finite if the vector satisfies a recurrence of the form w(n+1) = M(n)w(n), for every n ∈ N, for
M ∈ Rr×r

C . Since the existence of the sequence sn in the proof of Lemma 14 is not guaranteed,
their approach seems to not work for certain examples. We use the same idea from Lemma 14
to set up an inhomogeneous linear system over RC . Lemma 4.5, which shows how to solve such
inhomogeneous systems over RC , is also based on the proof of Lemma 14. The difference in
our approach is that we do not assume that the inhomogeneous system has a certain fixed size
(which is determined by ord(a), ord(b)) but that the size of this system also depends on the C-
finite coefficients in the recurrences. Example 4.4 shows that this flexible approach is sometimes
really needed.

4.3 Bounds for addition

The order of adding and multiplying C-finite sequences is bounded by the sum and product of
the orders of the sequences respectively. Example 4.4 shows that this cannot be achieved in our
approach for C2-finite sequences. However, we can show some bounds in the special case where
we add two C2-finite sequences where one of the sequences has order 1.

In this section we assume that a is C2-finite of order r and b is C2-finite of order 1 satisfying
the recurrences

c0(n)a(n) + · · ·+ cr−1(n)a(n+ r − 1) + a(n+ r) = 0,

d(n)b(n) + b(n+ 1) = 0,

for all n ∈ N, with c0, . . . , cr−1, d ∈ Q(RC).
Let uj , vj be the coefficients for the iterated recurrence of a and b as defined in Lemma 4.1,

respectively. Note that v0 = 1 and

vj(n) = vj,0(n) = −d(n+ j − 1)vj−1(n), for all n ∈ N,

for j ≥ 1. Therefore,

vj(n) = (−1)jd(n)d(n+ 1) · · · d(n+ j − 1) (5)

for all j, n ∈ N.
As in the proof of Lemma 4.3 let

φj := det(w0, . . . , wr−1, wj) ∈ Q(RC)

for j ≥ 0 with wj = (uj , vj). Let v = (v0, . . . , vr−1) ∈ Q(RC)r and let I ∈ Kr×r be the identity
matrix. Then,

φj(n) =

∣∣∣∣ I uj(n)
v(n) vj(n)

∣∣∣∣ = vj(n)−
r−1∑
i=0

uj,i(n)vi(n),

for all n ∈ N.
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For j < r we have φj = 0 as the matrix has linear dependent columns. For j = r we have
ur = −(c0, . . . , cr−1) and therefore,

φr(n) = vr(n) +

r−1∑
i=0

ci(n)vi(n), (6)

for every n ∈ N.

Lemma 4.6. For j ≥ r we have

φj(n) = −
r−1∑
i=0

ci(n+ j − r)φj−r+i(n) + vj−r(n)φr(n+ j − r),

for every n ∈ N.

Proof. Let n ∈ N. With the definition of the wj we have

φj(n) = det(w0(n), . . . , wr−1(n), wj(n))

= −
r−2∑
i=0

∣∣∣∣ I ci(n+ j − r)uj−r+i(n)
v(n) 0

∣∣∣∣︸ ︷︷ ︸
=:xj,i(n)

−
∣∣∣∣ I cr−1(n+ j − r)uj−1(n)
v(n) d(n+ j − 1)vj−1(n)

∣∣∣∣︸ ︷︷ ︸
=:yj(n)

.

First, we compute xj,i(n) and yj(n):

xj,i(n) =

∣∣∣∣ I ci(n+ j − r)uj−r+i(n)
v(n) 0

∣∣∣∣ = −ci(n+ j − r)
r−1∑
k=0

uj−r+i,k(n)vk(n)

= ci(n+ j − r)φj−r+i(n)− ci(n+ j − r)vj−r+i(n)

and

yj(n) =

∣∣∣∣ I cr−1(n+ j − r)uj−1(n)
v(n) d(n+ j − 1)vj−1(n)

∣∣∣∣ = −vj(n)− cr−1(n+ j − r)
r−1∑
i=0

uj−1,i(n)vi(n)

= −vj(n) + cr−1(n+ j − r)φj−1(n)− cr−1(n+ j − r)vj−1(n).

