Computational Algebra and Maximum Likelihood Estimation in Gaussian graphical Models
Filed under:
TALK
Dr. Caroline Uhler (IST Austria, Klosterneuburg), 10 May 2012, 2:30 pm, RISC seminar room
Computational Algebra and Maximum Likelihood Estimation in Gaussian graphical Models
We study maximum likelihood estimation in Gaussian graphical models from an algebraic point of view. In current applications of statistics, we are often faced with problems involving a large number of random variables, but only a small number of observations. An algebraic elimination criterion allows us to find exact lower bounds on the number of observations needed to ensure that the maximum likelihood estimator exists with probability one. The use of Groebner bases is essential for the elimination criterion and allows us to solve this statistical problem for various graphs.