Personal tools

Homework UL tex-file

TeX document icon homework_UL.tex — TeX document, 3 KB (3653 bytes)

File contents

\documentstyle[12pt,a4wide]{article}
%
%\pagestyle{empty}

%\input{command.inp}
%
\begin{document}
%
\noindent
\begin{center}
{\bf\large
 FUNDAMENTALS \\
of Numerical Analysis and Symbolic Computation\\[1ex]
	- Exercises on Discontinous Galerkin Methods -\\[2ex]
}
WS 2012/2013
\end{center}
 
\bigskip
\noindent
\hrule
%\bigskip
%\noindent%
%
%
\hrule
\vspace*{5mm}

\bigskip
\noindent
%
\def\solution{0}		% without solution
%\def\solution{1}		% with solution
%
%
\noindent
NAME:\\[2ex]
%
MATRIKELNUMMER:\\[1ex]
\hrule
\vspace*{2ex}
%
%WS 2011/2012
% 
%	
\noindent       
{\bf Exercise 1:}  Show that the gradient $\nabla u$ of the weak solution $u \in V_0 := H^1_0(\Omega)$
  of the variational problem (1) belongs not only to $\left[L_2(\Omega)\right]^d$ but also to 
	$H(\mbox{div}):= \{v \in \left[L_2(\Omega)\right]^d: \mbox{div}(v) \in L_2(\Omega)\}$,
	and, moreover, $ \mbox{div}(\nabla u) = -f$ ! \\[2ex]
%
%   Solution 1
%
 \ifnum\solution=1   \input{solution1.inp}  \fi
%	
%
\noindent       
{\bf Exercise 2:} Show the DG-identities (3), i.e.
\[
\sum_{\delta \in {\mathcal{T}}_h} \left(\nabla u \cdot n,v\right)_{\partial \delta}
= \sum_{\delta \in {\mathcal{T}}_h} \left(\{\nabla u\},v\cdot n\right)_{\partial \delta}
= \sum_{e \in {\overline{\mathcal{E}}}_h} \left(\{\nabla u\},[v]\right)_e
%~!
\]
for a weak solution $u \in H^1_0(\Omega) \cap H^s({\mathcal{T}}_h)$ 
of the variational problem (1) and for all $v \in H^s({\mathcal{T}}_h)$
with some $s > 3/2$~! \\[2ex]
%
%
%   Solution 2
%
 \ifnum\solution=1   \input{solution1.inp}   \fi
%	
%
\noindent       
{\bf Exercise 3:} Prove the consistency theorem:
Let $s > 3/2$. Then the following statements are valid:
\begin{enumerate}
 \item Assume that the weak solution $u$ of (1), i.e.
	the solution of $ (1)_{\mbox{\tiny VF}} $ ($\exists$ ! due to Lax \& Milgram),
	belongs to $ H^s({\mathcal{T}}_h) $.
        Then $u$ satisfies the DG variational formulation (5).
 \item Conversely, if $u \in  H^1_0(\Omega) \cap H^s({\mathcal{T}}_h)$
	satisfies the DG variational formulation (5),
	then $u$ is also the solution of our variational problem $ (1)_{\mbox{\tiny VF}} $.
\end{enumerate}
%\\[2ex]
%
%   Solution 3
%
 \ifnum\solution=1   \input{solution1.inp}   \fi
%	
%
%
\noindent       
{\bf Exercise 4:} Show that the Dirichlet boundary condition $u=0$ on $\Gamma$ 
  is incorporated in (5) resp. (6)~!
  Derive the DG variational formulation (5) resp. the DG scheme (6)
  for the case of inhomogeneous Dirichlet boundary conditions $u=g$ on $\Gamma$ 
  and piecewise constant coefficients $a|_\delta = a_\delta = const > 0$ 
  for all $\delta \in {\mathcal{T}}_h$~!.\\[2ex]
%
%   Solution 4
%
 \ifnum\solution=1   \input{solution1.inp}   \fi
%	
%
%
%\noindent       
%{\bf Exercise 5:} Show that (7) defines a norm on $V_k({\mathcal{T}}_h)$~!\\[4ex]
%
%
%   Solution 5
%
% \ifnum\solution=1   \input{solution1.inp}   \fi
%	
%
%
%-------------------------------------------------------------------------------------------
\noindent
{\bf Remark:} All references (number) refer to formula markers from the lectures,
    see also lecture notes~!
	
%-------------------------------------------------------------------------------------------
%BIBLIOGRAPHY                                                                                     %                   
%\bibliographystyle{abbrv}
%\bibliographystyle{plain}
%\bibliography{fundamentals-langer}
%
%-------------------------------------------------------------------------------------------
\end{document}