Combining both yields

φj(n) = −
r−2∑
i=0

ci(n+ j − r)φj−r+i(n) +

r−2∑
i=0

ci(n+ j − r)vj−r+i(n)

+ vj(n)− cr−1(n+ j − r)φj−1(n) + cr−1(n+ j − r)vj−1(n)

= −
r−1∑
i=0

ci(n+ j − r)φj−r+i(n) +

r−1∑
i=0

ci(n+ j − r)vj−r+i(n) + vj(n).

Because of equation (5) we have vj−r+i(n) = vi(n+j−r)vj−r(n) and vj(n) = vr(n+j−r)vj−r(n).
Hence, with equation (6), we have

φj(n) = −
r−1∑
i=0

ci(n+ j − r)φj−r+i(n) + vj−r(n)φr(n+ j − r).
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Lemma 4.7. Let a, b be C2-finite of order r and 1 respectively. Then, a + b has order at most
n0 + r if there exists an n0 ∈ N with φr(n) = 0 for n ≥ n0. Otherwise, a+ b has order at most
ord(φr) + r.

Proof. Let

c0(n)a(n) + · · ·+ cr−1(n)a(n+ r − 1) + a(n+ r) = 0,

d(n)b(n) + b(n+ 1) = 0,

for all n ∈ N, with c0, . . . , cr−1, d ∈ Q(RC).
If φr(n) = 0 for all n ≥ n0 for some n0 ∈ N, we can shift the sequences by n0, choose r for

the order of the ansatz of a + b and the corresponding system has a solution for every n ∈ N.
Now, shifting the recurrence by n0 we can specify the initial values (a+ b)(n) for n < n0.

Otherwise, we choose the order of the ansatz as s := ord(φr) + r. We show that the corre-
sponding linear system has a solution for every n ∈ N: If one of the φr(n), . . . , φs−1(n) is nonzero,
the system has a solution as we have r linearly independent vectors in Kr. Now, assume that
φr(n) = · · · = φs−1(n) = 0. By the choice of s, the set {φr(n), . . . , φr(n + s − r − 1)} contains
a nonzero element φr(n + sn − r) 6= 0 for some sn ∈ {r, . . . , s − 1}. Then, φsn(n) = 0 and by
Lemma 4.6

φsn(n) = −
r−1∑
i=0

ci(n+ sn − r)φsn−r+i(n) + vsn−r(n)φr(n+ sn − r)

= −
r−1∑
i=0

ci(n+ sn − r)0 + vsn−r(n)φr(n+ sn − r) = 0.

Therefore, vsn−r(n) = 0 and with equation (5) we have vs−r(n) = vsn−r(n)vs−sn(n+sn−r) = 0.
Hence, again with Lemma 4.6, we have

φs(n) = −
r−1∑
i=0

ci(n+ s− r)φs−r+i(n) + vs−r(n)φr(n+ s− r) = 0 + 0φr(n+ s− r) = 0.

So in this case the system corresponding to the ansatz of order s has a solution as well. Because
of Lemma 4.5 we have a recurrence for a+ b of order ord(φr) + r.

Example 4.8. In Example 4.4 we have r = 1 and

φ1(n) =

∣∣∣∣ 1 −(−1)n

1 −1

∣∣∣∣ = −1 + (−1)n,

for all n ∈ N. The sequence φ1 has order 2. Hence, a + b has order at most 1 + ord(φ1) = 3.
Indeed, we have seen a recurrence of order 3 in Example 4.4.

5 Further closure properties

C2-finite sequences are not only closed under addition and multiplication. The following theorem
gives several more closure properties.

Theorem 5.1. Let a, a0, . . . , am−1 be C2-finite. Then,

1. (shifts) σk(a) is C2-finite for every k ∈ N,
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2. (difference) ∆(a) := σ(a)− a is C2-finite,

3. (partial sums) b = (
∑n

k=0 a(k))n∈N is C2-finite.

4. (subsequence) b = (a(nd))n∈N is C2-finite for every d ∈ N,

5. b = (a(bn/mc))n∈N is C2-finite for every m ∈ N,

6. (interlacing) if b = (b(n))n∈N with b(n) = as(q) such that n = qm+ s and 0 ≤ s < m, then
b is C2-finite.

