Personal tools
You are here: Home / People / Andreas Schafelner / Publications

Publications

File Pascal source code DK Report 2021-07, U. Langer and A. Schafelner
Adaptive space-time finite element methods for parabolic optimal control problems. Accepted for publication in the Journal of Numerical Mathematics.
File DK Report 2021-05, U. Langer and A. Schafelner
Space-time hexahedral finite element methods for parabolic evolution problems. Accepted for publication in the DD26 proceedings.
File DK Report 2021-04, U. Langer and A. Schafelner
Simultaneous space-time finite element methods for parabolic optimal control problems. Accepted for publication in the LSSC 2021 proceedings.
File A. Schafelner and P. S. Vassilevski. Numerical Results for Adaptive (Negative Norm) Constrained First Order System Least Squares Formulations.
In: Computers and Mathematics with Applications (2020). DOI: 10.1016/j.camwa.2020.08.025.
File U. Langer and A. Schafelner. Adaptive space-time finite element methods for non-autonomous parabolic problems with distributional sources.
In: Comput. Methods Appl. Math. (2020). DOI: 10.1515/cmam-2020-0042, Published online: 09 Sep 2020.
File U. Langer, A. Schafelner. Space-Time Finite Element Methods for Parabolic Initial-Boundary Value Problems with Non-smooth Solutions.
Lirkov I., Margenov S. (eds) Large-Scale Scientific Computing. LSSC 2019. Lecture Notes in Computer Science, vol 11958. Springer, Cham.
File DK Report 2020-03, U. Langer and A. Schafelner
Adaptive space-time finite element methods for non-autonomous parabolic problems with distributional sources
File DK Report 2020-02, A. Schafelner and P.S. Vassilevski
Numerical Results for Adaptive (Negative Norm) Constrained First Order System Least Squares Formulations
U. Langer, and A. Schafelner. Adaptive space‐time finite element solvers for parabolic initial‐boundary value problems with non‐smooth solutions
Proc. Appl. Math. Mech., 19: e201900305. doi:10.1002/pamm.201900305
U. Langer, M. Neumüller, and A. Schafelner. Space-Time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients.
Advanced Finite Element Methods with Applications: Selected Papers from the 30th Chemnitz Finite Element Symposium 2017. Springer International Publishing, 247-275. ISBN 978-3-030-14244-5.
File DK Report 2019-03, U. Langer and A. Schafelner
Space-Time Finite Element Methods for Parabolic Evolution Problems with Non-smooth Solutions
File DK Report 2017-07, A. Schafelner
Space-time Finite Element Methods for Parabolic Initial-Boundary Problems with Variable Coefficients