PhD Defense: Computer Algebra with the Fifth Operation: Applications of Modular Functions to Partition Congruences
Computer Algebra with the Fifth Operation: Applications of Modular Functions to Partition Congruences
We give the implementation of an algorithm developed by Silviu Radu to compute examples of a wide variety of arithmetic identities originally studied by Ramanujan and Kolberg. Such identities employ certain finiteness conditions imposed by the theory of modular functions, and often yield interesting arithmetic information about the integer partition function $p(n)$, and other associated functions. We compute a large number of examples of such identities taken from contemporary research, often extending or improving existing results. We then use our implementation as a computational tool to help us achieve more theoretical results in the study of infinite congruence families. We finally describe a new method which extends the existing techniques for proving partition congruence families associated with a genus 0 modular curve.
Zoom-Link: https://jku.zoom.us/j/97451463945?pwd=VHFQSlRRZU0rU05JRDBqTUFGMjg4dz09
Meeting-ID: 974 5146 3945 Code: 139412