Proof. (1), (2): Clear as the set of C2-finite sequences is a difference ring by Theorem 3.3.
(3): We have σ(b)− b = a. Therefore, by Theorem 3.1, the sequence b is C2-finite.
(4): Let c0 + c1σ + · · · + crσ

r ∈ RC [σ] be the annihilating operator of a. We have σib =
(a(nd+ id))n∈N, for all i ∈ N. For c ∈ RC of order s we have

(c(nd+ j))n∈N ∈ 〈(c(nd− s+ j)n∈N, . . . , (c(nd− 1 + j)n∈N)〉K,

for every j ≥ s. Hence, by induction

(c(nd+ j))n∈N ∈ 〈(c(nd)n∈N, . . . , (c(nd+ s− 1)n∈N)〉K,

for every j ∈ N. In particular, the algebra

K[(c(nd))n∈N, (c(nd+ 1))n∈N, . . . ]

is a Noetherian ring. Let R ( RC be the ring containing the sequences (ci(nd + j))n∈N, for all
i = 0, . . . , r and j ∈ N. As the smallest ring containing finitely many Noetherian rings, this ring
R is Noetherian. Let i ∈ N. Using the recurrence for a and induction we have

σib ∈ 〈(a(nd))n∈N, . . . , (a(nd+ r − 1))n∈N〉Q(R).

Therefore, 〈σib | i ∈ N〉Q(R) is finitely generated. Hence, by the proof of Theorem 3.1, b is
C2-finite.

(5): Suppose a satisfies
∑r

i=0 ci(n)a(n+ i) = 0, for all n ∈ N. Then, we also have

r∑
i=0

ci(bn/mc)a(b(n+ im)/mc) =

r∑
i=0

ci(bn/mc)b(n+ im) = 0,

for all n ∈ N. Since (ci(bn/mc))n∈N ∈ RC for all i = 0, . . . , r and (cr(bn/mc))n∈N ∈ R×C , the
sequence b is C2-finite.

(6): For all s = 0, . . . ,m− 1, the sequences (as(bn/mc))n∈N are C2-finite by part (5). Let

is(n) :=

{
1 if n ≡ s mod m,

0 if n 6≡ s mod m.

Then, is ∈ RC for all s = 0, . . . ,m− 1. Furthermore,

b(n) =

m−1∑
s=0

is(n)as(bn/mc), for all n ∈ N.

Since the set of C2-finite sequences are a ring containing RC , the sequence b is C2-finite.
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Example 5.2. Let f denote the Fibonacci-sequence. With Corollary 3.4 and Theorem 5.1 the
sequence b2n/3c∑

k=0

f((3k + 1)2)


n∈N

is C2-finite.

6 Conclusion and outlook

Summarizing, we showed that C2-finite sequences form a ring with respect to termwise addition
and termwise multiplication. We derived several closure properties and methods to compute with
C2-finite sequences. Analogously to C2-finite sequences one could define D2-finite sequences as
sequences which satisfy a linear recurrence with D-finite coefficients (with leading coefficient
nonzero at every term). Theorem 3.1 and Theorem 3.3 can be adapted straightforward to show
that these D2-finite sequences form a ring. However, it is not known whether the Skolem-Mahler-
Lech Theorem holds for D-finite sequences [2]. Hence, some of the ideas for computing in the
C2-finite sequence ring cannot be carried over immediately to D2-finite sequences.

For D-finite functions, i.e., formal power series satisfying a linear differential equation with
polynomial coefficients, an analogous construction has been carried out [9]: D2-finite functions
satisfying a linear differential equation with D-finite function coefficients. An advantage of this
setting is that D-finite functions form an integral domain and one does not have to deal with
zero divisors. D2-finite functions satisfy most closure properties known for D-finite functions
(except for the Hadamard product). From this it can be derived that the construction can be
iterated to build Dk-finite functions.

Similarly, one can define Ck+1-finite sequences as sequences satisfying a linear recurrence
with Ck-finite sequence coefficients. The proof of Theorem 3.3 can be adapted by iterating
the construction of the Noetherian ring R. This shows that Ck (and Dk-finite) sequences are
difference rings as well.

A useful feature of D-finite sequences is that their generating functions are D-finite as well and
that the defining difference and differential equations can be computed from one another. This
is often exploited in proofs or simplification of identities. Also most of the results of Theorem 5.1
would typically be proven by switching between those two representations.

Since D2-finite functions are not closed under Hadamard product, there cannot be a one-
to-one correspondence to D2-finite sequences. Still, it seems worthwhile to investigate the re-
lationship between these sets. First ideas on the nature of generating functions of C2-finite
sequences have been presented in [16]. It would be interesting to explore this further and to
derive computational properties.
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